Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 27 Issue 2
Mar 2016
Turn off MathJax
Article Contents
Wei Wei, Dan Wang, Da Li, Hongfei Ling, Xi Chen, Guangyi Wei, Feifei Zhang, Xiangkun Zhu, Bin Yan. The Marine Redox Change and Nitrogen Cycle in the Early Cryogenian Interglacial Time: Evidence from Nitrogen Isotopes and Mo Contents of the Basal Datangpo Formation, Northeastern Guizhou, South China. Journal of Earth Science, 2016, 27(2): 233-241. doi: 10.1007/s12583-015-0657-1
Citation: Wei Wei, Dan Wang, Da Li, Hongfei Ling, Xi Chen, Guangyi Wei, Feifei Zhang, Xiangkun Zhu, Bin Yan. The Marine Redox Change and Nitrogen Cycle in the Early Cryogenian Interglacial Time: Evidence from Nitrogen Isotopes and Mo Contents of the Basal Datangpo Formation, Northeastern Guizhou, South China. Journal of Earth Science, 2016, 27(2): 233-241. doi: 10.1007/s12583-015-0657-1

The Marine Redox Change and Nitrogen Cycle in the Early Cryogenian Interglacial Time: Evidence from Nitrogen Isotopes and Mo Contents of the Basal Datangpo Formation, Northeastern Guizhou, South China

doi: 10.1007/s12583-015-0657-1
More Information
  • Cryogenian Datangpo Formation was deposited during the interglacial time between the Sturtian and Marinoan ice ages. We studied nitrogen isotope compositions and contents of Mo of the black shales from the basal Datangpo Formation in northeastern Guizhou, South China, for an attempt to reconstruct the marine redox change and nitrogen cycle during the interglacial time. Based on lithostratigraphy as well as geochemical profiles, the basal black shales can be divided into four intervals: Interval 1 has the lowest δ15N value (+5.0‰); in interval 2, δ15N values vary between +6.4‰ and +7.4‰ (the first peak); interval 3 records stable values of δ15N around +6‰; and interval 4 is characterized by its higher δ15N values, between +6.7‰ and +7.8‰ (the second peak). The values of enrichment factor of Mo decrease from 56.8 to 2.6 with the ascending stratigraphic trend. It indicated that immediately after the Sturtian glaciations, the marine seawater above the transitional zone between the shelf to slope of the southern margin of the Yangtze Platform was stratified, with shallow seawater being oxic but deep water being sulfidic. Subsequently, high denitrification rates prevailed in expanded suboxic areas in spite of a short emergence of an oxic condition in the surface seawater, and the deep seawaters were still anoxic or even euxinic.

     

  • loading
  • Ader, M., Sansjofre, P., Halverson, G., Busigny, V., Trindade, R., Kunzmann, M., Nogueira A., 2014. Ocean redox Redox structure Structure across the Late Neoproterozoic Oxygenation Event: A nitrogen Nitrogen isotope Isotope perspectivePerspective. Earth & Planetary Science Letters, 364, 1-13 http://smartsearch.nstl.gov.cn/paper_detail.html?id=6833a5e9affc7ac3eccfe354f8b1ddba
    Algeo, T.J., Maynard, J.B., 2004. Trace-Element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-Type Cyclothems. Chemical Geology, 206: 289-318 doi: 10.1016/j.chemgeo.2003.12.009
    Altabet, M. A., 2007. Constraints on Oceanic N Balance/Imbalance from Sedimentary N-15 Records. Biogeosciences, 4: 75-86 doi: 10.5194/bg-4-75-2007
    Böning, P., Brumsack, H. J., Böttcher, M. E., et al., 2004. Geochemistry of Peruvian near-Surface Sediments. Geochimica et Cosmochimica Acta, 68: 4429-4451 doi: 10.1016/j.gca.2004.04.027
    Bostick, B. C., Fendorf, S., Helz, G. R., 2003. Differential Adsorption of Molybdate and Tetrathiomolybdate on Pyrite (FeS2). Environmental Science & Technology, 37 (2): 285-291 http://www.ncbi.nlm.nih.gov/pubmed/12564899
    Broecker, W. S., Peng, T. H., 1982. Tracers in the Sea. Eldigio Press, Columbia University, Palisades, N. Y. 689
    Calvert, S. E., Pedersen, T. F., 1993. Geochemistry of Recent Oxic and Anoxic Marine Sediments: Implications for the Geological Record. Marine Geology, 113 (1-2): 67-88 doi: 10.1016/0025-3227(93)90150-T
    Canfield, D. E., Raiswell, R., Westrich, J. T., Reaves, C. M., et al., 1986. The Use of Chromium Reduction in the Analysis of Reduced Inorganic Sulfur in Sediments and Shales. Chemical Geology, 54: 149-155 doi: 10.1016/0009-2541(86)90078-1
    Casciotti, K. L., Sigman, D. M., Ward, B. B. 2003. Linking Diversity and Stable Isotope Fractionation in Ammonia-Oxidizing Bacteria. Geomicrobiology Journal, 20(4): 335-353 doi: 10.1080/01490450303895
    Chen, X., Li, D., Ling, H., et al., 2008. Carbon and Sulfur Isotopic Compositions of Basal Datangpo Formation, Northern Guizhou, South China: Implications for Depositional Environment. Progress in Natural Science, 18: 421-429 doi: 10.1016/j.pnsc.2007.10.008
    Condon, D., Zhu, M. Y., Bowring, S., et al., 2005. U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science, 308(5718): 95-98 doi: 10.1126/science.1107765
    Cremonese, L. and G. A. Zhou, S., et al., 2014. Nitrogen and Organic Carbon Isotope Stratigraphy of the Yangtze Platform during the Ediacaran-Cambrian Transition in South China. Palaeogeography Palaeoclimatology Palaeoecology, 398 (SI): 165-186 http://www.sciencedirect.com/science/article/pii/S0031018213005464
    Cremonese, L., Zhou, S., Struck, G., et al., 2013. Marine Biogeochemical Cycling during the Early Cambrian Constrained by a Nitrogen and Organic Carbon Isotope Study of the Xiaotan Section, South China. Precambrian Research, 225: 148-165 doi: 10.1016/j.precamres.2011.12.004
    Crusius, J., Calvert, S., Pedersen, T., et al., 1996. Rhenium and Molybdenum Enrichments in Sediments as Indicators of Oxic, Suboxic and Sulfidic Conditions of Deposition. Earth and Planetary Science Letters, 145 (1-4): 65-78 doi: 10.1016/S0012-821X(96)00204-X
    Erickson, B. E., Helz, G. R., 2000. Molybdenum(Ⅵ) Speciation in Sulfidic Waters: Stability and Lability of Thiomolybdates. Geochimica et Cosmochimica Acta, 64 (7): 1149-1158 doi: 10.1016/S0016-7037(99)00423-8
    Feng, L., Chu, X., Huang, J., et al., 2010. Reconstruction of Paleo-Redox Conditions and Early Sulfur Cycling during Deposition of the Cryogenian Datangpo Formation in South China. Gondwana Research, 18: 632-637 doi: 10.1016/j.gr.2010.02.011
    Fogel, M. L., Cifuentes, L. A., 1993. Isotope Fractionation during Primary Production. In: Engel, M. H., Macko, S. A. eds., Organic Geochemistry. Plenum Press, New York, 73-98
    Francis C. A., Beman J. M., Kuypers M. M., 2007, New Processes and Players in the Nitrogen Cycle: The Microbial Ecology of Anaerobic and Archaealammonia Oxidation. The ISME Journal, 1: 19-27 doi: 10.1038/ismej.2007.8
    Galbraith, E. D., Sigman, S. M., Robinson, R. S., et al., 2008. Past Changes in the Marine Nitrogen Cycle. In: Capone, D., Bronk, D., Mulholland, M., Carpenter, E. eds., Nitrogen in the Marine Environment. Elsevier
    Helz, G. R., Charnock J. M., Mosselmans J. F. W., et al., 1996. Mechanism of Molybdenum Removal from the Sea and Its Concentration in Black Shales: EXAFS Evidence. Geochimica et Cosmochimica Acta, 60 (19): 3631-3642 doi: 10.1016/0016-7037(96)00195-0
    Hild, E., Brumsack, H. J., 1998. Major and Minor Element Geochemistry of Lower Aptian Sediments from the NW German Basin (core Hoheneggelsen KB 40). Cretaceous Research, 19: 615-633 doi: 10.1006/cres.1998.0122
    Hoffman, P. F., Schrag, D. P., 2002. The Snowball Earth Hypothesis: Testing the Limits of Global Change. Terra Nova, 14(3): 129-155 doi: 10.1046/j.1365-3121.2002.00408.x
    Hoffman, P. F., Kaufman, A. J., Halverson, G. P., et al., 1998. A Neoproterozoic Snowball Earth. Science, 281: 1342-1346 doi: 10.1126/science.281.5381.1342
    Holland, H. D., 1979. Metals in Black Shales: A Reassessment. Economic Geology 74: 676-1680
    Huerta-Diaz, M. A., Morse, J. W., 1992. Pyritization of Trace Metals in Anoxic Marine Sediments. Geochimica et Cosmochimica Acta, 56 (7): 2681-2702 doi: 10.1016/0016-7037(92)90353-K
    Jiang, G., Kennedy, M.J., Christie-Blick, N., 2003a, Stable Isotopic Evidence for Methane Deeps in Neoproterozoic Postglacial Cap Carbonates. Nature, 426: 822-826 doi: 10.1038/nature02201
    Jiang, G., Sohl, L. E., Christie-Blick, N., 2003b, Neoproterozoic Stratigraphic Comparison of the Lesser Himalaya (India) and Yangtze Block (South China): Paleogeographic Implications. Geology, 31: 917-920 doi: 10.1130/G19790.1
    Kikumoto, R., Tahata, M., Nishizawa, M., et al., 2014. Nitrogen Isotope Chemostratigraphy of the Ediacaran and Early Cambrian Platform Sequence at Three Gorges, South China. Gondwana Research. 25: 1057-1069 doi: 10.1016/j.gr.2013.06.002
    Kump, L. R., 1991. Interpreting Carbon-Isotope Excursions: Strangelove Oceans. Geology, 19: 299-302 doi: 10.1130/0091-7613(1991)019<0299:ICIESO>2.3.CO;2
    Li, C., Love, G. D., 2012. Evidence for a Redox Stratified Cryogenian Marine Basin, Datangpo Formation, South China. Earth and Planetary Science Letters, 331: 246-256
    Li, C., Love, G. D., Lyons, T. W., et al., 2010. A Stratified Redox Model for the Ediacaran Ocean. Science, 328: 80-83 doi: 10.1126/science.1182369
    Liu, K. K., Kaplan, I. R., 1988. Variation of Nitrogen Isotope Fractionation during Denitrification and Nitrogen Isotope Balance in the Ocean. EOS 69, 1098 http://www.sciencedirect.com/science/article/pii/0009254188907747
    Mariotti, A., Mariotti, F., Amarger, N., et al., 1980. Fractionnements Isotopiques de L'azote Lors des Processus d'absorption des Nitrates et de Fixation de l'azote Atmospherique par les Plantes. Physiol. Ve'g. 18: 163-181 http://agris.fao.org/agris-search/search.do?recordID=US201302813310
    McLennan, S. M., 1989. Rare-Earth Elements in Sedimentary-Rocks-Influence of Provenance and Sedimentary Processes. Review in Mineralogy, 21: 169-200 http://www.researchgate.net/publication/313503357_Rare_earth_elements_in_sedimentary_rocks_influence_of_provenance_and_sedimentary_processes
    McLennan, S. M., 2001. Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochemistry Geophysics Geosystems, 2: part. no. -2000GC000109 doi: 10.1029/2000GC000109
    Meyers, P. A., Doose, H., 1999. Sources, Preservation, and Thermal Maturity of Organic Matter in Pliocene-Pleistocene Organic-Carbon-Rich Sediments of the Western Mediterranean Sea. In: Zahn, R., Comas, M.C., Kraus, A., et al. eds., Proceedings, Ocean Drilling Program. Scientific Results, 161: 383-390
    Ohkouchi, N., Nakajima, Y., Okada, H., et al., 2005. Biogeochemical Processes in the Saline Meromictic Lake Kaiike, Japan: Implications from Molecular Isotopic Evidences of Photosynthetic Pigments. Environmental Microbiology, 7 (7): 1009-1116 doi: 10.1111/j.1462-2920.2005.00772.x
    Pennock, J. R., Velinsky, D. V., Ludlam, J. M., et al., 1996. Isotopic Fractionation of Ammonium and Nitrate during Uptake by Skeletonema Costatum: Implications for 15N Dynamics under Bloom Conditions. Limn. Oceanography, 41: 451-459 doi: 10.4319/lo.1996.41.3.0451
    Pinti D. L. Hashizume K., 2011. Early Life Record from Nitrogen Isotopes. In: Golding, S. D., Glikson, M., eds., Earliest Life on Earth: Habitats, Environments and Methods of Detection. Springer
    Piper, D. Z., 1994. Seawater as the Source of Minor Elements in Black Shales, Phosphorites and Other Sedimentary Rocks. Chemical Geology, 114: 95-114 doi: 10.1016/0009-2541(94)90044-2
    Planavsky, N. J., Rouxel O. J., Bekker A., et al., 2010. The Evolution of the Marine Phosphate Reservoir. Nature, 467: 1088-1090 doi: 10.1038/nature09485
    Prokopenko M. G., Hammond D. E., Berelson W. M., et al., 2006. Nitrogen Cycling in the Sediments of Santa Barbara Basin and Eastern Tropical North Pacific: Nitrogen Isotopes, Diagenesis and Possible Chemosymbiosis between Two Lithotrophs (Thioploca and Anammox)-"Riding on a Glider". Earth and Planetary Science Letters, 242: 186-204 doi: 10.1016/j.epsl.2005.11.044
    Redfield, A. C., 1963. The Influence of Organisms on the Composition of Sea Water. The Sea: 26-77 http://www.researchgate.net/publication/236628516_The_influence_of_organisms_on_the_composition_of_sea-water
    Rimmer, S. M., 2004. Geochemical Paleoredox Indicators in Devonian-Mississippian Black Shales, Central Appalachian Basin (USA). Chemical Geology, 206: 373-391 doi: 10.1016/j.chemgeo.2003.12.029
    Scott, C., Lyons, T. W., 2012. Contrasting Molybdenum Cycling and Isotopic Properties in Euxinic versus Non-Euxinic Sediments and Sedimentary Rocks: Refining the Paleoproxies. Chemical Geology, 324 (SI): 19-27 http://www.sciencedirect.com/science/article/pii/S0009254112002318
    Sigman D. M., Karsh K. L., Casciotti K. L., 2009. Nitrogen Isotopes in the Ocean. In: Steele J. H., Thorpe S. A., Turekian K. K., eds., Encyclopedia of Ocean Sciences. Academic Press, Oxford, 40-54
    Thomazo, C., Ader, A., Philippot, P., 2011. Extreme 15N-Enrichments in 2.72 Gyr Old Sediments. Evidents for a Turning Point in the Nitrogen Cycle. Geobiology, 9: 107-120 doi: 10.1111/j.1472-4669.2011.00271.x
    Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232: 12-32 doi: 10.1016/j.chemgeo.2006.02.012
    Tribovillard, N., Desprairies, A., Lallier-Vergès, E., et al., 1994. Geochemical Study of Organic-Rich Cycles from the Kimmeridge Clay Formation of Yorkshire (G. B. ): Productivity vs. Anoxia. Palaeogeography, Palaeoclimatology, Palaeoecology, 108: 165-181 doi: 10.1016/0031-0182(94)90028-0
    Tribovillard, N., Riboulleau, A., Lyons, T., et al., 2004. Enhanced Trapping of Molybdenum by Sulfurized Marine Organic Matter of Marine Origin in Mesozoic Limestones and Shales. Chemical Geology, 213 (4): 385-401 doi: 10.1016/j.chemgeo.2004.08.011
    Van der Weijden, C. H., 2002. Pitfalls of Normalization of Marine Geochemical Data Using a Common Divisor. Marine Geology, 184: 167-187 doi: 10.1016/S0025-3227(01)00297-3
    Vine, J. D., Tourtelot, E. B., 1970. Geochemistry of Black Shale Deposits-A Summary Report. Economic Geology, 65: 253-272 doi: 10.2113/gsecongeo.65.3.253
    Vorlicek, T.P., Helz, G.R., 2002. Catalysis by Mineral Surfaces: Implications for Mo Geochemistry in Anoxic Environments. Geochimica et Cosmochimica Acta, 66(21): 3679-3692 doi: 10.1016/S0016-7037(01)00837-7
    Vorlicek, T. P., Kahn, M. D., Kasuya, Y., et al., 2004. Capture of Molybdenum in Pyrite-Forming Sediments: Role of Ligand-Induced Reduction by Polysulfides. Geochimica et Cosmochimica Acta, 68 (3): 547-556 doi: 10.1016/S0016-7037(03)00444-7
    Wada, E., Hattori, A., 1991. Nitrogen in the Sea: Forms, Abundances, and Rate Processes. CRC Press INC, Florida.
    Wada, E., Kadonaga, T., Matsuo, S., 1975. 15N Abundance in Nitrogen of Naturally Occurring Substances and Global Assessment of Denitrification from Isotopic Viewpoint. Geomicrobiology Journal, 9: 139-148 http://www.researchgate.net/publication/266499025_5N_abundance_in_nitrogen_of_naturally_occurring_substances_and_global_assessment_of_denitrification_from_isotopic_viewpoint
    Wang, X., Shi, X., Tang D., etal., 2013. Nitrogen Isotope Evidence for Redox Variations at the Ediacaran-Cambrian Transition in South China. Journal of Geology, 121(5): 489-502 doi: 10.1086/671396
    Xu, L. G., Lehmann, B., Mao, J. W., et al., 2012. Mo Isotope and Trace Element Patterns of Lower Cambrian Black Shales in South China: Multi-Proxy Constraints on the Paleoenvironment. Chemical Geology, 318: 45-59 http://www.sciencedirect.com/science/article/pii/S0009254112002355
    Zhang, Q. R., Chu, X. L., Bahlburg, H., et al., 2003. Stratigraphic Architecture of the Neoproterozoic Glacial Rocks in the "Xiang-Qian-Gui" Region of the Central Yangtze Block, South China. Progress in Natural Science, 13(10): 783-787 doi: 10.1080/10020070312331344430
    Zhang, S. H., Jiang G. Q., Han, Y. G., 2008. The Age of the Nantuo Formation and Nantuo Glaciation in South China. Terra Nova, 20(4): 289-294 doi: 10.1111/j.1365-3121.2008.00819.x
    Zhang, S. H., Jiang, G. Q., Zhang, J. M., et al., 2005. U-Pb Sensitive High-Resolution Ion Microprobe Ages from the Doushantuo Formation in South China: Constraints on Late Neoproterozoic Glaciations. Geology, 33(6): 473-476 doi: 10.1130/G21418.1
    Zhang, X. Sigman, D. M., Morel, F. M., et al., 2014. Nitrogen Isotope Fractionation by Alternative Nitrogenases and Past Ocean Anoxia. Proceedings of the National Academy of Sciences of the United States of America, 111(13): 4782-4787 doi: 10.1073/pnas.1402976111
    Zheng, Y., Anderson, R. F., van Geen, A., et al., 2000. Authigenic Molybdenum Formation in Marine Sediments: a Link to Pore Water Sulfide in the Santa Barbara Basin. Geochimica et Cosmochimica Acta, 64 (24): 4165-4178 doi: 10.1016/S0016-7037(00)00495-6
    Zhou, C. M., Tucker, R., Xiao, S. et al., 2004. New Constraints on the Ages of Neoproterozoic Glaciations in South China. Geology, 32(5): 437-440 doi: 10.1130/G20286.1
    Zhu, M. Y., Strauss, H., Shields, G. A., 2007. From Snowball Earth to the Cambrian Bioradiation: Calibration of Ediacaran-Cambrian Earth History in South China. Palaeogeography Palaeoclimatology Palaeoecology, 254(1-2): 1-6 doi: 10.1016/j.palaeo.2007.03.026
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views(920) PDF downloads(218) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return