Ader, M., Sansjofre, P., Halverson, G., Busigny, V., Trindade, R., Kunzmann, M., Nogueira A., 2014. Ocean redox Redox structure Structure across the Late Neoproterozoic Oxygenation Event: A nitrogen Nitrogen isotope Isotope perspectivePerspective. Earth & Planetary Science Letters, 364, 1-13 http://smartsearch.nstl.gov.cn/paper_detail.html?id=6833a5e9affc7ac3eccfe354f8b1ddba |
Algeo, T.J., Maynard, J.B., 2004. Trace-Element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-Type Cyclothems. Chemical Geology, 206: 289-318 doi: 10.1016/j.chemgeo.2003.12.009 |
Altabet, M. A., 2007. Constraints on Oceanic N Balance/Imbalance from Sedimentary N-15 Records. Biogeosciences, 4: 75-86 doi: 10.5194/bg-4-75-2007 |
Böning, P., Brumsack, H. J., Böttcher, M. E., et al., 2004. Geochemistry of Peruvian near-Surface Sediments. Geochimica et Cosmochimica Acta, 68: 4429-4451 doi: 10.1016/j.gca.2004.04.027 |
Bostick, B. C., Fendorf, S., Helz, G. R., 2003. Differential Adsorption of Molybdate and Tetrathiomolybdate on Pyrite (FeS2). Environmental Science & Technology, 37 (2): 285-291 http://www.ncbi.nlm.nih.gov/pubmed/12564899 |
Broecker, W. S., Peng, T. H., 1982. Tracers in the Sea. Eldigio Press, Columbia University, Palisades, N. Y. 689 |
Calvert, S. E., Pedersen, T. F., 1993. Geochemistry of Recent Oxic and Anoxic Marine Sediments: Implications for the Geological Record. Marine Geology, 113 (1-2): 67-88 doi: 10.1016/0025-3227(93)90150-T |
Canfield, D. E., Raiswell, R., Westrich, J. T., Reaves, C. M., et al., 1986. The Use of Chromium Reduction in the Analysis of Reduced Inorganic Sulfur in Sediments and Shales. Chemical Geology, 54: 149-155 doi: 10.1016/0009-2541(86)90078-1 |
Casciotti, K. L., Sigman, D. M., Ward, B. B. 2003. Linking Diversity and Stable Isotope Fractionation in Ammonia-Oxidizing Bacteria. Geomicrobiology Journal, 20(4): 335-353 doi: 10.1080/01490450303895 |
Chen, X., Li, D., Ling, H., et al., 2008. Carbon and Sulfur Isotopic Compositions of Basal Datangpo Formation, Northern Guizhou, South China: Implications for Depositional Environment. Progress in Natural Science, 18: 421-429 doi: 10.1016/j.pnsc.2007.10.008 |
Condon, D., Zhu, M. Y., Bowring, S., et al., 2005. U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science, 308(5718): 95-98 doi: 10.1126/science.1107765 |
Cremonese, L. and G. A. Zhou, S., et al., 2014. Nitrogen and Organic Carbon Isotope Stratigraphy of the Yangtze Platform during the Ediacaran-Cambrian Transition in South China. Palaeogeography Palaeoclimatology Palaeoecology, 398 (SI): 165-186 http://www.sciencedirect.com/science/article/pii/S0031018213005464 |
Cremonese, L., Zhou, S., Struck, G., et al., 2013. Marine Biogeochemical Cycling during the Early Cambrian Constrained by a Nitrogen and Organic Carbon Isotope Study of the Xiaotan Section, South China. Precambrian Research, 225: 148-165 doi: 10.1016/j.precamres.2011.12.004 |
Crusius, J., Calvert, S., Pedersen, T., et al., 1996. Rhenium and Molybdenum Enrichments in Sediments as Indicators of Oxic, Suboxic and Sulfidic Conditions of Deposition. Earth and Planetary Science Letters, 145 (1-4): 65-78 doi: 10.1016/S0012-821X(96)00204-X |
Erickson, B. E., Helz, G. R., 2000. Molybdenum(Ⅵ) Speciation in Sulfidic Waters: Stability and Lability of Thiomolybdates. Geochimica et Cosmochimica Acta, 64 (7): 1149-1158 doi: 10.1016/S0016-7037(99)00423-8 |
Feng, L., Chu, X., Huang, J., et al., 2010. Reconstruction of Paleo-Redox Conditions and Early Sulfur Cycling during Deposition of the Cryogenian Datangpo Formation in South China. Gondwana Research, 18: 632-637 doi: 10.1016/j.gr.2010.02.011 |
Fogel, M. L., Cifuentes, L. A., 1993. Isotope Fractionation during Primary Production. In: Engel, M. H., Macko, S. A. eds., Organic Geochemistry. Plenum Press, New York, 73-98 |
Francis C. A., Beman J. M., Kuypers M. M., 2007, New Processes and Players in the Nitrogen Cycle: The Microbial Ecology of Anaerobic and Archaealammonia Oxidation. The ISME Journal, 1: 19-27 doi: 10.1038/ismej.2007.8 |
Galbraith, E. D., Sigman, S. M., Robinson, R. S., et al., 2008. Past Changes in the Marine Nitrogen Cycle. In: Capone, D., Bronk, D., Mulholland, M., Carpenter, E. eds., Nitrogen in the Marine Environment. Elsevier |
Helz, G. R., Charnock J. M., Mosselmans J. F. W., et al., 1996. Mechanism of Molybdenum Removal from the Sea and Its Concentration in Black Shales: EXAFS Evidence. Geochimica et Cosmochimica Acta, 60 (19): 3631-3642 doi: 10.1016/0016-7037(96)00195-0 |
Hild, E., Brumsack, H. J., 1998. Major and Minor Element Geochemistry of Lower Aptian Sediments from the NW German Basin (core Hoheneggelsen KB 40). Cretaceous Research, 19: 615-633 doi: 10.1006/cres.1998.0122 |
Hoffman, P. F., Schrag, D. P., 2002. The Snowball Earth Hypothesis: Testing the Limits of Global Change. Terra Nova, 14(3): 129-155 doi: 10.1046/j.1365-3121.2002.00408.x |
Hoffman, P. F., Kaufman, A. J., Halverson, G. P., et al., 1998. A Neoproterozoic Snowball Earth. Science, 281: 1342-1346 doi: 10.1126/science.281.5381.1342 |
Holland, H. D., 1979. Metals in Black Shales: A Reassessment. Economic Geology 74: 676-1680 |
Huerta-Diaz, M. A., Morse, J. W., 1992. Pyritization of Trace Metals in Anoxic Marine Sediments. Geochimica et Cosmochimica Acta, 56 (7): 2681-2702 doi: 10.1016/0016-7037(92)90353-K |
Jiang, G., Kennedy, M.J., Christie-Blick, N., 2003a, Stable Isotopic Evidence for Methane Deeps in Neoproterozoic Postglacial Cap Carbonates. Nature, 426: 822-826 doi: 10.1038/nature02201 |
Jiang, G., Sohl, L. E., Christie-Blick, N., 2003b, Neoproterozoic Stratigraphic Comparison of the Lesser Himalaya (India) and Yangtze Block (South China): Paleogeographic Implications. Geology, 31: 917-920 doi: 10.1130/G19790.1 |
Kikumoto, R., Tahata, M., Nishizawa, M., et al., 2014. Nitrogen Isotope Chemostratigraphy of the Ediacaran and Early Cambrian Platform Sequence at Three Gorges, South China. Gondwana Research. 25: 1057-1069 doi: 10.1016/j.gr.2013.06.002 |
Kump, L. R., 1991. Interpreting Carbon-Isotope Excursions: Strangelove Oceans. Geology, 19: 299-302 doi: 10.1130/0091-7613(1991)019<0299:ICIESO>2.3.CO;2 |
Li, C., Love, G. D., 2012. Evidence for a Redox Stratified Cryogenian Marine Basin, Datangpo Formation, South China. Earth and Planetary Science Letters, 331: 246-256 |
Li, C., Love, G. D., Lyons, T. W., et al., 2010. A Stratified Redox Model for the Ediacaran Ocean. Science, 328: 80-83 doi: 10.1126/science.1182369 |
Liu, K. K., Kaplan, I. R., 1988. Variation of Nitrogen Isotope Fractionation during Denitrification and Nitrogen Isotope Balance in the Ocean. EOS 69, 1098 http://www.sciencedirect.com/science/article/pii/0009254188907747 |
Mariotti, A., Mariotti, F., Amarger, N., et al., 1980. Fractionnements Isotopiques de L'azote Lors des Processus d'absorption des Nitrates et de Fixation de l'azote Atmospherique par les Plantes. Physiol. Ve'g. 18: 163-181 http://agris.fao.org/agris-search/search.do?recordID=US201302813310 |
McLennan, S. M., 1989. Rare-Earth Elements in Sedimentary-Rocks-Influence of Provenance and Sedimentary Processes. Review in Mineralogy, 21: 169-200 http://www.researchgate.net/publication/313503357_Rare_earth_elements_in_sedimentary_rocks_influence_of_provenance_and_sedimentary_processes |
McLennan, S. M., 2001. Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochemistry Geophysics Geosystems, 2: part. no. -2000GC000109 doi: 10.1029/2000GC000109 |
Meyers, P. A., Doose, H., 1999. Sources, Preservation, and Thermal Maturity of Organic Matter in Pliocene-Pleistocene Organic-Carbon-Rich Sediments of the Western Mediterranean Sea. In: Zahn, R., Comas, M.C., Kraus, A., et al. eds., Proceedings, Ocean Drilling Program. Scientific Results, 161: 383-390 |
Ohkouchi, N., Nakajima, Y., Okada, H., et al., 2005. Biogeochemical Processes in the Saline Meromictic Lake Kaiike, Japan: Implications from Molecular Isotopic Evidences of Photosynthetic Pigments. Environmental Microbiology, 7 (7): 1009-1116 doi: 10.1111/j.1462-2920.2005.00772.x |
Pennock, J. R., Velinsky, D. V., Ludlam, J. M., et al., 1996. Isotopic Fractionation of Ammonium and Nitrate during Uptake by Skeletonema Costatum: Implications for 15N Dynamics under Bloom Conditions. Limn. Oceanography, 41: 451-459 doi: 10.4319/lo.1996.41.3.0451 |
Pinti D. L. Hashizume K., 2011. Early Life Record from Nitrogen Isotopes. In: Golding, S. D., Glikson, M., eds., Earliest Life on Earth: Habitats, Environments and Methods of Detection. Springer |
Piper, D. Z., 1994. Seawater as the Source of Minor Elements in Black Shales, Phosphorites and Other Sedimentary Rocks. Chemical Geology, 114: 95-114 doi: 10.1016/0009-2541(94)90044-2 |
Planavsky, N. J., Rouxel O. J., Bekker A., et al., 2010. The Evolution of the Marine Phosphate Reservoir. Nature, 467: 1088-1090 doi: 10.1038/nature09485 |
Prokopenko M. G., Hammond D. E., Berelson W. M., et al., 2006. Nitrogen Cycling in the Sediments of Santa Barbara Basin and Eastern Tropical North Pacific: Nitrogen Isotopes, Diagenesis and Possible Chemosymbiosis between Two Lithotrophs (Thioploca and Anammox)-"Riding on a Glider". Earth and Planetary Science Letters, 242: 186-204 doi: 10.1016/j.epsl.2005.11.044 |
Redfield, A. C., 1963. The Influence of Organisms on the Composition of Sea Water. The Sea: 26-77 http://www.researchgate.net/publication/236628516_The_influence_of_organisms_on_the_composition_of_sea-water |
Rimmer, S. M., 2004. Geochemical Paleoredox Indicators in Devonian-Mississippian Black Shales, Central Appalachian Basin (USA). Chemical Geology, 206: 373-391 doi: 10.1016/j.chemgeo.2003.12.029 |
Scott, C., Lyons, T. W., 2012. Contrasting Molybdenum Cycling and Isotopic Properties in Euxinic versus Non-Euxinic Sediments and Sedimentary Rocks: Refining the Paleoproxies. Chemical Geology, 324 (SI): 19-27 http://www.sciencedirect.com/science/article/pii/S0009254112002318 |
Sigman D. M., Karsh K. L., Casciotti K. L., 2009. Nitrogen Isotopes in the Ocean. In: Steele J. H., Thorpe S. A., Turekian K. K., eds., Encyclopedia of Ocean Sciences. Academic Press, Oxford, 40-54 |
Thomazo, C., Ader, A., Philippot, P., 2011. Extreme 15N-Enrichments in 2.72 Gyr Old Sediments. Evidents for a Turning Point in the Nitrogen Cycle. Geobiology, 9: 107-120 doi: 10.1111/j.1472-4669.2011.00271.x |
Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232: 12-32 doi: 10.1016/j.chemgeo.2006.02.012 |
Tribovillard, N., Desprairies, A., Lallier-Vergès, E., et al., 1994. Geochemical Study of Organic-Rich Cycles from the Kimmeridge Clay Formation of Yorkshire (G. B. ): Productivity vs. Anoxia. Palaeogeography, Palaeoclimatology, Palaeoecology, 108: 165-181 doi: 10.1016/0031-0182(94)90028-0 |
Tribovillard, N., Riboulleau, A., Lyons, T., et al., 2004. Enhanced Trapping of Molybdenum by Sulfurized Marine Organic Matter of Marine Origin in Mesozoic Limestones and Shales. Chemical Geology, 213 (4): 385-401 doi: 10.1016/j.chemgeo.2004.08.011 |
Van der Weijden, C. H., 2002. Pitfalls of Normalization of Marine Geochemical Data Using a Common Divisor. Marine Geology, 184: 167-187 doi: 10.1016/S0025-3227(01)00297-3 |
Vine, J. D., Tourtelot, E. B., 1970. Geochemistry of Black Shale Deposits-A Summary Report. Economic Geology, 65: 253-272 doi: 10.2113/gsecongeo.65.3.253 |
Vorlicek, T.P., Helz, G.R., 2002. Catalysis by Mineral Surfaces: Implications for Mo Geochemistry in Anoxic Environments. Geochimica et Cosmochimica Acta, 66(21): 3679-3692 doi: 10.1016/S0016-7037(01)00837-7 |
Vorlicek, T. P., Kahn, M. D., Kasuya, Y., et al., 2004. Capture of Molybdenum in Pyrite-Forming Sediments: Role of Ligand-Induced Reduction by Polysulfides. Geochimica et Cosmochimica Acta, 68 (3): 547-556 doi: 10.1016/S0016-7037(03)00444-7 |
Wada, E., Hattori, A., 1991. Nitrogen in the Sea: Forms, Abundances, and Rate Processes. CRC Press INC, Florida. |
Wada, E., Kadonaga, T., Matsuo, S., 1975. 15N Abundance in Nitrogen of Naturally Occurring Substances and Global Assessment of Denitrification from Isotopic Viewpoint. Geomicrobiology Journal, 9: 139-148 http://www.researchgate.net/publication/266499025_5N_abundance_in_nitrogen_of_naturally_occurring_substances_and_global_assessment_of_denitrification_from_isotopic_viewpoint |
Wang, X., Shi, X., Tang D., etal., 2013. Nitrogen Isotope Evidence for Redox Variations at the Ediacaran-Cambrian Transition in South China. Journal of Geology, 121(5): 489-502 doi: 10.1086/671396 |
Xu, L. G., Lehmann, B., Mao, J. W., et al., 2012. Mo Isotope and Trace Element Patterns of Lower Cambrian Black Shales in South China: Multi-Proxy Constraints on the Paleoenvironment. Chemical Geology, 318: 45-59 http://www.sciencedirect.com/science/article/pii/S0009254112002355 |
Zhang, Q. R., Chu, X. L., Bahlburg, H., et al., 2003. Stratigraphic Architecture of the Neoproterozoic Glacial Rocks in the "Xiang-Qian-Gui" Region of the Central Yangtze Block, South China. Progress in Natural Science, 13(10): 783-787 doi: 10.1080/10020070312331344430 |
Zhang, S. H., Jiang G. Q., Han, Y. G., 2008. The Age of the Nantuo Formation and Nantuo Glaciation in South China. Terra Nova, 20(4): 289-294 doi: 10.1111/j.1365-3121.2008.00819.x |
Zhang, S. H., Jiang, G. Q., Zhang, J. M., et al., 2005. U-Pb Sensitive High-Resolution Ion Microprobe Ages from the Doushantuo Formation in South China: Constraints on Late Neoproterozoic Glaciations. Geology, 33(6): 473-476 doi: 10.1130/G21418.1 |
Zhang, X. Sigman, D. M., Morel, F. M., et al., 2014. Nitrogen Isotope Fractionation by Alternative Nitrogenases and Past Ocean Anoxia. Proceedings of the National Academy of Sciences of the United States of America, 111(13): 4782-4787 doi: 10.1073/pnas.1402976111 |
Zheng, Y., Anderson, R. F., van Geen, A., et al., 2000. Authigenic Molybdenum Formation in Marine Sediments: a Link to Pore Water Sulfide in the Santa Barbara Basin. Geochimica et Cosmochimica Acta, 64 (24): 4165-4178 doi: 10.1016/S0016-7037(00)00495-6 |
Zhou, C. M., Tucker, R., Xiao, S. et al., 2004. New Constraints on the Ages of Neoproterozoic Glaciations in South China. Geology, 32(5): 437-440 doi: 10.1130/G20286.1 |
Zhu, M. Y., Strauss, H., Shields, G. A., 2007. From Snowball Earth to the Cambrian Bioradiation: Calibration of Ediacaran-Cambrian Earth History in South China. Palaeogeography Palaeoclimatology Palaeoecology, 254(1-2): 1-6 doi: 10.1016/j.palaeo.2007.03.026 |