Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 27 Issue 1
Feb 2016
Turn off MathJax
Article Contents
Yang Yang, Theodore A. Endreny, David J. Nowak. Application of advection-diffusion routing model to flood wave propagation: A case study on Big Piney River, Missouri USA. Journal of Earth Science, 2016, 27(1): 9-14. doi: 10.1007/s12583-016-0626-3
Citation: Yang Yang, Theodore A. Endreny, David J. Nowak. Application of advection-diffusion routing model to flood wave propagation: A case study on Big Piney River, Missouri USA. Journal of Earth Science, 2016, 27(1): 9-14. doi: 10.1007/s12583-016-0626-3

Application of advection-diffusion routing model to flood wave propagation: A case study on Big Piney River, Missouri USA

doi: 10.1007/s12583-016-0626-3
More Information
  • Corresponding author: Yang Yang, yyang31@syr.edu
  • Received Date: 15 Jul 2014
  • Accepted Date: 06 Jan 2015
  • Publish Date: 01 Feb 2016
  • Flood wave propagation modeling is of critical importance to advancing water resources management and protecting human life and property. In this study, we investigated how the advection-diffusion routing model performed in flood wave propagation on a 16 km long downstream section of the Big Piney River, MO. Model performance was based on gaging station data at the upstream and downstream cross sections. We demonstrated with advection-diffusion theory that for small differences in watershed drainage area between the two river cross sections, inflow along the reach mainly contributes to the downstream hydrograph's rising limb and not to the falling limb. The downstream hydrograph's falling limb is primarily determined by the propagated flood wave originating at the upstream cross section. This research suggests the parameter for the advectiondiffusion routing model can be calibrated by fitting the hydrograph falling limb. Application of the advection diffusion model to the flood wave of January 29, 2013 supports our theoretical finding that the propagated flood wave determines the downstream cross section falling limb, and the model has good performance in our test examples.

     

  • loading
  • Adamowski, J. F., 2008. Development of a Short-Term River Flood Forecasting Method for Snowmelt Driven Floods Based on Wavelet and Cross-Wavelet Analysis. Journal of Hydrology, 353(3/4): 247-266. doi: 10.1016/j.jhydrol.2008.02.013
    Andrews, E. D., 1980. Effective and Bankfull Discharges of Streams in the Yampa River Basin, Colorado and Wyoming. Journal of Hydrology, 46(3/4): 311-330. doi: 10.1016/0022-1694(80)90084-0
    Biggin, D. S., 1996. A Comparison of ERS-1 Satellite Radar and Aerial Photography for River Flood Mapping. Water and Environment Journal, 10(1): 59-64. doi: 10.1111/j.1747-6593.1996.tb00009.x
    Brakenridge, G. R., Nghiem, S. V., Anderson, E., et al., 2005. Space-Based Measurement of River Runoff. EOS, Transactions American Geophysical Union, 86(19): 185-188. doi: 10.1029/2005eo190001
    Brutsaert, W., 2005. Hydrology: An Introduction. Cambridge University Press, Cambridge
    Burn, D. H., 1999. Perceptions of Flood Risk: A Case Study of the Red River Flood of 1997. Water Resources Research, 35(11): 3451-3458. doi: 10.1029/1999wr900215
    Campolo, M., Andreussi, P., Soldati, A., 1999. River Flood Forecasting with a Neural Network Model. Water Resources Research, 35(4): 1191-1197. doi: 10.1029/1998wr900086
    Cao, Z. X., Yue, Z. Y., Pender, G., 2011. Landslide Dam Failure and Flood Hydraulics. Part Ⅱ: Coupled Mathematical Modelling. Natural Hazards, 59(2): 1021-1045. doi: 10.1007/s11069-011-9815-7
    Criss, R. E., Winston, W. E., 2008. Properties of a Diffusive Hydrograph and the Interpretation of Its Single Parameter. Mathematical Geosciences, 40(3): 313-325. doi: 10.1007/s11004-008-9145-9
    Criss, R. E., Osburn, G. R., House, R. S., 2009. The Ozark Plateaus: Missouri, in Caves and Karst of the USA. National Speleological Society, Huntsville AL
    Di Baldassarre, G., Montanari, A., 2009. Uncertainty in River Discharge Observations: A Quantitative Analysis. Hydrology and Earth System Sciences, 13(6): 913-921. doi: 10.5194/hess-13-913-2009
    Gillham, R. W., Sudicky, E. A., Cherry, J. A., et al., 1984. An Advection-Diffusion Concept for Solute Transport in Heterogeneous Unconsolidated Geological Deposits. Water Resources Research, 20(3): 369-378. doi: 10.1029/wr020i003p00369
    Järvelä, J., 2002. Flow Resistance of Flexible and Stiff Vegetation: A Flume Study with Natural Plants. Journal of Hydrology, 269(1/2): 44-54. doi: 10.1016/s0022-1694(02)00193-2
    Kirchner, J. W., Feng, X. H., Neal, C., 2001. Catchment-Scale Advection and Dispersion as a Mechanism for Fractal Scaling in Stream Tracer Concentrations. Journal of Hydrology, 254(1-4): 82-101. doi: 10.1016/s0022-1694(01)00487-5
    Kumar, A., Jaiswal, D. K., Kumar, N., 2010. Analytical Solutions to One-Dimensional Advection-diffusion Equation with Variable Coefficients in Semi-Infinite Media. Journal of Hydrology, 380(3/4): 330-337. doi: 10.1016/j.jhydrol.2009.11.008
    Liu, Y. B., Gebremeskel, S., De Smedt, F., et al., 2003. A Diffusive Transport Approach for Flow Routing in GIS-Based Flood Modeling. Journal of Hydrology, 283(1-4): 91-106. doi: 10.1016/s0022-1694(03)00242-7
    McDonnell, J. J., Beven, K., 2014. Debates—The Future of Hydrological Sciences: A (common) Path Forward? A Call to Action Aimed at Understanding Velocities, Celerities and Residence Time Distributions of the Headwater Hydrograph. Water Resources Research, 50(6): 5342-5350. doi: 10.1002/2013wr015141
    Meire, D., De Doncker, L., Declercq, F., et al., 2010. Modelling River-Floodplain Interaction during Flood Propagation. Natural Hazards, 55(1): 111-121. doi: 10.1007/s11069-010-9554-1
    Middelmann-Fernandes, M. H., 2010. Flood Damage Estimation beyond Stage-Damage Functions: An Australian Example. Journal of Flood Risk Management, 3(1): 88-96. doi: 10.1111/j.1753-318x.2009.01058.x
    Milzow, C., Kinzelbach, W., 2010. Accounting for Subgrid Scale Topographic Variations in Flood Propagation Modeling Using MODFLOW. Water Resources Research, 46(10): W10521. doi: 10.1029/2009wr008088
    Saint-Venant, B., 1871. Theory of Unsteady Water Flow, with Application to River Floods and to Propagation of Tides in River Channels. French Academy of Science, 73: 148-154 http://www.researchgate.net/publication/313086284_Theory_of_unsteady_water_flow_with_application_to_river_floods_and_to_propagation_of_tides_in_river_channels
    Sakkas, J. G., Strelkoff, T., 1976. Dimensionless Solution of Dam-Break Flood Waves. Journal of the Hydraulics Division, 102(2): 171-184 http://www.researchgate.net/publication/349015999_Discussion_of_Dimensionless_Solution_of_Dam-Break_Flood_Waves
    Singh, V. P., 1995. Computer Models of Watershed Hydrology. Water Resources Publications. Highlands Ranch, Colo
    Vineyard, J. D., Feder, G. L., 1982. Springs of Missouri: Revised Edn. WR29. Missouri Geological Survey and Water Resources, Jefferson City, MO
    Wurbs, R. A., James, W. P., 2002. Water Resources Engineering. Prentice Hall Upper Saddle River, New Jersey
    Yang, Y., Endreny, T. A., 2013. Watershed Hydrograph Model Based on Surface Flow Diffusion. Water Resources Research, 49(1): 507-516. doi: 10.1029/2012wr012186
    Yen, B. C., Tsai, C. W. S., 2001. On Noninertia Wave versus Diffusion Wave in Flood Routing. Journal of Hydrology, 244(1/2): 97-104. doi: 10.1016/s0022-1694(00)00422-4
    Younis, J., Anquetin, S., Thielen, J., 2008. The Benefit of High-Resolution Operational Weather Forecasts for Flash Flood Warning. Hydrology and Earth System Sciences, 12(4): 1039-1051. doi: 10.5194/hess-12-1039-2008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views(521) PDF downloads(180) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return