Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 28 Issue 1
Feb 2017
Turn off MathJax
Article Contents
Rong Ma, Jiansheng Shi, Xianyao Shi. Spatial Variation of Hydraulic Conductivity Categories in a Highly Heterogeneous Aquifer: A Case Study in the North China Plain (NCP). Journal of Earth Science, 2017, 28(1): 113-123. doi: 10.1007/s12583-016-0636-1
Citation: Rong Ma, Jiansheng Shi, Xianyao Shi. Spatial Variation of Hydraulic Conductivity Categories in a Highly Heterogeneous Aquifer: A Case Study in the North China Plain (NCP). Journal of Earth Science, 2017, 28(1): 113-123. doi: 10.1007/s12583-016-0636-1

Spatial Variation of Hydraulic Conductivity Categories in a Highly Heterogeneous Aquifer: A Case Study in the North China Plain (NCP)

doi: 10.1007/s12583-016-0636-1
More Information
  • Compared with research on spatial variation of hydraulic conductivity (K), less effort has been made researching different grades of K value in the North China Plain (NCP). In this study, 3D spatial distribution models of different grades of K were established by considering the effects of clay fraction content and uniformity coefficient (Cu). The K value can be divided into five grades: very low, low, permeable, high, and very high groups. The volume percentages of these clusters were 3.06%, 36.01%, 55.70%, 4.82%, and 0.41% for the first aquifer; 0.016%, 9.56%, 88.25%, 2.16%, and 0.014% for the second aquifer; and 0.04%, 17.74%, 84.21%, 0.001%, and 0.01% for the third aquifer. It is concluded that the high and very high K values are fully affected by burial depth and that the very low, low, and permeable K values are mainly controlled by depositional environment and are partially influenced by burial depth. The burial depth became the main influencing factor only within the same depositional environment, causing the overall K to decrease with depth. The variations of very low, low, permeable, high, and very high categories of K values with depth are described in this study. This can provide useful information for non-technical decision makers to achieve sustainable development of deep groundwater resources.


  • loading
  • Boschan, A., Nœtinger, B., 2012. Scale Dependence of Effective Hydraulic Conductivity Distributions in 3D Heterogeneous Media: A Numerical Study. Transport in Porous Media, 94(1): 101-121. doi: 10.1007/s11242-012-9991-2
    Cheong, J. Y., Hamm, S. Y., Kim, H. S., et al., 2008. Estimating Hydraulic Conductivity Using Grain-Size Analyses, Aquifer Tests, and Numerical Modeling in a Riverside Alluvial System in South Korea. Hydrogeology Journal, 16(6): 1129-1143. doi: 10.1007/s10040-008-0303-4
    DesRoches, A. J., Butler, K. E., Pelkey, S., 2012. Influence of Fracture Anisotropy and Lithological Heterogeneity on Wellfield Response in a Fluvial Sandstone Aquifer of the Carboniferous Moncton Subbasin, Canada. Hydrogeology Journal, 21(3): 559-572. doi: 10.1007/s10040-012-0931-6
    Devarajan, S., Toumelin, E., Torres-Verdín, C., et al., 2006. Pore-Scale Analysis of the Waxman-Smits Shaly Sand Conductivity Model. SPWLA 47th Annual Logging Symposium, Veracruz, Mexico, June 2006. 1-9
    Deutsch, C., Journel, A., 1998. GSLIB Geostatistical Software Library and User's Guide (Second Edition). Oxford University Press, New York. 174
    Dewandel, B., Maréchal, J. C., Bour, O., et al., 2012. Upscaling and Regionalizing Hydraulic Conductivity and Effective Porosity at Watershed Scale in Deeply Weathered Crystalline Aquifers. Journal of Hydrology, 416/417: 83-97. doi: 10.1016/j.jhydrol.2011.11.038
    Doro, K. O., Leven, C., Cirpka, O. A., 2013. Delineating Subsurface Heterogeneity at a Loop of River Steinlach Using Geophysical and Hydrogeological Methods. Environmental Earth Sciences, 69(2): 335-348. doi: 10.1007/s12665-013-2316-0
    Gégo, E. L., Johnson, G. S., Hankins, M., 2001. An Evaluation of Methodologies for the Generation of Stochastic Hydraulic Conductivity Fields in Highly Heterogeneous Aquifers. Stochastic Environmental Research and Risk Assessment, 15(1): 47-64. doi: 10.1007/s004770000060
    Genereux, D. P., Leahy, S., Mitasova, H., et al., 2008. Spatial and Temporal Variability of Streambed Hydraulic Conductivity in West Bear Creek, North Carolina, USA. Journal of Hydrology, 358(3/4): 332-353. doi: 10.1016/j.jhydrol.2008.06.017
    Giambastiani, B. M. S., McCallum, A. M., Andersen, M. S., et al., 2012. Understanding Groundwater Processes by Representing Aquifer Heterogeneity in the Maules Creek Catchment, Namoi Valley (New South Wales, Australia). Hydrogeology Journal, 20(6): 1027-1044. doi: 10.1007/s10040-012-0866-y
    Gueting, N., Englert, A., 2013. Hydraulic Conditions at the Source Zone and Their Impact on Plume Behavior. Hydrogeology Journal, 21(4): 829-844. doi: 10.1007/s10040-013-0962-7
    Güngör-Demirci, G., Aksoy, A., 2010. Variation in Time-to-Compliance for Pump-and-Treat Remediation of Mass Transfer-Limited Aquifers with Hydraulic Conductivity Heterogeneity. Environmental Earth Sciences, 63(6): 1277-1288. doi: 10.1007/s12665-010-0800-3
    Huysmans, M., Dassargues, A., 2012. The Effect of Heterogeneity of Diffusion Parameters on Chloride Transport in Low-Permeability Argillites. Environmental Earth Sciences, 68(7): 1835-1848. doi: 10.1007/s12665-012-1871-0
    Jardani, A., Revil, A., Dupont, J. P., 2013. Stochastic Joint Inversion of Hydrogeophysical Data for Salt Tracer Test Monitoring and Hydraulic Conductivity Imaging. Advances in Water Resources, 52: 62-77. doi: 10.1016/j.advwatres.2012.08.005
    Jiang, X. W., Wan, L., Wang, X. S., et al., 2009. Effect of Exponential Decay in Hydraulic Conductivity with Depth on Regional Groundwater Flow. Geophysical Research Letters, 36(24): 1-4. doi: 10.1029/2009gl041251
    Karacan, C. Ö., Olea, R. A., Goodman, G., 2012. Geostatistical Modeling of the Gas Emission Zone and Its In-Place Gas Content for Pittsburgh-Seam Mines Using Sequential Gaussian Simulation. International Journal of Coal Geology, 90/91: 50-71. doi: 10.1016/j.coal.2011.10.010
    Khalil, M. A., Santos, F. A. M., 2011. Hydraulic Conductivity Estimation from Resistivity Logs: A Case Study in Nubian Sandstone Aquifer. Arabian Journal of Geosciences, 6(1): 205-212. doi: 10.1007/s12517-011-0343-2
    Lu, S. L., Molz, F. J., Fogg, G. E., et al., 2002. Combining Stochastic Facies and Fractal Models for Representing Natural Heterogeneity. Hydrogeology Journal, 10(4): 475-482. doi: 10.1007/s10040-002-0212-x
    Ma, R., Shi, J. S., Liu, J. C., 2012. Dealing with the Spatial Synthetic Heterogeneity of Aquifers in the North China Plain: A Case Study of Luancheng County in Hebei Province. Acta Geologica Sinica-English Edition, 86(1): 226-245. doi: 10.1111/j.1755-6724.2012.00624.x
    McArthur, S. A. Q., Allen, D. M., Luzitano, R. D., 2010. Resolving Scales of Aquifer Heterogeneity Using Ground Penetrating Radar and Borehole Geophysical Logging. Environmental Earth Sciences, 63(3): 581-593. doi: 10.1007/s12665-010-0726-9
    Min, L. L., Yu, J. J., Liu, C. M., et al., 2012. The Spatial Variability of Streambed Vertical Hydraulic Conductivity in an Intermittent River, Northwestern China. Environmental Earth Sciences, 69(3): 873-883. doi: 10.1007/s12665-012-1973-8
    Monjezi, M., Kashani, M. R., Ataei, M., 2011. A Comparative Study between Sequential Gaussian Simulation and Kriging Method Grade Modeling in Open-Pit Mining. Arabian Journal of Geosciences, 6(1): 123-128. doi: 10.1007/s12517-011-0293-8
    Ouellon, T., Lefebvre, R., Marcotte, D., et al., 2008. Hydraulic Conductivity Heterogeneity of a Local Deltaic Aquifer System from the Kriged 3D Distribution of Hydrofacies from Borehole Logs, Valcartier, Canada. Journal of Hydrology, 351(1/2): 71-86. doi: 10.1016/j.jhydrol.2007.11.040
    Pliakas, F., Petalas, C., 2011. Determination of Hydraulic Conductivity of Unconsolidated River Alluvium from Permeameter Tests, Empirical Formulas and Statistical Parameters Effect Analysis. Water Resources Management, 25(11): 2877-2899. doi: 10.1007/s11269-011-9844-8
    Post, V. A., Simmons, C., 2010. Free Convective Controls on Sequestration of Salts into Low-Permeability Strata: Insights from Sand Tank Laboratory Experiments and Numerical Modelling. Hydrogeology Journal, 18(1): 39-54. doi: 10.1007/s10040-009-0521-4
    Qian, J. Z., Zhan, H. B., Wu, J. F., et al., 2009. What can be Learned from Sequential Multi-Well Pumping Tests in Fracture-Karst Media? A Case Study in Zhangji, China. Hydrogeology Journal, 17(7): 1749-1760. doi: 10.1007/s10040-009-0463-x
    Ronayne, M. J., Houghton, T. B., Stednick, J. D., 2012. Field Characterization of Hydraulic Conductivity in a Heterogeneous Alpine Glacial Till. Journal of Hydrology, 458/459: 103-109. doi: 10.1016/j.jhydrol.2012.06.036
    Rosas, J., Lopez, O., Missimer, T. M., et al., 2013. Determination of Hydraulic Conductivity from Grain-Size Distribution for Different Depositional Environments. Groundwater, 52(3): 399-413. doi: 10.1111/gwat.12078
    Rübel, A. P., Sonntag, C., Lippmann, J., et al., 2002. Solute Transport in Formations of very Low Permeability: Profiles of Stable Isotope and Dissolved Noble Gas Contents of Pore Water in the Opalinus Clay, Mont Terri, Switzerland. Geochimica et Cosmochimica Acta, 66(8): 1311-1321. doi: 10.1016/s0016-7037(01)00859-6
    Saar, M. O., Manga, M., 2004. Depth Dependence of Permeability in the Oregon Cascades Inferred from Hydrogeologic, Thermal, Seismic, and Magmatic Modeling Constraints. Journal of Geophysical Research: Solid Earth, 109(B4): B04204. doi: 10.1029/2003jb002855
    Sakata, Y., Ikeda, R., 2013. Depth Dependence and Exponential Models of Permeability in Alluvial-Fan Gravel Deposits. Hydrogeology Journal, 21(4): 773-786. doi: 10.1007/s10040-013-0961-8
    Schultz, G., Ruppel, C., 2002. Constraints on Hydraulic Parameters and Implications for Groundwater Flux across the Upland-Estuary Interface. Journal of Hydrology, 260(1-4): 255-269. doi: 10.1016/s0022-1694(01)00616-3
    Schön, J. H., 1996. Physical Properties of Rocks-Fundamentals and Principles of Geophysics. In: Helbig, K., Treitel, S., eds., Handbook of Geophysical Exploration-Seismic Exploration. Pergamon, London. 583
    Shao, J. L., Cui, Y. L., Hao, Q. C., et al., 2014. Study on the Estimation of Groundwater Withdrawals Based on Groundwater Flow Modeling and Its Application in the North China Plain. Journal of Earth Science, 25(6): 1033-1042. doi: 10.1007/s12583-014-0493-8
    Shi, J., Li, Y., Zhang, Y., et al., 2011. The Program Designitation of Spontaneous Potential Application in Water Resistivity Estimation. World Well Logging Technology, 4: 36-50 (in Chinese with English Abstract)
    Slater, L., 2007. Near Surface Electrical Characterization of Hydraulic Conductivity: From Petrophysical Properties to Aquifer Geometries-A Review. Surveys in Geophysics, 28(2/3): 169-197. doi: 10.1007/s10712-007-9022-y
    Soltani, A., Le Ravalec-Dupin, M., Fourar, M., 2008. An Experimental Method for one Dimensional Permeability Characterization of Heterogeneous Porous Media at the Core Scale. Transport in Porous Media, 77(1): 1-16. doi: 10.1007/s11242-008-9258-0
    Song, J., Chen, X., Cheng, C., et al., 2010. Variation of Streambed Vertical Hydraulic Conductivity with Depth along the Elkhorn River, Nebraska, USA. Chinese Science Bulletin, 55(10): 992-999. doi: 10.1007/s11434-009-0640-2
    Soupios, P. M., Kouli, M., Vallianatos, F., et al., 2007. Estimation of Aquifer Hydraulic Parameters from Surficial Geophysical Methods: A Case Study of Keritis Basin in Chania (Crete-Greece). Journal of Hydrology, 338(1/2): 122-131. doi: 10.1016/j.jhydrol.2007.02.028
    Sun, D., Chu, R., 1992. Determining the Formation Water Resistivity of Flood Strata with SP Log. Well Logging Technology, 16(2): 142-146 (in Chinese with English Abstract)
    Straface, S., Chidichimo, F., Rizzo, E., et al., 2011. Joint Inversion of Steady-State Hydrologic and Self-Potential Data for 3D Hydraulic Conductivity Distribution at the Boise Hydrogeophysical Research Site. Journal of Hydrology, 407(1-4): 115-128. doi: 10.1016/j.jhydrol.2011.07.013
    Tayfur, G., Nadiri, A. A., Moghaddam, A. A., 2014. Supervised Intelligent Committee Machine Method for Hydraulic Conductivity Estimation. Water Resources Management, 28(4): 1173-1184. doi: 10.1007/s11269-014-0553-y
    Tijani, M. N., Nton, M. E., 2008. Hydraulic, Textural and Geochemical Characteristics of the Ajali Formation, Anambra Basin, Nigeria: Implication for Groundwater Quality. Environmental Geology, 56(5): 935-951. doi: 10.1007/s00254-008-1196-1
    Tong, J., Hu, B., Yang, J., 2012. Assimilating Transient Groundwater Flow Data via a Localized Ensemble Kalman Filter to Calibrate a Heterogeneous Conductivity Field. Stochastic Environmental Research and Risk Assessment, 26(3): 467-478. doi: 10.1007/s00477-011-0534-0
    Vienken, T., Dietrich, P., 2011. Field Evaluation of Methods for Determining Hydraulic Conductivity from Grain Size Data. Journal of Hydrology, 400(1): 58-71. doi: 10.1016/j.jhydrol.2011.01.022
    Waxman, M. H., Smits, L. J. M., 1968. Electrical Conductivities in Oil-Bearing Shaly Sands. Society of Petroleum Engineers Journal, 8(2): 107-122. doi: 10.2118/1863-a
    Winter, F., Disse, M., 2010. Saturated Hydraulic Conductivity from Field Measurements Compared to Pedotransfer Functions in a Heterogeneous Arable Landscape. Journal of Earth Science, 21(6): 923-930. doi: 10.1007/s12583-010-0145-6
    Yunsel, T. Y., 2012. Risk Quantification in Grade Variability of Gold Deposits Using Sequential Gaussian Simulation. Journal of Central South University, 19(11): 3244-3255. doi: 10.1007/s11771-012-1401-y
    Zhang, Z., Ge, X., Li, C., et al., 2006. Correlation Ananysis of Granularity Structre and Permeability of Cenozoic Bottom Aquifers in Huaibei Coalfield. Geology of Anhui, 16: 165-168. doi: 10.3969/j.issn.1005-6157.2006.03.002 (in Chinese with English Abstract)
    Zhang, Y., Liu, B., Gable, C., 2011. Homogenization of Hydraulic Conductivity for Hierarchical Sedimentary Deposits at Multiple Scales. Transport in Porous Media, 87(3): 717-737. doi: 10.1007/s11242-010-9711-8
    Zhu, C., Liu, Z., Wang, Z., 2005. The Effect of Uniformity Coefficient of Thick Grain Size on Hydraulic conductivity. Yellow River, 12: 79-81 (in Chinese with English Abstract)
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views(3977) PDF downloads(749) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint