Adachi, M., Yamamoto, K., Sugisaki, R., 1986. Hydrothermal Chert and Associated Siliceous Rocks from the Northern Pacific Their Geological Significance as Indication OD Ocean Ridge Activity. Sedimentary Geology, 47(1/2): 125-148. doi: 10.1016/0037-0738(86)90075-8 |
Albani, R., Bagnoli, G., Bernárdez, E., et al., 2006. Late Cambrian Acritarchs from the "Túnel Ordovícico Del Fabar", Cantabrian Zone, N Spain. Review of Palaeobotany and Palynology, 139(1-4): 41-52. doi: 10.1016/j.revpalbo.2005.07.005 |
Algeo, T. J., Maynard, J. B., 2004. Trace-Element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-Type Cyclothems. Chemical Geology, 206(3/4): 289-318. doi: 10.1016/j.chemgeo.2003.12.009 |
Battarbee, R. W., 2000. Palaeolimnological Approaches to Climate Change, with Special Regard to the Biological Record. Quaternary Science Reviews, 19(1-5): 107-124. doi: 10.1016/s0277-3791(99)00057-8 |
Batten, D. J., 1996. Palynofacies and Petroleum Potential. In: Jansonius, J., McGregor, D. C., eds., Palynology: Principles and Applications. American Association of Stratigraphic Palynologists Foundation, Dallas. 1065-1084 |
Bertrand, S., Charlet, F., Charlier, B., et al., 2008. Climate Variability of Southern Chile since the Last Glacial Maximum: A Continuous Sedimentological Record from Lago Puyehue (40°S). Journal of Paleolimnology, 39(2): 179-195. doi: 10.1007/s10933-007-9117-y |
Bishop, J. K. B., 1988. The Barite-Opal-Organic Carbon Association in Oceanic Particulate Matter. Nature, 332(6162): 341-343. doi: 10.1038/332341a0 |
Bjorlykke, K., 1974. Depositional History and Geochemical Composition of Epicontinental Sediments from the Oslo Region. Nor. Geol. Unders. Arsmelding, 305: 87-95 http://www.researchgate.net/publication/284229359_Depositional_history_and_geochemical_composition_of_Lower_Palaeozoic_epicontinental_sediments_from_the_Oslo_Region |
Booth, J. E., 1998. The Khorat Plateau of NE Thailand--Exploration History and Hydrocarbon Potential. Proceedings of the 1998 SEAPEX Exploration Conferences, Singapore. 169-202 |
Booth, J. E., Sattayarak, N., 2011. Subsurface Carboniferous-Cretaceous Geology of NE Thailand. In: Ridd, M. F., Barber, A. J., Crow, M. J., eds., The Geology of Thailand. Geological Society, London. 185-222 |
Breit, G. N., Wanty, R. B., 1991. Vanadium Accumulation in Carbonaceous Rocks: A Review of Geochemical Controls during Deposition and Diagenesis. Chemical Geology, 91(2): 83-97. doi: 10.1016/0009-2541(91)90083-4 |
Brumsack, H. J., 1989. Geochemistry of Recent TOC-Rich Sediments from the Gulf of California and the Black Sea. Geologische Rundschau, 78(3): 851-882. doi: 10.1007/bf01829327 |
Calvert, S. E., Pedersen, T. F., 1993. Geochemistry of Recent Oxic and Anoxic Marine Sediments: Implications for the Geological Record. Marine Geology, 113(1/2): 67-88. doi: 10.1016/0025-3227(93)90150-t |
Calvert, S. E., Piper, D. Z., 1984. Geochemistry of Ferromanganese Nodules from DOMES Site A, Northern Equatorial Pacific: Multiple Diagenetic Metal Sources in the Deep Sea. Geochimica et Cosmochimica Acta, 48(10): 1913-1928. doi: 10.1016/0016-7037(84)90374-0 |
Chonglakmani, C., 2011. Triassic. In: Ridd, M. F., Barber, A. J., Crow, M. J., eds., The Geology of Thailand. Geological Society, London. 137-150 |
Chonglakmani, C., Sattayarak, N., 1978. Stratigraphy of the Huai Hin Lat Formation (Upper Triassic) in Northeastern, Thailand. In: Nutayala, P., ed., Proceedings of the third Regional Conference on the Geology and Mineral Resources of Southeast Asia, Bangkok. 739-762 |
Cohen, A. S., 2003. Paleolimnology: History and Evolution of Lake Systems. Oxford University Press, Oxford. 500 |
Crusius, J., Thomson, J., 2000. Comparative Behavior of Authigenic Re, U, and Mo during Reoxidation and Subsequent Long-Term Burial in Marine Sediments. Geochimica et Cosmochimica Acta, 64(13): 2233-2242. doi: 10.1016/s0016-7037(99)00433-0 |
Daskaladis, K. D., Helz, G. R., 1993. The Solubility of Sphalerite in Sulfidic Solutions at 25 ℃ and 1 atm Pressure. Geochimical et Cosmochimica Acta, 57: 4923-4931 doi: 10.1016/0016-7037(93)90129-K |
Dill, H., 1986. Metallogenesis of Early Paleozoic Graptolite Shales from the Graefenthal Horst (Northern Bavaria-Federal Republic of Germany). Economic Geology, 81(4): 889-903. doi: 10.2113/gsecongeo.81.4.889 |
Dill, H., Teschner, M., Wehner, H., 1988. Petrography, Inorganic and Organic Geochemistry of Lower Permian Carbonaceous Fan Sequences ("Brandschiefer Series")—Federal Republic of Germany: Constraints to Their Paleogeography and Assessment of Their Source Rock Potential. Chemical Geology, 67(3/4): 307-325. doi: 10.1016/0009-2541(88)90136-2 |
DMR, 2007. [2016-04-22] http://www.dmr.go.th/download/pdf/NorthEast/korat.pdf |
Dymond, J., Suess, E., Lyle, M., 1992. Barium in Deep-Sea Sediment: A Geochemical Proxy for Paleoproductivity. Paleoceanography, 7(2): 163-181. doi: 10.1029/92pa00181 |
Ernst, T. W., 1970. Geochemical Facies Analysis. Elsevier, Amsterdam. 152 |
Eusterhues, K., Heinrichs, H., Schneider, J., 2005. Geochemical Response on Redox Fluctuations in Holocene Lake Sediments, Lake Steisslingen, Southern Germany. Chemical Geology, 222(1/2): 1-22. doi: 10.1016/j.chemgeo.2005.06.006 |
Ferrari, O. M., Hochard, C., Stampfli, G. M., 2008. An Alternative Plate Tectonic Model for the Palaeozoic-Early Mesozoic Palaeotethyan Evolution of Southeast Asia (Northern Thailand-Burma). Tectonophysics, 451(1-4): 346-365. doi: 10.1016/j.tecto.2007.11.065 |
German, C. R., Elderfield, H., 1990. Application of the Ce Anomaly as a Paleoredox Indicator: The Ground Rules. Paleoceanography, 5(5): 823-833. doi: 10.1029/pa005i005p00823 |
Gingele, F., Dahmke, A., 1994. Discrete Barite Particles and Barium as Tracers of Paleoproductivity in South Atlantic Sediments. Paleoceanography, 9(1): 151-168. doi: 10.1029/93pa02559 |
Grosjean, E., Adam, P., Connan, J., et al., 2004. Effects of Weathering on Nickel and Vanadyl Porphyrins of a Lower Toarcian Shale of the Paris Basin. Geochimica et Cosmochimica Acta, 68(4): 789-804. doi: 10.1016/s0016-7037(03)00496-4 |
Gupta, L. P., Kawahata, H., 2006. Downcore Diagenetic Changes in Organic Matter and Implications for Paleoproductivity Estimates. Global and Planetary Change, 53(1/2): 122-136. doi: 10.1016/j.gloplacha.2006.01.008 |
Haile, N. S., 1973. Note on Triassic Fossil Pollen from Nam Pha Formation, Chulabhon (Nam Phrom) Dam, Thailand. GST Newsletter, 6(1): 15-16 http://www.researchgate.net/publication/285364943_Note_on_Triassic_fossil_pollen_from_the_Nam_Pha_formation_Chulabhorn_Nam_Phron_Dam_Thailand |
Hallberg, R. O., 1976. A Geochemical Method for Investigation of Palaeoredox Conditions in Sediments. Ambio, Spec. Rep., 4: 139-147 |
Hallberg, R. O., 1982. Diagenetic and Environmental Effects on Heavy-Metal Distribution in Sediments: A Hypothesis with an Illustration from the Baltic Sea. In: Fanning, K. A., Manheim, F. T., eds., The Dynamic Environment of the Ocean Floor. Lexington Books, Lexington. 305-316 |
Huerta-Diaz, M. A., Morse, J. W., 1990. A Quantitative Method for Determination of Trace Metal Concentrations in Sedimentary Pyrite. Marine Chemistry, 29: 119-144. doi: 10.1016/0304-4203(90)90009-2 |
Huerta-Diaz, M. A., Morse, J. W., 1992. Pyritization of Trace Metals in Anoxic Marine Sediments. Geochimica et Cosmochimica Acta, 56(7): 2681-2702. doi: 10.1016/0016-7037(92)90353-k |
Jeandel, C., Tachikawa, K., Bory, A., et al., 2000. Biogenic Barium in Suspended and Trapped Material as a Tracer of Export Production in the Tropical NE Atlantic (EUMELI Sites). Marine Chemistry, 71(1/2): 125-142. doi: 10.1016/s0304-4203(00)00045-1 |
Johnson, C. M., Fawcett, P. J., Ali, A. S., 2007. Geochemical Indicators of Redox Conditions as a Proxy for Mid-Pleistocene Climate Change from a Lacustrine Sediment Core, Valles Caldera, New Mexico. New Mexico Geological Society Guidebook, 58th Field Conference, Geology of the Jemez Mountains Region II, New Mexico. 418-423 |
Jones, B., Manning, D. A. C., 1994. Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chemical Geology, 111(1-4): 111-129. doi: 10.1016/0009-2541(94)90085-x |
Kakuwa, Y., Matsumoto, R., 2006. Cerium Negative Anomaly just before the Permian and Triassic Boundary Event—The Upward Expansion of Anoxia in the Water Column. Palaeogeography, Palaeoclimatology, Palaeoecology, 229(4): 335-344. doi: 10.1016/j.palaeo.2005.07.005 |
Kato, Y., Yamaguchi, K. E., Ohmoto, H., 2006. Rare Earth Elements in Precambrian Banded Iron Formations: Secular Changes of Ce and Eu Anomalies and Evolution of Atmospheric Oxygen. Memoir 198: Evolution of Early Earth's Atmosphere, Hydrosphere, and Biosphere-Constraints from Ore DeposIts. Geological Society of America, Colorado. 269-289. doi: 10.1130/2006.1198(16) |
Kobayasi, T., 1973. Upper Triassic estheriids in Thailand and the conchostracan development in Asia in Mesozoic Era. Geology and Palaeontology of Southeast Asia, 16: 57-90 http://www.researchgate.net/publication/285349273_Upper_Triassic_estheriids_in_Thailand_and_the_conchostracan_development_in_Asia_in_the_Mesozoic_era |
Krejci-Graf, K., 1975. Geochemical Facies of Sediments. Soil Science, 119(1): 20-23. doi: 10.1097/00010694-197501000-00004 |
Lewan, M. D., 1984. Factors Controlling the Proportionality of Vanadium to Nickel in Crude Oils. Geochimica et Cosmochimica Acta, 48(11): 2231-2238. doi: 10.1016/0016-7037(84)90219-9 |
Lewan, M. D., Maynard, J. B., 1982. Factors Controlling Enrichment of Vanadium and Nickel in the Bitumen of Organic Sedimentary Rocks. Geochimica et Cosmochimica Acta, 46(12): 2547-2560. doi: 10.1016/0016-7037(82)90377-5 |
Love, L. G., 1962. Pyrite Spheres in Sediments. In: Jensen, M. L., eds., In Biogeochemistry of Sulfur Isotopes. Yale University, N.S.F. Symposium, New Haven, Connecticut. 121-143 |
Mackenzie, F. T., Ver, L. M., Sabine, C., et al., 1993. C, N, P, S Global Biogeochemical Cycles and Modeling of Global Change. Interactions of C, N, P and S Biogeochemical Cycles and Global Change, 10: 1-61. doi: 10.1007/978-3-642-76064-8_1 |
Martín-Puertas, C., Valero-Garcés, B. L., Mata, M. P., et al., 2011. Geochemical Processes in a Mediterranean Lake: A High-Resolution Study of the Last 4 000 Years in Zoñar Lake, Southern Spain. Journal of Paleolimnology, 46(3): 405-421. doi: 10.1007/s10933-009-9373-0 |
McManus, J., Berelson, W. M., Klinkhammer, G. P., et al., 2005. Authigenic Uranium: Relationship to Oxygen Penetration Depth and Organic Carbon Rain. Geochimica et Cosmochimica Acta, 69(1): 95-108. doi: 10.1016/j.gca.2004.06.023 |
Meyers, P. A., 1997. Organic Geochemical Proxies of Paleoceanographic, Paleolimnologic, and Paleoclimatic Processes. Organic Geochemistry, 27(5/6): 213-250. doi: 10.1016/s0146-6380(97)00049-1 |
Meyers, S. R., Sageman, B. B., Lyons, T. W., 2005. Organic Carbon Burial Rate and the Molybdenum Proxy: Theoretical Framework and Application to Cenomanian-Turonian Oceanic Anoxic Event 2. Paleoceanography, 20(2): 2002. doi: 10.1029/2004pa001068 |
Monnin, C., Jeandel, C., Cattaldo, T., et al., 1999. The Marine Barite Saturation State of the World's Oceans. Marine Chemistry, 65(3/4): 253-261. doi: 10.1016/s0304-4203(99)00016-x |
Morford, J. L., Emerson, S., 1999. The Geochemistry of Redox Sensitive Trace Metals in Sediments. Geochimica et Cosmochimica Acta, 63(11/12): 1735-1750. doi: 10.1016/s0016-7037(99)00126-x |
Morse, J. W., Luther, G. W., 1999. Chemical Influences on Trace Metal-Sulfide Interactions in Anoxic Sediments. Geochimica et Cosmochimica Acta, 63(19/20): 3373-3378. doi: 10.1016/s0016-7037(99)00258-6 |
Murray, R. W., Leinen, M., 1993. Chemical Transport to the Seafloor of the Equatorial Pacific Ocean across a Latitudinal Transect at 135°W: Tracking Sedimentary Major, Trace, and Rare Earth Element Fluxes at the Equator and the Intertropical Convergence Zone. Geochimica et Cosmochimica Acta, 57(17): 4141-4163. doi: 10.1016/0016-7037(93)90312-k |
Oliveira, S. M. B., Larizzatti, F. E., Fávaro, D. I. T., et al., 2003. Rare Earth Element Patterns in Lake Sediments as Studied by Neutron Activation Analysis. Journal of Radioanalytical and Nuclear Chemistry, 258(3): 531-535. doi: 10.1023/b:jrnc.0000011747.05704.63 |
Patterson, J. H., Ramsden, A. R., Dale, L. S., et al., 1986. Geochemistry and Mineralogical Residences of Trace Elements in Oil Shales from Julia Creek, Queensland, Australia. Chemical Geology, 55(1/2): 1-16. doi: 10.1016/0009-2541(86)90123-3 |
Paytan, A., Cade-Menun, B. J., McLaughlin, K., et al., 2003. Selective Phosphorus Regeneration of Sinking Marine Particles: Evidence from 31P-NMR. Marine Chemistry, 82(1/2): 55-70. doi: 10.1016/s0304-4203(03)00052-5 |
Paytan, A., 1996. Benthic Ba Fluxes in the Central Equatorial Pacific, Implications for the Oceanic Ba Cycle. Earth and Planetary Science Letters, 142(3/4): 439-450. doi: 10.1016/0012-821x(96)00120-3 |
Paytan, A., Moore, W. S., Kastner, M., 1996. Sedimentation Rate as Determined by 226Ra Activity in Marine Barite. Geochimica et Cosmochimica Acta, 60(22): 4313-4319. doi: 10.1016/s0016-7037(96)00267-0 |
Piper, D. Z., Perkins, R. B., 2004. A Modern vs. Permian Black Shale—The Hydrography, Primary Productivity, and Water-Column Chemistry of Deposition. Chemical Geology, 206(3/4): 177-197. doi: 10.1016/j.chemgeo.2003.12.006 |
Prakash Babu, C., Brumsack, H. J., Schnetger, B., et al., 2002. Barium as a Productivity Proxy in Continental Margin Sediments: A Study from the Eastern Arabian Sea. Marine Geology, 184(3/4): 189-206. doi: 10.1016/s0025-3227(01)00286-9 |
Reolid, M., Rodriguez-Tovar, F. J., Marok, A., et al., 2012. The Toarcian Oceanic Anoxic Event in the Western Saharan Atlas, Algeria (North African Paleomargin): Role of Anoxia and Productivity. Geological Society of America Bulletin, 124(9/10): 1646-1664. doi: 10.1130/b30585.1 |
Rona, P. A., 1988. Hydrothermal Mineralization at Oceanic Ridges. Canadian Mineralogist, 26: 431-465 http://www.researchgate.net/publication/279898289_Hydrothermal_mineralization_at_oceanic_ridges |
Rutsch, H. J., Mangini, A., Bonani, G., et al., 1995. 10Be and Ba Concentrations in West African Sediments Trace Productivity in the Past. Earth and Planetary Science Letters, 133(1/2): 129-143. doi: 10.1016/0012-821x(95)00069-o |
Schneebeli-Hermann, E., Hochuli, P. A., Bucher, H., et al., 2012. Palynology of the Lower Triassic Succession of Tulong, South Tibet—Evidence for Early Recovery of Gymnosperms. Palaeogeography, Palaeoclimatology, Palaeoecology, 339-341: 12-24. doi: 10.1016/j.palaeo.2012.04.010 |
Shen, J., Algeo, T. J., Zhou, L., et al., 2012. Volcanic Perturbations of the Marine Environment in South China Preceding the Latest Permian Mass Extinction and Their Biotic Effects. Geobiology, 10(1): 82-103. doi: 10.1111/j.1472-4669.2011.00306.x |
Shen, J., Zhou, L., Feng, Q. L., et al., 2014. Paleo-Productivity Evolution Across the Permian-Triassic Boundary and Quantitative Calculation of Primary Productivity of Black Rock Series from the Dalong Formation, South China. Science China: Earth Sciences, 57(7): 1583-1594. doi: 10.1007/s11430-013-4780-5 |
Sholkovitz, E. R., 1995. The Aquatic Chemistry of Rare Earth Elements in Rivers and Estuaries. Aquatic Geochemistry, 1(1): 1-34. doi: 10.1007/bf01025229 |
Sone, M., Metcalfe, I., 2008. Parallel Tethyan Sutures in Mainland Southeast Asia: New Insights for Palaeo-Tethys Closure and Implications for the Indosinian Orogeny. Comptes Rendus Geoscience, 340(2/3): 166-179. doi: 10.1016/j.crte.2007.09.008 |
Suárez-Ruiz, I., Flores, D., Filho, J. G. M., et al., 2012. Review and Update of the Applications of Organic Petrology: Part 1, Geological Applications. International Journal of Coal Geology, 99: 54-112. doi: 10.1016/j.coal.2012.02.004 |
Suess, E., 1980. Particulate Organic Carbon Flux in the Oceans—Surface Productivity and Oxygen Utilization. Nature, 288(5788): 260-263. doi: 10.1038/288260a0 |
Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publication, Oxford |
Trappe, J., 1998. Phanerozoic Phosphorite Depositional Systems: A Dynamic Model for a Sedimentary Resource System. Lecture Notes in Earth Sciences, Springer. 76: 316 |
Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1/2): 12-32. doi: 10.1016/j.chemgeo.2006.02.012 |
Ueno, K., Charoentitirat, T., 2011. Carboniferous and Permian. In: Ridd, M. F., Barber, A. J., Crow, M. J., eds., The Geology of Thailand. Geological Society, London. 71-135 |
Vallentyne, J. R., 1962. A Chemical Study of Pyrite Spherules Isolated from Sediments of Little Round Lake, Ontario. In: Jensen, M. L., ed., Biogeochemistry of Sulfur Isotopes. Yale University, N.S.F. Symposium, New Haven, Connecticut. 144-152 |
Van Cappellen, P. V., Ingall, E. D., 1994. Benthic Phosphorus Regeneration, Net Primary Production, and Ocean Anoxia: A Model of the Coupled Marine Biogeochemical Cycles of Carbon and Phosphorus. Paleoceanography, 9(5): 677-692. doi: 10.1029/94pa01455 |
Van der Weijden, C. H. V. D., 2002. Pitfalls of Normalization of Marine Geochemical Data Using a Common Divisor. Marine Geology, 184(3/4): 167-187. doi: 10.1016/s0025-3227(01)00297-3 |
Vetö, I., Demény, A., Hertelendi, E., et al., 1997. Estimation of Primary Productivity in the Toarcian Tethys—A Novel Approach Based on TOC, Reduced Sulphur and Manganese Contents. Palaeogeography, Palaeoclimatology, Palaeoecology, 132(1-4): 355-371. doi: 10.1016/s0031-0182(97)00053-9 |
Wehrli, B., Stumm, W., 1989. Vanadyl in Natural Waters: Adsorption and Hydrolysis Promote Oxygenation. Geochimica et Cosmochimica Acta, 53(1): 69-77. doi: 10.1016/0016-7037(89)90273-1 |
Yamamoto, K., 1987. Geochemical Characteristics and Depositional Environments of Cherts and Associated Rocks in the Franciscan and Shimanto Terranes. Sedimentary Geology, 52(1/2): 65-108. doi: 10.1016/0037-0738(87)90017-0 |