
Citation: | Tsuyoshi Ito, Xin Qian, Qinglai Feng. Geochemistry of Triassic siliceous rocks of the Muyinhe Formation in the Changning-Menglian belt of Southwest China. Journal of Earth Science, 2016, 27(3): 403-411. doi: 10.1007/s12583-016-0672-x |
The Paleotethys was an ancient ocean surrounded by Eurasia and Gondwana with some smaller blocks that have separated from Gondwana (e.g., Metcalfe, 2009, 2006). The Paleotethys opened in the Devonian and closed in the Triassic as a result of the Sibumasu-Sukhothai collision (Sone and Metcalfe, 2008). In Southeast Asia, a number of suture zones extend north-south between the Indochina and Sibumasu blocks. Mélanges within these suture zones contain oceanic rocks (e.g., limestones, basalts, and cherts), which are considered to be remnants of the Paleotethys (Wu et al., 1995). The suture zones may therefore record paleoceanic information about the Paleotethys.
The Changning-Menglian belt is distributed over Southwest China (Fig. 1). Briefly, the following elements have been reported from the belt as interbedded rocks: Mississippian-Guadalupian carbonates (e.g., Nakazawa et al., 2009, 2005; Ueno and Tsutsumi, 2009; Ueno et al., 2003; He and Liu, 1993), Carboniferous-Permian basaltic rocks (e.g., Feng, 2002), and Middle Devonian-Middle Triassic siliceous rocks (e.g., Jin et al., 2003; Feng et al., 2001, 1997, 1996; Yao and Kuwahara, 1999; Kuwahara et al., 1997; Feng and Ye, 1996; Feng and Liu, 1993a, b, c; Feng, 1992; Wu and Li, 1989; Wu and Zhang, 1987). Previous studies have clarified that the carbonates and basaltic rocks originated from seamounts and/or oceanic islands (e.g., Ueno et al., 2003; Feng, 2002). The siliceous rocks have been considered to be pelagic deposits (e.g., Sone and Metcalfe, 2008; Yao and Kuwahara, 1999; Fang et al., 1996, 1994; Liu et al., 1993), except for those in the Middle Devonian Lalei Formation (Sone and Metcalfe, 2008).
This interpretation of the siliceous rocks implies the presence of pelagic broad ocean basins during the Late Devonian- Middle Triassic. In particular, the interpretation of the Triassic rocks as pelagic deposits has great significance for hypothesis of the closure process of the Paleotethys. This is because the interpretation indicates the continuation of the broad ocean basins until the Triassic immediately before the collision. However, a few studies have confirmed the pelagic interpretation. Zhang et al. (2001) performed a geochemical analysis of Triassic siliceous rocks of the Muyinhe Formation in the Changning-Menglian belt. Although they realized that the siliceous rocks were strongly influenced by terrigenous materials, they did not evaluate the previous hypothesis.
We studied the Triassic siliceous rocks of the Muyinhe Formation and analyzed their geochemistry. Our results, however, strongly suggest that these rocks are not typical pelagic deposits. Thus, a reconsideration of the Triassic ocean basins in the Paleotethys is necessary. This paper reports on the observational and geochemical results, and then reinterprets the sedimentary setting of these siliceous deposits.
Several blocks and belts are distributed over southwestern Yunnan, Southwest China (Fig. 1a) (e.g., Feng et al., 2005, 2001). The Changning-Menglian belt lies between the Baoshan Block (part of the Sibumasu Block) and the Simao Block (part of the Indochina Block). The Changning-Menglian belt is a suture zone and comprises the following geologic units (He and Liu, 1993; Liu et al., 1993): the Upper Devonian (?)-Carboniferous Nandan Formation, the Carboniferous-Upper Permian Laba Group, the Carboniferous-Permian Yiliu Formation, the Upper Permian- Middle Triassic Muyinhe Formation, and the Upper Devonian- Upper Permian Nanpihe Group. The Muyinhe Formation, established by Feng (1992), is exposed along the Muyinhe River near Nanpan Village in Lancang County. Late Permian and Triassic radiolarian fossils have been obtained from this formation (Feng et al., 2001, 1996; Yao and Kuwahara, 1999; Feng and Ye, 1996; Feng and Liu, 1993b; Feng, 1992).
We surveyed an outcrop (22°33.234'N, 99°43.460'E) exposed on the west side of the Muyinhe River (Fig. 1b). The outcrop comprises siliceous rocks and mudstones of the Muyinhe Formation with total thickness of ca. 2.5 m. The siliceous rocks are black, light gray, or gray in color. The bed thickness varies from 2 to 64 mm. Some of the siliceous rocks intercalated mudstones while some siliceous rocks are directly in contact with other siliceous rocks without mudstones in between (Fig. 2a). The siliceous rocks mainly comprise cryptocrystalline quartz and clay minerals with radiolarian tests visible in thin sections under the microscope (Fig. 2b). The mudstones (siltstones and claystones) are grayish-white, pale-green, or black in color. The bed thickness varies from 1 to 38 mm.
Observation on the surfaces of the siliceous rocks etched with hydrofluoric acid (HF) revealed the presence of radiolarian tests (Figs. 2c-2f). The etched surfaces are dominantly matrix- supported. No clear preferred orientation of nassellarians (conical radiolarians) or spicules was observed on the bedding planes. Triassic radiolarian genera, such as Triassocampe Dumitrica, Kozur, and Mostler (Figs. 2c, 2d), Pseudostylosphaera Kozur and Mostler (Fig. 2e), Eptingium Dumitrica (Fig. 2f), and Paroertlispongus Kozur and Mostler, were observed on the etched surfaces. Based on these radiolarian occurrences and lithology, this section can correspond to the Middle Triassic sequence of a section described by Feng et al. (2001).
We conducted geochemical analyses on 12 siliceous rock samples from the outcrop. All samples were powdered to 200 mesh for elemental analysis. We measured major and trace elements and rare earth elements (REEs). Major element concentrations were determined using X-ray fluorescence (XRF) techniques on fused glass beads at the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences in Wuhan. The analytical precision was generally better than 5%. Trace elements and REEs analyses were performed at the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences in Wuhan using an Aglient 7500a ICP-MS. The sample solutions for ICP-MS analyses were prepared following the method of Zhou et al. (2008). The analytical precision was better than 5% for elements > 10 ppm, less than 8% for those < 10 ppm, and 10% for transition metals. The analytical results for the samples are listed in Table 1.
Sample No. | MYH-60 | MYH-63 | MYH-64 | MYH-65 | MYH-67 | MYH-68 | MYH-69 | MYH-70 | MYH-71 | MYH-72 | MYH-73 | MYH-74 | NASC |
SiO2 (wt.%) | 87.24 | 84.35 | 88.38 | 81.65 | 87.03 | 83.59 | 84.41 | 83.97 | 87.48 | 83.11 | 82.84 | 85.77 | |
Al2O3 | 5.93 | 7.64 | 5.15 | 9.88 | 6.31 | 7.64 | 8.02 | 6.93 | 5.88 | 8.02 | 8.89 | 6.79 | |
Fe2O3 | 1.72 | 1.74 | 1.46 | 1.05 | 1.66 | 2.88 | 2.11 | 3.41 | 1.90 | 2.76 | 2.22 | 2.09 | |
K2O | 1.17 | 1.09 | 0.94 | 0.61 | 1.06 | 1.21 | 1.20 | 1.33 | 1.19 | 1.43 | 1.78 | 1.43 | |
Na2O | 0.87 | 2.05 | 0.93 | 4.72 | 1.19 | 1.33 | 1.16 | 0.76 | 0.72 | 1.12 | 0.87 | 0.63 | |
MgO | 0.65 | 0.59 | 0.52 | 0.36 | 0.59 | 0.83 | 0.72 | 0.71 | 0.59 | 0.90 | 0.80 | 0.79 | |
P2O5 | 0.03 | 0.04 | 0.03 | 0.08 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.03 | |
CaO | 0.05 | 0.10 | 0.05 | 0.10 | 0.05 | 0.05 | 0.05 | 0.05 | 0.06 | 0.05 | 0.05 | 0.05 | |
TiO2 | 0.20 | 0.35 | 0.18 | 0.33 | 0.23 | 0.27 | 0.27 | 0.29 | 0.21 | 0.30 | 0.33 | 0.28 | |
MnO | 0.05 | 0.05 | 0.03 | 0.03 | 0.06 | 0.07 | 0.06 | 0.06 | 0.06 | 0.07 | 0.06 | 0.05 | |
lost | 1.96 | 1.86 | 2.20 | 1.07 | 1.65 | 1.96 | 1.83 | 2.31 | 1.73 | 2.07 | 1.99 | 1.94 | |
Total | 99.86 | 99.86 | 99.86 | 99.87 | 99.86 | 99.87 | 99.87 | 99.86 | 99.86 | 99.86 | 99.86 | 99.86 | |
La (ppm) | 15.66 | 21.03 | 10.90 | 24.99 | 16.22 | 20.90 | 22.46 | 17.32 | 14.89 | 31.31 | 25.91 | 17.00 | 34.70 |
Ce | 36.41 | 49.47 | 23.57 | 54.04 | 35.78 | 46.18 | 53.06 | 37.32 | 31.91 | 56.13 | 60.36 | 36.63 | 71.30 |
Pr | 3.84 | 5.15 | 2.55 | 5.62 | 3.67 | 4.66 | 5.26 | 3.75 | 3.26 | 6.94 | 5.85 | 3.77 | 7.90 |
Nd | 15.11 | 20.37 | 10.20 | 21.60 | 13.72 | 17.66 | 20.19 | 14.16 | 12.24 | 27.00 | 22.22 | 14.24 | 33.60 |
Sm | 3.13 | 4.22 | 2.29 | 4.34 | 2.73 | 3.30 | 3.87 | 2.64 | 2.38 | 5.27 | 4.27 | 2.79 | 6.38 |
Eu | 0.55 | 0.79 | 0.44 | 0.82 | 0.50 | 0.61 | 0.65 | 0.50 | 0.47 | 1.02 | 0.78 | 0.57 | 1.37 |
Gd | 2.61 | 3.72 | 2.05 | 3.99 | 2.29 | 2.65 | 3.04 | 2.22 | 1.98 | 4.69 | 3.73 | 2.33 | 5.93 |
Tb | 0.38 | 0.66 | 0.33 | 0.69 | 0.37 | 0.39 | 0.45 | 0.33 | 0.31 | 0.73 | 0.56 | 0.34 | 0.97 |
Dy | 1.91 | 3.89 | 1.82 | 4.18 | 2.04 | 2.19 | 2.41 | 1.80 | 1.59 | 3.93 | 3.05 | 1.75 | 5.88 |
Ho | 0.40 | 0.84 | 0.36 | 0.87 | 0.43 | 0.46 | 0.51 | 0.36 | 0.35 | 0.80 | 0.66 | 0.36 | 1.27 |
Er | 1.13 | 2.55 | 1.12 | 2.69 | 1.35 | 1.41 | 1.60 | 1.15 | 1.08 | 2.42 | 2.07 | 1.09 | 3.49 |
Tm | 0.18 | 0.42 | 0.16 | 0.38 | 0.19 | 0.21 | 0.26 | 0.19 | 0.16 | 0.35 | 0.32 | 0.17 | 0.50 |
Yb | 1.15 | 2.52 | 1.08 | 2.54 | 1.35 | 1.47 | 1.67 | 1.20 | 1.10 | 2.29 | 2.11 | 1.15 | 3.26 |
Lu | 0.18 | 0.39 | 0.18 | 0.38 | 0.21 | 0.24 | 0.26 | 0.20 | 0.18 | 0.36 | 0.33 | 0.19 | 0.52 |
∑REE | 82.65 | 116.02 | 57.04 | 127.13 | 80.86 | 102.34 | 115.68 | 83.13 | 71.88 | 143.23 | 132.22 | 82.37 | |
Y | 9.25 | 21.57 | 9.62 | 23.70 | 12.29 | 12.12 | 13.63 | 9.64 | 8.96 | 27.64 | 17.71 | 9.23 | |
Sc | 5.97 | 8.81 | 5.16 | 5.82 | 6.62 | 7.17 | 8.11 | 7.47 | 6.18 | 8.37 | 9.65 | 6.70 | |
Be | 1.00 | 0.91 | 0.72 | 0.73 | 0.80 | 0.87 | 0.99 | 1.04 | 0.97 | 1.15 | 1.20 | 1.05 | |
Co | 84.76 | 86.62 | 79.57 | 139.10 | 124.60 | 40.06 | 89.37 | 58.00 | 93.19 | 53.41 | 57.56 | 66.93 | |
Cu | 36.12 | 44.70 | 37.20 | 18.63 | 33.26 | 39.31 | 38.43 | 54.88 | 48.50 | 60.43 | 58.94 | 37.44 | |
Zn | 33.39 | 39.21 | 25.69 | 25.40 | 28.14 | 37.30 | 35.22 | 33.83 | 31.46 | 47.71 | 42.97 | 32.61 | |
Ga (ppm) | 8.36 | 7.98 | 6.12 | 6.38 | 8.30 | 10.46 | 10.06 | 11.29 | 8.05 | 10.51 | 11.70 | 10.20 | |
Rb | 54.40 | 46.39 | 36.85 | 28.08 | 46.29 | 53.38 | 57.48 | 61.62 | 52.98 | 64.70 | 74.48 | 64.87 | |
Zr | 53.70 | 121.80 | 52.70 | 143.90 | 69.90 | 71.10 | 73.90 | 63.50 | 61.30 | 74.90 | 93.60 | 59.60 | |
Nb | 3.77 | 6.43 | 3.71 | 8.81 | 4.93 | 4.94 | 4.25 | 4.90 | 4.71 | 5.28 | 5.87 | 4.76 | |
Cs | 2.24 | 1.86 | 1.55 | 0.99 | 1.71 | 2.09 | 2.26 | 2.77 | 2.00 | 2.55 | 3.05 | 2.72 | |
Hf | 1.08 | 2.71 | 0.98 | 3.33 | 1.40 | 1.53 | 1.44 | 1.34 | 1.27 | 1.71 | 1.99 | 1.32 | |
Ta | 0.73 | 0.87 | 0.68 | 1.47 | 0.92 | 0.56 | 0.77 | 0.73 | 0.77 | 0.56 | 0.76 | 0.71 | |
Pb | 22.12 | 12.45 | 9.23 | 22.69 | 18.47 | 10.98 | 13.77 | 5.45 | 26.89 | 18.12 | 9.65 | 3.56 | |
Th | 3.77 | 5.52 | 2.58 | 13.14 | 4.00 | 4.63 | 4.60 | 4.61 | 3.19 | 4.88 | 5.98 | 4.76 | |
U | 1.78 | 2.23 | 3.19 | 4.06 | 1.76 | 1.86 | 1.69 | 1.37 | 1.34 | 2.16 | 2.16 | 1.80 | |
Ba | 193.88 | 205.03 | 136.51 | 126.27 | 172.33 | 199.56 | 193.75 | 207.89 | 203.07 | 236.06 | 289.91 | 229.54 | |
Cr | 28.05 | 25.85 | 31.33 | 9.71 | 22.72 | 27.44 | 20.71 | 32.84 | 25.78 | 32.95 | 25.29 | 33.13 | |
Ni | 65.95 | 80.80 | 73.55 | 95.38 | 73.59 | 42.57 | 54.63 | 42.63 | 59.82 | 45.49 | 41.60 | 48.29 | |
Sr | 20.84 | 32.97 | 18.79 | 59.84 | 22.04 | 26.43 | 24.18 | 25.00 | 19.91 | 23.28 | 22.31 | 18.89 | |
V | 48.34 | 57.45 | 52.70 | 32.91 | 51.67 | 55.07 | 41.97 | 48.75 | 56.69 | 56.62 | 51.72 | 46.49 | |
Sn | 2.02 | 2.25 | 1.55 | 1.56 | 1.71 | 1.71 | 1.63 | 1.65 | 1.68 | 1.90 | 2.12 | 1.98 | |
Al/(Al+Fe+Mn) | 0.72 | 0.76 | 0.72 | 0.87 | 0.74 | 0.66 | 0.74 | 0.60 | 0.69 | 0.68 | 0.75 | 0.70 | |
Si/(Si+Al+Fe) | 0.90 | 0.88 | 0.92 | 0.87 | 0.90 | 0.87 | 0.87 | 0.87 | 0.90 | 0.86 | 0.86 | 0.89 | |
Ce/Ce* | 1.09 | 1.10 | 1.04 | 1.06 | 1.08 | 1.09 | 1.13 | 1.08 | 1.06 | 0.88 | 1.14 | 1.06 | |
Eu/Eu* | 0.85 | 0.89 | 0.91 | 0.88 | 0.88 | 0.92 | 0.84 | 0.91 | 0.96 | 0.91 | 0.87 | 0.99 | |
(La/Ce)N | 0.88 | 0.87 | 0.95 | 0.95 | 0.93 | 0.93 | 0.87 | 0.95 | 0.96 | 1.15 | 0.88 | 0.95 | |
(La/Yb)N | 1.28 | 0.78 | 0.95 | 0.93 | 1.13 | 1.34 | 1.26 | 1.36 | 1.27 | 1.28 | 1.15 | 1.39 |
All major oxides are volatile-free normalized to 100%. All analyzed samples have high level of SiO2 (81.65 wt.%-88.38 wt.%; average: 84.99 wt.%±2.14 wt.%), TiO2 (0.18 wt.%-0.35 wt.%; average: 0.27 wt.%±0.05 wt.%), and Fe2O3 (1.05 wt.%-3.41 wt.%; average: 2.08 wt.%±0.66 wt.%); however the SiO2 contents are lower than those of the Triassic Panthalassan pelagic cherts in accretionary complexes of Southwest Japan (Table 2). The samples are characterized by a higher concentration of Al2O3 (5.15 wt.%-9.88 wt.%; average: 7.26 wt.%±1.36 wt.%), even allowing for the diluting effect of high SiO2 in the pelagic cherts.
Reference | This study | Sugisaki et al. (1982) | Hori et al. (2000) | |
Age | Triassic | Triassic | Triassic-Jurassic | |
Locality | Muyinhe | Kamiaso | Inuyama | |
Lithology | Siliceous rock | Chert | Gray-black chert | Red chert |
Number | 12 | 69 | 10 | 37 |
SiO2 | 84.99±2.14 | 96.22±2.23 | 97.55±1.56 | 95.52±1.10 |
Al2O3 | 7.26±1.36 | 1.74±0.86 | 1.21±0.30 | 2.30±0.57 |
Fe2O3 | 2.08±0.66 | 0.77±0.38 | 0.89±1.42 | 0.83±0.24 |
K2O | 1.20±0.29 | 0.40±0.23 | 0.27±0.09 | 0.62±0.19 |
Na2O | 1.36±1.12 | 0.082±0.023 | 0.18±0.02 | 0.07±0.03 |
MgO | 0.67±0.15 | 0.44±0.30 | 0.21±0.06 | 0.41±0.12 |
P2O5 | 0.04±0.01 | 0.035±0.015 | 0.045±0.024 | 0.029±0.019 |
CaO | 0.06±0.02 | 0.35±0.02 | 0.09±0.04 | 0.11±0.04 |
TiO2 | 0.27±0.05 | 0.077±0.04 | 0.04±0.02 | 0.09±0.03 |
MnO | 0.05±0.01 | 0.018±0.012 | 0.045±0.092 | 0.026±0.009 |
Unit: wt.% |
The REEs contents in our samples were very low in comparison to the values of the North American shale composite (NASC) proposed by Gromet et al. (1984; modified by Kawabe et al., 1998). The total REEs content (ΣREE) of all analyzed samples in the Muyinhe Formation is from 57.04 ppm to 143.24 ppm (average: 99.55 ppm±27.05 ppm). The concentration of La is 10.90 ppm-31.31 ppm (average: 19.88 ppm±5.67 ppm). All samples have similar NASC-normalized REEs patterns (Fig. 3a). Most of the analyzed samples are characterized by a flat pattern. The (La/Yb)N (N herein refers to NASC-normalized value) ratios are in the range of 0.78-1.39 (average: 1.18±0.19). No anomalies of Ce and Eu were recognized. The Ce/Ce* value is in the range of 0.88-1.14 (average: 1.07±0.05), whereas the Eu/Eu* value is in the range of 0.84-0.99 (average: 0.90±0.04).
The geochemistry of radiolarian cherts is an important tool for the elucidation of the depositional environment and paleogeography of a particular area or region. However, some major elements, including Si, Ca, Mn, Mg, and P are not suitable for this purpose because of their diagenetic fractionation and migration characteristics (Halamić et al., 2001). In the chert depositional environment, Al, Fe, Ti, and REEs are generally unaffected by diagenetic alteration; therefore, these elements can be widely used for the interpretation of the depositional environment (Murray et al., 1990). In this section, we discuss the origin and depositional environment of our materials based on their geochemical results and sedimentary features. We then highlight the significance of the presence of non-pelagic siliceous rocks during the Triassic in the Paleotethys.
In general, silica within rocks originates from organisms (e.g., radiolarians, siliceous sponges, and diatoms), terrigenous materials, and chemical reactions (e.g., hydrothermal fluid). Huang et al. (2013) estimated the terrigenous composition of siliceous rocks by using certain insoluble trace elements: Nb, Hf, and Th. The Nb, Hf, and Th of the analyzed samples from the Muyinhe Formation are generally higher than those of upper Paleozoic rocks from western Guangxi, suggesting a strong influence of terrigenous materials. Moreover, the Al/(Al+Fe+Mn) ratio is known to be an indicator of the amount of hydrothermal contribution (Huang et al., 2013). The Al-Fe-Mn diagram was defined by Adachi et al. (1986) and Yamamoto (1987) based on cherts from the accretionary complexes and the Pacific Basin. Most of the analyzed samples of the Muyinhe Formation plot in non-hydrothermal field of the Al-Fe-Mn diagram (Fig. 3b). In addition, a negative anomaly of Ce in cherts is known to be caused by hydrothermal activity (e.g., Murray et al., 1990). However, no negative anomaly was recognized in the analyzed samples. Furthermore, the high ratios of Si/(Si+Al+Fe) (0.86-0.92) are consistent with a biogenic origin as proposed by Rangin et al. (1981). The observations of thin section (Fig. 2b) and HF-etched surfaces (Figs. 2c-2f) suggest the presence of radiolarian tests in the siliceous rocks. All these facts indicate that the silica within the siliceous rocks was biogenic and are little affected by hydrothermal activity.
In the Al2O3/(Al2O3+Fe2O3)-Fe2O3/TiO2 diagram proposed by Murray (1994), the analyzed samples fall in the continental margin field (Fig. 3c). A similar result was also obtained from the (La/Ce)N-Al2O3/(Al2O3+Fe2O3) diagram (Fig. 3d), which is proposed by Murray (1994). Most of the analyzed samples generally show flat REEs patterns normalized to NASC (Fig. 3a), further supporting predominant contribution of continental detritus to the REEs component. To summarize, the geochemical results suggest that the siliceous rocks formed in a continental margin but not pelagic environment. In addition to the geochemical results, the lithological characteristics of the siliceous rock beds imply that they are not typical pelagic deposits. Typical pelagic siliceous rocks, represented by cherts, are characterized by rhythmic bedding, e.g., the Triassic Panthalassan pelagic cherts in Southwest Japan consist of rhythmically alternating chert beds and intercalated thin mudstone beds (e.g., Ikeda et al., 2010; Dozen and Ishiga, 1995; Hori et al., 1993; Ishiga et al., 1993). However, the siliceous rocks and mudstones in the Muyinhe Formation are characterized by varying bed thicknesses, and some siliceous rock beds lack intercalated mudstones (Fig. 2a).
Our results suggested that the analyzed siliceous rocks of the Muyinhe Formation are not likely to represent pelagic deposits. This has implication for the extent of the pelagic ocean basins in the Paleotethys during the Triassic, i.e., they were probably narrower than previously believed. Sone and Metcalfe (2008) indicated the possibility that the siliceous rocks of the Middle Devonian Lalei Formation were not pelagic based on the formation's turbiditic sedimentary facies and clastic inclusions. They then stated that "The Lalei Formation probably represents a hemi-pelagic deposit during the rifting to opening stage when Indochina was split from Gondwana in the Devonian" (p. 167, Sone and Metcalfe, 2008). Similarly, the Muyinhe Formation may represent non-pelagic deposition during the closure of the Paleotethys (Fig. 4).
In addition, the Chiang Mai belt in northwestern Thailand, which is considered to be an extension of the Changning- Menglian belt (Sone and Metcalfe, 2008; Feng et al., 2005), has also yielded Triassic siliceous deposits. Kamata et al. (2009) divided the Carboniferous-Triassic cherts in northwestern Thailand into two types based on their sedimentological characteristics and co-occurring fossil faunas. According to that study, type 1 chert is pelagic whereas type 2 chert is hemipelagic. Those findings and the present results indicates that Triassic siliceous rocks might have been deposited in several sedimentary places in the Paleotethys. Further work on the detailed classification of siliceous rocks may clarify the paleogeography of the Paleotethys in the Triassic and its closure process.
ACKNOWLEDGMENTS: The authors wish to thank two anonymous reviewers for providing constructive comments. This study was supported by the National Natural Science Foundation of China (Nos. 41172202, 41190073), the China Geological Survey (No. 1212011121256), and the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences in Wuhan (No. MSFGPMR201402). The final publication is available at Springer via http://dx.doi.org/10.1007/s12583-016-0672-x.Adachi, M., Yamamoto, K., Sugisaki, R., 1986. Hydrothermal Chert and Associated Siliceous Rocks from the Northern Pacific Their Geological Significance as Indication Od Ocean Ridge Activity. Sedimentary Geology, 47(1/2): 125-148. doi: 10.1016/0037-0738(86)90075-8 |
Dozen, K., Ishiga, H., 1995. Sea-Level Changes Reduced from Rhythmicity of Middle Triassic to Lower Jurassic Bedded Cherts of Southwest Japan. Journal of the Geological Society of Japan, 101: 345-366 (in Japanese with English Abstract) doi: 10.5575/geosoc.101.345 |
Fang, N. Q., Liu, B. P., Feng, Q. L., 1996. Tectono-Sedimentary Features of the Muyinhe Formation and Stratigraphic Subjects Conceived in Southwestern Yunnan. Earth Science-Journal of China University of Geosciences, 21(1): 11-18 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX601.001.htm |
Fang, N. Q., Liu, B. P., Feng, Q. L., et al., 1994. Late Palaeozoic and Triassic Deep-Water Deposits and Tectonic Evolution of the Palaeotethys in the Changning-Menglian and Lancangjiang Belts, Southwestern Yunnan. Journal of Southeast Asian Earth Sciences, 9(4): 363-374. doi: 10.1016/0743-9547(94)90048-5 |
Feng, Q. L., 1992. Permian and Triassic Radiolarian Biostratigraphy in South and Southwest China. Journal of China University of Geosciences, 3: 51-62 http://www.cqvip.com/QK/84134A/199201/1005123416.html |
Feng, Q. L., 2002. Stratigraphy of Volcanic Rocks in the Changning-Menglian Belt in Southwestern Yunnan, China. Journal of Asian Earth Sciences, 20(6): 657-664. doi: 10.1016/s1367-9120(02)00006-8 |
Feng, Q. L., Chonglakmani, C., Helmcke, D., et al., 2005. Correlation of Triassic Stratigraphy between the Simao and Lampang-Phrae Basins: Implications for the Tectonopaleogeography of Southeast Asia. Journal of Asian Earth Sciences, 24(6): 777-785. doi: 10.1016/j.jseaes.2004.11.008 |
Feng, Q. L., Fang, N. Q., Liu, B. P., 1996. Regional Stratigraphy Study of the Changning-Menglian and Southern Lancangjiang Belts. In: Long, X., ed., Devonian to Triassic Tethys in Western Yunnan, China. China University of Geosciences Press, Wuhan. 23-29 (in Chinese) |
Feng, Q. L., Liu, B. P., 1993a. A New Early Devonian Radiolarian Genus from Western Yunnan. Science in China: Series B, 36(2): 242-247 http://www.cnki.com.cn/Article/CJFDTotal-JBXG199302012.htm |
Feng, Q. L., Liu, B. P., 1993b. Radiolaria from Late Permian and Early-Middle Triassic in Southwest Yunnan. Earth Science-Journal of China University of Geosciences, 18(5): 540-552 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX199305001.htm |
Feng, Q. L., Liu, B. P., 1993c. Permian Radiolarians on Southwest Yunnan. Earth Science-Journal of China University of Geosciences, 18(5): 553-564 (in Chinese with English Abstract) |
Feng, Q. L., Zhang, Z. F., Ye, M., 2001. Middle Triassic Radiolarian Fauna from Southwest Yunnan, China. Micropaleontology, 47(3): 173-204. doi: 10.2113/47.3.173 |
Feng, Q. L., Ye, M., 1996. Radiolarian Stratigraphy of Devonian through Middle Triassic in Southwestern Yunnan. In: Long, X., ed., Devonian to Triassic Tethys in Western Yunnan, China. China University of Geosciences Press, Wuhan. 15-22 (in Chinese) |
Feng, Q. L., Ye, M., Zhang, Z. J., 1997. Early Carboniferous Radiolarians from West Yunnan. Acta Micropalaeontologica Sinica, 14(1): 79-92 (in Chinese with English Abstract) |
Gromet, L. P., Dymek, R. F., Haskin, R. A., et al., 1984. The "North American Shale Composite": Its Compilation, Major and Trace Element Characteristics. Geochimica et Cosmochimica Acta, 48(12): 2469-2482. doi: 10.1016/0016-7037(84)90298-9 |
Halamić, J., Marchig, V., Goričan, S., 2001. Geochemistry of Triassic Radiolarian Cherts in North-Western Croatia. Geologica Carpathica, 52(6): 327-342 http://www.researchgate.net/publication/271136905_Geochemistry_of_triassic_radiolarian_cherts_in_North-Western_Croatia/download |
He, F. X., Liu, B. P., 1993. Recognition of Ancient Oceanic Island in Paleo-Tethys, Western Yunnan. Journal of China University of Geosciences, 4(1): 23-29 http://qikan.cqvip.com/Qikan/Article/Detail?id=4001523961 |
Hori, R. S., Cho, C. F., Umeda, H., 1993. Origin of Cyclicity in Triassic-Jurassic Radiolarian Bedded Cherts of the Mino Accretionary Complex from Japan. The Island Arc, 2(3): 170-180. doi: 10.1111/j.1440-1738.1993.tb00084.x |
Hori, R. S., Higuchi, Y., Fujiki, T., 2000. Chemical Compositions and Their Environmental Records of Bedded Cherts from Accretionary Complex. Memoirs of Geological Society of Japan, 55: 43-59 (in Japanese with English Abstract) http://www.researchgate.net/publication/292437376_Chemical_compositions_and_their_environmental_records_of_bedded_cherts_from_accretionary_complexes_in_Japan |
Huang, H., Du, Y. S., Huang, Z. Q., et al., 2013. Depositional Chemistry of Chert during Late Paleozoic from Western Guangxi and Its Implication for the Tectonic Evolution of the Youjiang Basin. Science China: Earth Sciences, 56(3): 479-493. doi: 10.1007/s11430-012-4496-y |
Ikeda, M., Tada, R., Sakuma, H., 2010. Astronomical Cycle Origin of Bedded Chert: A Middle Triassic Bedded Chert Sequence, Inuyama, Japan. Earth and Planetary Science Letters, 297(3/4): 369-378. doi: 10.1016/j.epsl.2010.06.027 |
Ishiga, H., Douzen, K., Imoto, N., 1993. Depositional Cycles in Permian and Triassic Bedded Cherts from Tamba Belt, Southwest Japan. Memoirs of Faculty of Science, Shimane University, 27: 45-54 http://ci.nii.ac.jp/naid/110000463502 |
Jin, X. C., Wang, Y. Z., Xie, G. L., 2003. Devonian to Triassic Successions of the Changning-Menglian Belt, Western Yunnan, China. Acta Geologica Sinica--English Edition, 77(4): 440-456. doi: 10.1111/j.1755-6724.2003.tb00125.x |
Kamata, Y., Ueno, K., Hara, H., et al., 2009. Classification of the Sibumasu and Paleo-Tethys Tectonic Division in Thailand Using Chert Lithofacies. Island Arc, 18(1): 21-31. doi: 10.1111/j.1440-1738.2008.00652.x |
Kawabe, I., Toriumi, T., Ohta, A., et al., 1998. Monoisotopic REE Abundances in Seawater and the Origin of Seawater Tetrad Effect. Geochemical Journal, 32(4): 213-229. doi: 10.2343/geochemj.32.213 |
Kuwahara, K., Yao, A., An, T. X., 1997. Paleozoic and Mesozoic Complexes in the Yunnan Area, China (Part 1): Preliminary Report of Middle-Late Permian Radiolarian Assemblages. Journal of Geosciences, Osaka City University, 40: 37-49 http://ci.nii.ac.jp/naid/110000003562/en |
Liu, B. P., Feng, Q. L., Fang, N. Q., et al., 1993. Tectonic Evolution of Palaeo-Tethys Poly-Island-Ocean in Changning- Menglian and Lancangjiang Belts, Southwestern Yunnan, China. Earth Science-Journal of China University of Geosciences, 18(5): 529-539 (in Chinese with English Abstract) http://www.researchgate.net/publication/284490222_Tectonic_evolution_of_Palaeo-Tethys_poly-island_ocean_in_Changning-Menglian_and_Lancangjiang_belts_southwestern_Yunnan_China |
Metcalfe, I., 2006. Palaeozoic and Mesozoic Tectonic Evolution and Palaeogeography of East Asian Crustal Fragments: The Korean Peninsula in Context. Gondwana Research, 9(1/2): 24-46. doi: 10.1016/j.gr.2005.04.002 |
Metcalfe, I., 2009. Late Palaeozoic and Mesozoic Tectonic and Palaeogeographical Evolution of SE Asia. Geological Society, London, Special Publications, 315(1): 7-23. doi: 10.1144/sp315.2 |
Murray, R. W., 1994. Chemical Criteria to Identify the Depositional Environment of Chert: General Principles and Applications. Sedimentary Geology, 90(3/4): 213-232. doi: 10.1016/0037-0738(94)90039-6 |
Murray, R. W., Brink, M. R. B. T., Jones, D. L., et al., 1990. Rare Earth Elements as Indicators of Different Marine Depositional Environments in Chert and Shale. Geology, 18(3): 268-271. doi:10.1130/0091-7613(1990)018<0268:reeaio>2.3.co;2 |
Nakazawa, T., Ueno, K., Wang, X. D., 2005. Carboniferous- Permian Mid-Oceanic Carbonates of the Paleo-Tethys in the Changning-Menglian Belt, West Yunnan, Southwest China. The Journal of the Geological Society of Japan, 111(1): I-II. doi: 10.5575/geosoc.111.1.i_ii |
Nakazawa, T., Ueno, K., Wang, X. D., 2009. Sedimentary Facies of Carboniferous-Permian Mid-Oceanic Carbonates in the Changning-Menglian Belt, West Yunnan, Southwest China: Origin and Depositional Process. Island Arc, 18(1): 94-107. doi: 10.1111/j.1440-1738.2008.00650.x |
Qian, X., Feng, Q. L., Yang, W. Q., et al., 2015. Arc-Like Volcanic Rocks in NW Laos: Geochronological and Geochemical Constraints and Their Tectonic Implications. Journal of Asian Earth Sciences, 98: 342-357. doi: 10.1016/j.jseaes.2014.11.035 |
Rangin, C., Steinberg, M., Bonnot-Courtois, C., 1981. Geochemistry of the Mesozoic Bedded Cherts of Central Baja California (Vizcaino-Cedros-San Benito): Implications for Paleogeographic Reconstruction of an Old Oceanic Basin. Earth and Planetary Science Letters, 54(2): 313-322. doi: 10.1016/0012-821x(81)90014-5 |
Sone, M., Metcalfe, I., 2008. Parallel Tethyan Sutures in Mainland Southeast Asia: New Insights for Palaeo-Tethys Closure and Implications for the Indosinian Orogeny. Comptes Rendus Geoscience, 340(2/3): 166-179. doi: 10.1016/j.crte.2007.09.008 |
Sugisaki, R., Yamamoto, K., Adachi, M., 1982. Triassic Bedded Cherts in Central Japan are not Pelagic. Nature, 298(5875): 644-647. doi: 10.1038/298644a0 |
Ueno, K., Tsutsumi, S., 2009. Lopingian (Late Permian) Foraminiferal Faunal Succession of a Paleo-Tethyan Mid-Oceanic Carbonate Buildup: Shifodong Formation in the Changning-Menglian Belt, West Yunnan, Southwest China. Island Arc, 18(1): 69-93. doi: 10.1111/j.1440-1738.2008.00648.x |
Ueno, K., Wang, Y. J., Wang, X. D., 2003. Fusulinoidean Faunal Succession of a Paleo-Tethyan Oceanic Seamount in the Changning-Menglian Belt, West Yunnan, Southwest China: An Overview. The Island Arc, 12(2): 145-161. doi: 10.1046/j.1440-1738.2003.00387.x |
Wu, H. R., Boulter, C. A., Ke, B. J., et al., 1995. The The Changning-Menglian Suture Zone; A Segment of the Major Cathaysian-Gondwana Divide in Southeast Asia. Tectonophysics, 242(3/4): 267-280. doi: 10.1016/0040-1951(94)00210-z |
Wu, H. R., Li, H. S., 1989. Carboniferous and Permian Radiolaria in the Menglian Area, Western Yunnan. Acta Micropalaeontologica Sinica, 6(4): 337-343 http://en.cnki.com.cn/Article_en/CJFDTOTAL-WSGT198904002.htm |
Wu, H. R., Zhang, Q., 1987. Carboniferous and Permian Radiolarites of Western Yunnan--Relict of the Paleo-Tethys. Académie des Sciences Comptes Rendus Paris, 3: 90-96 |
Yamamoto, K., 1987. Geochemical Characteristics and Depositional Environments of Cherts and Associated Rocks in the Franciscan and Shimanto Terranes. Sedimentary Geology, 52(1/2): 65-108. doi: 10.1016/0037-0738(87)90017-0 |
Yao, A., Kuwahara, K., 1999. Paleozoic and Mesozoic Radiolarians from the Changning-Menglian Terrane, Western Yunnan, China. In: Yao, A., Ezaki, Y., Hao, W. C., et al., eds., Biotic and Geological Development of the Paleo- Tethys in China. Peking University Press, Beijing. 17-42 |
Zhang, Z. F., Feng, Q. L., Fang, N. Q., et al., 2001. Geochemical Characteristics and Sedimentary Environment of Triassic Siliceous Rocks from Muyinhe Formation in Changning-Menglian Belt, Southwest Yunnan. Earth Science-Journal of China University of Geosciences, 26(5): 449-455 (in Chinese with English Abstract) http://www.researchgate.net/publication/291106938_Geochemical_characteristics_and_sedimentary_environment_of_Triassic_siliceous_rocks_from_Muyinhe_formation_in_Changning-Menglian_Belt_Southwest_Yunnan |
Zhou, L., Zhang. H. Q., Wang, J., et al., 2008. Assessment on Redox Conditions and Organic Burial of Siliciferous Sediments at the Latest Permian Dalong Formation in Shangsi, Sichuan, South China. Journal of China University of Geosciences, 19(5): 496-506. doi: 10.1016/s1002-0705(08)60055-2 |
1. | Zhengqin Gan, Qinglai Feng, Yuehua Wei, et al. Detrital Zircon of Devonian Sandstones in Changning-Menglian Suture Zone, Yunnan, SW China: Implications for the Early Evolution of Paleo-Tethys. Journal of Earth Science, 2024, 35(3): 786. doi:10.1007/s12583-021-1470-7 | |
2. | Jing Chen, Dapeng Li, Benyan Xu, et al. Triassic magmatism along both sides of the Simao terrane, SE Tibetan Plateau: Implications for the evolution of the Main Palaeo‐Tethyan Ocean and the Ailaoshan Ocean. Geological Journal, 2023, 58(7): 2841. doi:10.1002/gj.4745 | |
3. | Qinglai Feng, Guichun Liu, Zhengqin Gan, et al. Tethyan evolution from early Paleozoic to early Mesozoic in southwest Yunnan. Science China Earth Sciences, 2023, 66(12): 2728. doi:10.1007/s11430-022-1122-7 | |
4. | Yongqi Yu, Xin Qian, Azman A. Ghani, et al. Triassic felsic magmatism in SE Peninsular Malaysia: Petrogenesis and geodynamic implications for the Eastern Paleotethyan tectonic transition. Lithos, 2023, 462-463: 107399. doi:10.1016/j.lithos.2023.107399 | |
5. | 庆来 冯, 桂春 刘, 正勤 甘, et al. 滇西南原<bold>-</bold>古特提斯演化研究. SCIENTIA SINICA Terrae, 2023, 53(12): 2767. doi:10.1360/SSTe-2022-0349 | |
6. | Yongqi Yu, Xin Qian, Khairul Azlan Mustapha, et al. Late Paleozoic–Early Mesozoic granitic rocks in Eastern Peninsular Malaysia: New insights for the subduction and evolution of the Paleo-Tethys. Journal of Asian Earth Sciences, 2022, 239: 105427. doi:10.1016/j.jseaes.2022.105427 | |
7. | Xin Qian, Shen Ma, Xianghong Lu, et al. Late Permian ultrapotassic rhyolites in SE Thailand: evidence for a Palaeotethyan continental rift basin. Journal of the Geological Society, 2022, 179(2) doi:10.1144/jgs2021-079 | |
8. | Xiang‐ting Zeng, Feng Cong, Hua‐Ping Zhu, et al. Petrogenesis of the early Jurassic Ora batholith in south‐western Cambodia. Geological Journal, 2022, 57(8): 3230. doi:10.1002/gj.4474 | |
9. | Katsuo Sashida, Tsuyoshi Ito, Panus Hong, et al. Occurrence of Early Carboniferous Radiolarians and Middle Triassic Conodonts from Ban Rai, Southwestern Uthai Thani, Central Thailand and Its Geological Significance. Paleontological Research, 2022, 26(4) doi:10.2517/PR200056 | |
10. | Katsuo Sashida, Tsuyoshi Ito, Sirot Salyapongse, et al. Permian and Triassic radiolarians from chert breccia in the Nong Prue area, western Thailand: its origin and depositional setting in the Paleotethys. Palaeoworld, 2022, 31(1): 103. doi:10.1016/j.palwor.2021.01.006 | |
11. | Yuejun Wang, Xin Qian, Yuzhi Zhang, et al. Southern extension of the Paleotethyan zone in SE Asia: Evidence from the Permo-Triassic granitoids in Malaysia and West Indonesia. Lithos, 2021, 398-399: 106336. doi:10.1016/j.lithos.2021.106336 | |
12. | Ian Metcalfe. Multiple Tethyan ocean basins and orogenic belts in Asia. Gondwana Research, 2021, 100: 87. doi:10.1016/j.gr.2021.01.012 | |
13. | Xin Qian, Yuejun Wang, Yuzhi Zhang, et al. Constraints of Late Triassic mafic-felsic volcanic rocks in northwestern Laos on the Eastern Paleotethyan post-collisional setting. Journal of Asian Earth Sciences, 2021, 218: 104889. doi:10.1016/j.jseaes.2021.104889 | |
14. | Jianbin Zheng, Xiaochi Jin, Hao Huang, et al. Sedimentology and detrital zircon geochronology of the Nanpihe Formation in the central zone of the Changning–Menglian Belt in western Yunnan, China: revealing an allochthon emplaced during the closure of Paleo-Tethys. International Journal of Earth Sciences, 2021, 110(8): 2685. doi:10.1007/s00531-021-02074-0 | |
15. | Xin Qian, Yuejun Wang, Yuzhi Zhang, et al. Late Triassic post-collisional granites related to Paleotethyan evolution in northwestern Lao PDR: Geochronological and geochemical evidence. Gondwana Research, 2020, 84: 163. doi:10.1016/j.gr.2020.03.002 | |
16. | Yuejun Wang, Tuoxin Yang, Yuzhi Zhang, et al. Late Paleozoic back-arc basin in the Indochina block: Constraints from the mafic rocks in the Nan and Luang Prabang tectonic zones, Southeast Asia. Journal of Asian Earth Sciences, 2020, 195: 104333. doi:10.1016/j.jseaes.2020.104333 | |
17. | ZHAO LinTao, LI SanZhong, Lü Yong, et al. Detrital zircon age spectra of the Yungou Formation and its constrain to the related block affinity, western Yunnan. Acta Petrologica Sinica, 2019, 35(9): 2911. doi:10.18654/1000-0569/2019.09.19 | |
18. | Tsuyoshi Ito, Koji U. Takahashi, Atsushi Matsuoka, et al. The Guadalupian (Permian) Gufeng Formation on the North Margin of the South China Block: A Review of the Lithostratigraphy, Radiolarian Biostratigraphy, and Geochemical Characteristics. Paleontological Research, 2019, 23(4): 261. doi:10.2517/2018PR025 | |
19. | Tsuyoshi Ito, Lei Zhang, Qinglai Feng, et al. New Radiolarian Genus Ganjiangmoyea gen. nov. from the Lopingian (Upper Permian) in Guangxi, South China. Paleontological Research, 2019, 23(4): 281. doi:10.2517/2018PR026 | |
20. | Yuejun Wang, Xin Qian, Peter A. Cawood, et al. Closure of the East Paleotethyan Ocean and amalgamation of the Eastern Cimmerian and Southeast Asia continental fragments. Earth-Science Reviews, 2018, 186: 195. doi:10.1016/j.earscirev.2017.09.013 | |
21. | Xin Qian, Yuejun Wang, Boontarika Srithai, et al. Geochronological and geochemical constraints on the intermediate-acid volcanic rocks along the Chiang Khong–Lampang–Tak igneous zone in NW Thailand and their tectonic implications. Gondwana Research, 2017, 45: 87. doi:10.1016/j.gr.2016.12.011 | |
22. | Xin Qian, Qinglai Feng, Yuejun Wang, et al. Late Triassic post-collisional granites related to Paleotethyan evolution in SE Thailand: Geochronological and geochemical constraints. Lithos, 2017, 286-287: 440. doi:10.1016/j.lithos.2017.06.026 | |
23. | Hathaithip Thassanapak, Mongkol Udchachon, Qinglai Feng, et al. Middle Triassic radiolarians from cherts/siliceous shales in an extensional basin in the Sukhothai fold belt, Northern Thailand. Journal of Earth Science, 2017, 28(1): 9. doi:10.1007/s12583-017-0740-x | |
24. | Yanwang Wu, Cai Li, Mengjing Xu, et al. Zircon U-Pb age, geochemical data: Constraints on the origin and tectonic evolution of the metamafic rocks from Longmuco-Shuanghu-Lancang suture zone, Tibet. Journal of Earth Science, 2017, 28(3): 422. doi:10.1007/s12583-017-0730-z | |
25. | Tsuyoshi ITO, Qinglai FENG, Atsushi MATSUOKA. Uneven Distribution of Pseudotormentus De Wever et Caridroit (Radiolaria, Protozoa): Provincialism of a Permian Planktonic Microorganism. Acta Geologica Sinica - English Edition, 2016, 90(5): 1598. doi:10.1111/1755-6724.12804 | |
26. | Xin Qian, Yuejun Wang, Qinglai Feng, et al. Petrogenesis and tectonic implication of the Late Triassic post-collisional volcanic rocks in Chiang Khong, NW Thailand. Lithos, 2016, 248-251: 418. doi:10.1016/j.lithos.2016.01.024 | |
27. | Yuejun Wang, Huiying He, Peter A. Cawood, et al. Geochronological, elemental and Sr-Nd-Hf-O isotopic constraints on the petrogenesis of the Triassic post-collisional granitic rocks in NW Thailand and its Paleotethyan implications. Lithos, 2016, 266-267: 264. doi:10.1016/j.lithos.2016.09.012 |
Sample No. | MYH-60 | MYH-63 | MYH-64 | MYH-65 | MYH-67 | MYH-68 | MYH-69 | MYH-70 | MYH-71 | MYH-72 | MYH-73 | MYH-74 | NASC |
SiO2 (wt.%) | 87.24 | 84.35 | 88.38 | 81.65 | 87.03 | 83.59 | 84.41 | 83.97 | 87.48 | 83.11 | 82.84 | 85.77 | |
Al2O3 | 5.93 | 7.64 | 5.15 | 9.88 | 6.31 | 7.64 | 8.02 | 6.93 | 5.88 | 8.02 | 8.89 | 6.79 | |
Fe2O3 | 1.72 | 1.74 | 1.46 | 1.05 | 1.66 | 2.88 | 2.11 | 3.41 | 1.90 | 2.76 | 2.22 | 2.09 | |
K2O | 1.17 | 1.09 | 0.94 | 0.61 | 1.06 | 1.21 | 1.20 | 1.33 | 1.19 | 1.43 | 1.78 | 1.43 | |
Na2O | 0.87 | 2.05 | 0.93 | 4.72 | 1.19 | 1.33 | 1.16 | 0.76 | 0.72 | 1.12 | 0.87 | 0.63 | |
MgO | 0.65 | 0.59 | 0.52 | 0.36 | 0.59 | 0.83 | 0.72 | 0.71 | 0.59 | 0.90 | 0.80 | 0.79 | |
P2O5 | 0.03 | 0.04 | 0.03 | 0.08 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.03 | |
CaO | 0.05 | 0.10 | 0.05 | 0.10 | 0.05 | 0.05 | 0.05 | 0.05 | 0.06 | 0.05 | 0.05 | 0.05 | |
TiO2 | 0.20 | 0.35 | 0.18 | 0.33 | 0.23 | 0.27 | 0.27 | 0.29 | 0.21 | 0.30 | 0.33 | 0.28 | |
MnO | 0.05 | 0.05 | 0.03 | 0.03 | 0.06 | 0.07 | 0.06 | 0.06 | 0.06 | 0.07 | 0.06 | 0.05 | |
lost | 1.96 | 1.86 | 2.20 | 1.07 | 1.65 | 1.96 | 1.83 | 2.31 | 1.73 | 2.07 | 1.99 | 1.94 | |
Total | 99.86 | 99.86 | 99.86 | 99.87 | 99.86 | 99.87 | 99.87 | 99.86 | 99.86 | 99.86 | 99.86 | 99.86 | |
La (ppm) | 15.66 | 21.03 | 10.90 | 24.99 | 16.22 | 20.90 | 22.46 | 17.32 | 14.89 | 31.31 | 25.91 | 17.00 | 34.70 |
Ce | 36.41 | 49.47 | 23.57 | 54.04 | 35.78 | 46.18 | 53.06 | 37.32 | 31.91 | 56.13 | 60.36 | 36.63 | 71.30 |
Pr | 3.84 | 5.15 | 2.55 | 5.62 | 3.67 | 4.66 | 5.26 | 3.75 | 3.26 | 6.94 | 5.85 | 3.77 | 7.90 |
Nd | 15.11 | 20.37 | 10.20 | 21.60 | 13.72 | 17.66 | 20.19 | 14.16 | 12.24 | 27.00 | 22.22 | 14.24 | 33.60 |
Sm | 3.13 | 4.22 | 2.29 | 4.34 | 2.73 | 3.30 | 3.87 | 2.64 | 2.38 | 5.27 | 4.27 | 2.79 | 6.38 |
Eu | 0.55 | 0.79 | 0.44 | 0.82 | 0.50 | 0.61 | 0.65 | 0.50 | 0.47 | 1.02 | 0.78 | 0.57 | 1.37 |
Gd | 2.61 | 3.72 | 2.05 | 3.99 | 2.29 | 2.65 | 3.04 | 2.22 | 1.98 | 4.69 | 3.73 | 2.33 | 5.93 |
Tb | 0.38 | 0.66 | 0.33 | 0.69 | 0.37 | 0.39 | 0.45 | 0.33 | 0.31 | 0.73 | 0.56 | 0.34 | 0.97 |
Dy | 1.91 | 3.89 | 1.82 | 4.18 | 2.04 | 2.19 | 2.41 | 1.80 | 1.59 | 3.93 | 3.05 | 1.75 | 5.88 |
Ho | 0.40 | 0.84 | 0.36 | 0.87 | 0.43 | 0.46 | 0.51 | 0.36 | 0.35 | 0.80 | 0.66 | 0.36 | 1.27 |
Er | 1.13 | 2.55 | 1.12 | 2.69 | 1.35 | 1.41 | 1.60 | 1.15 | 1.08 | 2.42 | 2.07 | 1.09 | 3.49 |
Tm | 0.18 | 0.42 | 0.16 | 0.38 | 0.19 | 0.21 | 0.26 | 0.19 | 0.16 | 0.35 | 0.32 | 0.17 | 0.50 |
Yb | 1.15 | 2.52 | 1.08 | 2.54 | 1.35 | 1.47 | 1.67 | 1.20 | 1.10 | 2.29 | 2.11 | 1.15 | 3.26 |
Lu | 0.18 | 0.39 | 0.18 | 0.38 | 0.21 | 0.24 | 0.26 | 0.20 | 0.18 | 0.36 | 0.33 | 0.19 | 0.52 |
∑REE | 82.65 | 116.02 | 57.04 | 127.13 | 80.86 | 102.34 | 115.68 | 83.13 | 71.88 | 143.23 | 132.22 | 82.37 | |
Y | 9.25 | 21.57 | 9.62 | 23.70 | 12.29 | 12.12 | 13.63 | 9.64 | 8.96 | 27.64 | 17.71 | 9.23 | |
Sc | 5.97 | 8.81 | 5.16 | 5.82 | 6.62 | 7.17 | 8.11 | 7.47 | 6.18 | 8.37 | 9.65 | 6.70 | |
Be | 1.00 | 0.91 | 0.72 | 0.73 | 0.80 | 0.87 | 0.99 | 1.04 | 0.97 | 1.15 | 1.20 | 1.05 | |
Co | 84.76 | 86.62 | 79.57 | 139.10 | 124.60 | 40.06 | 89.37 | 58.00 | 93.19 | 53.41 | 57.56 | 66.93 | |
Cu | 36.12 | 44.70 | 37.20 | 18.63 | 33.26 | 39.31 | 38.43 | 54.88 | 48.50 | 60.43 | 58.94 | 37.44 | |
Zn | 33.39 | 39.21 | 25.69 | 25.40 | 28.14 | 37.30 | 35.22 | 33.83 | 31.46 | 47.71 | 42.97 | 32.61 | |
Ga (ppm) | 8.36 | 7.98 | 6.12 | 6.38 | 8.30 | 10.46 | 10.06 | 11.29 | 8.05 | 10.51 | 11.70 | 10.20 | |
Rb | 54.40 | 46.39 | 36.85 | 28.08 | 46.29 | 53.38 | 57.48 | 61.62 | 52.98 | 64.70 | 74.48 | 64.87 | |
Zr | 53.70 | 121.80 | 52.70 | 143.90 | 69.90 | 71.10 | 73.90 | 63.50 | 61.30 | 74.90 | 93.60 | 59.60 | |
Nb | 3.77 | 6.43 | 3.71 | 8.81 | 4.93 | 4.94 | 4.25 | 4.90 | 4.71 | 5.28 | 5.87 | 4.76 | |
Cs | 2.24 | 1.86 | 1.55 | 0.99 | 1.71 | 2.09 | 2.26 | 2.77 | 2.00 | 2.55 | 3.05 | 2.72 | |
Hf | 1.08 | 2.71 | 0.98 | 3.33 | 1.40 | 1.53 | 1.44 | 1.34 | 1.27 | 1.71 | 1.99 | 1.32 | |
Ta | 0.73 | 0.87 | 0.68 | 1.47 | 0.92 | 0.56 | 0.77 | 0.73 | 0.77 | 0.56 | 0.76 | 0.71 | |
Pb | 22.12 | 12.45 | 9.23 | 22.69 | 18.47 | 10.98 | 13.77 | 5.45 | 26.89 | 18.12 | 9.65 | 3.56 | |
Th | 3.77 | 5.52 | 2.58 | 13.14 | 4.00 | 4.63 | 4.60 | 4.61 | 3.19 | 4.88 | 5.98 | 4.76 | |
U | 1.78 | 2.23 | 3.19 | 4.06 | 1.76 | 1.86 | 1.69 | 1.37 | 1.34 | 2.16 | 2.16 | 1.80 | |
Ba | 193.88 | 205.03 | 136.51 | 126.27 | 172.33 | 199.56 | 193.75 | 207.89 | 203.07 | 236.06 | 289.91 | 229.54 | |
Cr | 28.05 | 25.85 | 31.33 | 9.71 | 22.72 | 27.44 | 20.71 | 32.84 | 25.78 | 32.95 | 25.29 | 33.13 | |
Ni | 65.95 | 80.80 | 73.55 | 95.38 | 73.59 | 42.57 | 54.63 | 42.63 | 59.82 | 45.49 | 41.60 | 48.29 | |
Sr | 20.84 | 32.97 | 18.79 | 59.84 | 22.04 | 26.43 | 24.18 | 25.00 | 19.91 | 23.28 | 22.31 | 18.89 | |
V | 48.34 | 57.45 | 52.70 | 32.91 | 51.67 | 55.07 | 41.97 | 48.75 | 56.69 | 56.62 | 51.72 | 46.49 | |
Sn | 2.02 | 2.25 | 1.55 | 1.56 | 1.71 | 1.71 | 1.63 | 1.65 | 1.68 | 1.90 | 2.12 | 1.98 | |
Al/(Al+Fe+Mn) | 0.72 | 0.76 | 0.72 | 0.87 | 0.74 | 0.66 | 0.74 | 0.60 | 0.69 | 0.68 | 0.75 | 0.70 | |
Si/(Si+Al+Fe) | 0.90 | 0.88 | 0.92 | 0.87 | 0.90 | 0.87 | 0.87 | 0.87 | 0.90 | 0.86 | 0.86 | 0.89 | |
Ce/Ce* | 1.09 | 1.10 | 1.04 | 1.06 | 1.08 | 1.09 | 1.13 | 1.08 | 1.06 | 0.88 | 1.14 | 1.06 | |
Eu/Eu* | 0.85 | 0.89 | 0.91 | 0.88 | 0.88 | 0.92 | 0.84 | 0.91 | 0.96 | 0.91 | 0.87 | 0.99 | |
(La/Ce)N | 0.88 | 0.87 | 0.95 | 0.95 | 0.93 | 0.93 | 0.87 | 0.95 | 0.96 | 1.15 | 0.88 | 0.95 | |
(La/Yb)N | 1.28 | 0.78 | 0.95 | 0.93 | 1.13 | 1.34 | 1.26 | 1.36 | 1.27 | 1.28 | 1.15 | 1.39 |
Reference | This study | Sugisaki et al. (1982) | Hori et al. (2000) | |
Age | Triassic | Triassic | Triassic-Jurassic | |
Locality | Muyinhe | Kamiaso | Inuyama | |
Lithology | Siliceous rock | Chert | Gray-black chert | Red chert |
Number | 12 | 69 | 10 | 37 |
SiO2 | 84.99±2.14 | 96.22±2.23 | 97.55±1.56 | 95.52±1.10 |
Al2O3 | 7.26±1.36 | 1.74±0.86 | 1.21±0.30 | 2.30±0.57 |
Fe2O3 | 2.08±0.66 | 0.77±0.38 | 0.89±1.42 | 0.83±0.24 |
K2O | 1.20±0.29 | 0.40±0.23 | 0.27±0.09 | 0.62±0.19 |
Na2O | 1.36±1.12 | 0.082±0.023 | 0.18±0.02 | 0.07±0.03 |
MgO | 0.67±0.15 | 0.44±0.30 | 0.21±0.06 | 0.41±0.12 |
P2O5 | 0.04±0.01 | 0.035±0.015 | 0.045±0.024 | 0.029±0.019 |
CaO | 0.06±0.02 | 0.35±0.02 | 0.09±0.04 | 0.11±0.04 |
TiO2 | 0.27±0.05 | 0.077±0.04 | 0.04±0.02 | 0.09±0.03 |
MnO | 0.05±0.01 | 0.018±0.012 | 0.045±0.092 | 0.026±0.009 |
Unit: wt.% |
Sample No. | MYH-60 | MYH-63 | MYH-64 | MYH-65 | MYH-67 | MYH-68 | MYH-69 | MYH-70 | MYH-71 | MYH-72 | MYH-73 | MYH-74 | NASC |
SiO2 (wt.%) | 87.24 | 84.35 | 88.38 | 81.65 | 87.03 | 83.59 | 84.41 | 83.97 | 87.48 | 83.11 | 82.84 | 85.77 | |
Al2O3 | 5.93 | 7.64 | 5.15 | 9.88 | 6.31 | 7.64 | 8.02 | 6.93 | 5.88 | 8.02 | 8.89 | 6.79 | |
Fe2O3 | 1.72 | 1.74 | 1.46 | 1.05 | 1.66 | 2.88 | 2.11 | 3.41 | 1.90 | 2.76 | 2.22 | 2.09 | |
K2O | 1.17 | 1.09 | 0.94 | 0.61 | 1.06 | 1.21 | 1.20 | 1.33 | 1.19 | 1.43 | 1.78 | 1.43 | |
Na2O | 0.87 | 2.05 | 0.93 | 4.72 | 1.19 | 1.33 | 1.16 | 0.76 | 0.72 | 1.12 | 0.87 | 0.63 | |
MgO | 0.65 | 0.59 | 0.52 | 0.36 | 0.59 | 0.83 | 0.72 | 0.71 | 0.59 | 0.90 | 0.80 | 0.79 | |
P2O5 | 0.03 | 0.04 | 0.03 | 0.08 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.03 | |
CaO | 0.05 | 0.10 | 0.05 | 0.10 | 0.05 | 0.05 | 0.05 | 0.05 | 0.06 | 0.05 | 0.05 | 0.05 | |
TiO2 | 0.20 | 0.35 | 0.18 | 0.33 | 0.23 | 0.27 | 0.27 | 0.29 | 0.21 | 0.30 | 0.33 | 0.28 | |
MnO | 0.05 | 0.05 | 0.03 | 0.03 | 0.06 | 0.07 | 0.06 | 0.06 | 0.06 | 0.07 | 0.06 | 0.05 | |
lost | 1.96 | 1.86 | 2.20 | 1.07 | 1.65 | 1.96 | 1.83 | 2.31 | 1.73 | 2.07 | 1.99 | 1.94 | |
Total | 99.86 | 99.86 | 99.86 | 99.87 | 99.86 | 99.87 | 99.87 | 99.86 | 99.86 | 99.86 | 99.86 | 99.86 | |
La (ppm) | 15.66 | 21.03 | 10.90 | 24.99 | 16.22 | 20.90 | 22.46 | 17.32 | 14.89 | 31.31 | 25.91 | 17.00 | 34.70 |
Ce | 36.41 | 49.47 | 23.57 | 54.04 | 35.78 | 46.18 | 53.06 | 37.32 | 31.91 | 56.13 | 60.36 | 36.63 | 71.30 |
Pr | 3.84 | 5.15 | 2.55 | 5.62 | 3.67 | 4.66 | 5.26 | 3.75 | 3.26 | 6.94 | 5.85 | 3.77 | 7.90 |
Nd | 15.11 | 20.37 | 10.20 | 21.60 | 13.72 | 17.66 | 20.19 | 14.16 | 12.24 | 27.00 | 22.22 | 14.24 | 33.60 |
Sm | 3.13 | 4.22 | 2.29 | 4.34 | 2.73 | 3.30 | 3.87 | 2.64 | 2.38 | 5.27 | 4.27 | 2.79 | 6.38 |
Eu | 0.55 | 0.79 | 0.44 | 0.82 | 0.50 | 0.61 | 0.65 | 0.50 | 0.47 | 1.02 | 0.78 | 0.57 | 1.37 |
Gd | 2.61 | 3.72 | 2.05 | 3.99 | 2.29 | 2.65 | 3.04 | 2.22 | 1.98 | 4.69 | 3.73 | 2.33 | 5.93 |
Tb | 0.38 | 0.66 | 0.33 | 0.69 | 0.37 | 0.39 | 0.45 | 0.33 | 0.31 | 0.73 | 0.56 | 0.34 | 0.97 |
Dy | 1.91 | 3.89 | 1.82 | 4.18 | 2.04 | 2.19 | 2.41 | 1.80 | 1.59 | 3.93 | 3.05 | 1.75 | 5.88 |
Ho | 0.40 | 0.84 | 0.36 | 0.87 | 0.43 | 0.46 | 0.51 | 0.36 | 0.35 | 0.80 | 0.66 | 0.36 | 1.27 |
Er | 1.13 | 2.55 | 1.12 | 2.69 | 1.35 | 1.41 | 1.60 | 1.15 | 1.08 | 2.42 | 2.07 | 1.09 | 3.49 |
Tm | 0.18 | 0.42 | 0.16 | 0.38 | 0.19 | 0.21 | 0.26 | 0.19 | 0.16 | 0.35 | 0.32 | 0.17 | 0.50 |
Yb | 1.15 | 2.52 | 1.08 | 2.54 | 1.35 | 1.47 | 1.67 | 1.20 | 1.10 | 2.29 | 2.11 | 1.15 | 3.26 |
Lu | 0.18 | 0.39 | 0.18 | 0.38 | 0.21 | 0.24 | 0.26 | 0.20 | 0.18 | 0.36 | 0.33 | 0.19 | 0.52 |
∑REE | 82.65 | 116.02 | 57.04 | 127.13 | 80.86 | 102.34 | 115.68 | 83.13 | 71.88 | 143.23 | 132.22 | 82.37 | |
Y | 9.25 | 21.57 | 9.62 | 23.70 | 12.29 | 12.12 | 13.63 | 9.64 | 8.96 | 27.64 | 17.71 | 9.23 | |
Sc | 5.97 | 8.81 | 5.16 | 5.82 | 6.62 | 7.17 | 8.11 | 7.47 | 6.18 | 8.37 | 9.65 | 6.70 | |
Be | 1.00 | 0.91 | 0.72 | 0.73 | 0.80 | 0.87 | 0.99 | 1.04 | 0.97 | 1.15 | 1.20 | 1.05 | |
Co | 84.76 | 86.62 | 79.57 | 139.10 | 124.60 | 40.06 | 89.37 | 58.00 | 93.19 | 53.41 | 57.56 | 66.93 | |
Cu | 36.12 | 44.70 | 37.20 | 18.63 | 33.26 | 39.31 | 38.43 | 54.88 | 48.50 | 60.43 | 58.94 | 37.44 | |
Zn | 33.39 | 39.21 | 25.69 | 25.40 | 28.14 | 37.30 | 35.22 | 33.83 | 31.46 | 47.71 | 42.97 | 32.61 | |
Ga (ppm) | 8.36 | 7.98 | 6.12 | 6.38 | 8.30 | 10.46 | 10.06 | 11.29 | 8.05 | 10.51 | 11.70 | 10.20 | |
Rb | 54.40 | 46.39 | 36.85 | 28.08 | 46.29 | 53.38 | 57.48 | 61.62 | 52.98 | 64.70 | 74.48 | 64.87 | |
Zr | 53.70 | 121.80 | 52.70 | 143.90 | 69.90 | 71.10 | 73.90 | 63.50 | 61.30 | 74.90 | 93.60 | 59.60 | |
Nb | 3.77 | 6.43 | 3.71 | 8.81 | 4.93 | 4.94 | 4.25 | 4.90 | 4.71 | 5.28 | 5.87 | 4.76 | |
Cs | 2.24 | 1.86 | 1.55 | 0.99 | 1.71 | 2.09 | 2.26 | 2.77 | 2.00 | 2.55 | 3.05 | 2.72 | |
Hf | 1.08 | 2.71 | 0.98 | 3.33 | 1.40 | 1.53 | 1.44 | 1.34 | 1.27 | 1.71 | 1.99 | 1.32 | |
Ta | 0.73 | 0.87 | 0.68 | 1.47 | 0.92 | 0.56 | 0.77 | 0.73 | 0.77 | 0.56 | 0.76 | 0.71 | |
Pb | 22.12 | 12.45 | 9.23 | 22.69 | 18.47 | 10.98 | 13.77 | 5.45 | 26.89 | 18.12 | 9.65 | 3.56 | |
Th | 3.77 | 5.52 | 2.58 | 13.14 | 4.00 | 4.63 | 4.60 | 4.61 | 3.19 | 4.88 | 5.98 | 4.76 | |
U | 1.78 | 2.23 | 3.19 | 4.06 | 1.76 | 1.86 | 1.69 | 1.37 | 1.34 | 2.16 | 2.16 | 1.80 | |
Ba | 193.88 | 205.03 | 136.51 | 126.27 | 172.33 | 199.56 | 193.75 | 207.89 | 203.07 | 236.06 | 289.91 | 229.54 | |
Cr | 28.05 | 25.85 | 31.33 | 9.71 | 22.72 | 27.44 | 20.71 | 32.84 | 25.78 | 32.95 | 25.29 | 33.13 | |
Ni | 65.95 | 80.80 | 73.55 | 95.38 | 73.59 | 42.57 | 54.63 | 42.63 | 59.82 | 45.49 | 41.60 | 48.29 | |
Sr | 20.84 | 32.97 | 18.79 | 59.84 | 22.04 | 26.43 | 24.18 | 25.00 | 19.91 | 23.28 | 22.31 | 18.89 | |
V | 48.34 | 57.45 | 52.70 | 32.91 | 51.67 | 55.07 | 41.97 | 48.75 | 56.69 | 56.62 | 51.72 | 46.49 | |
Sn | 2.02 | 2.25 | 1.55 | 1.56 | 1.71 | 1.71 | 1.63 | 1.65 | 1.68 | 1.90 | 2.12 | 1.98 | |
Al/(Al+Fe+Mn) | 0.72 | 0.76 | 0.72 | 0.87 | 0.74 | 0.66 | 0.74 | 0.60 | 0.69 | 0.68 | 0.75 | 0.70 | |
Si/(Si+Al+Fe) | 0.90 | 0.88 | 0.92 | 0.87 | 0.90 | 0.87 | 0.87 | 0.87 | 0.90 | 0.86 | 0.86 | 0.89 | |
Ce/Ce* | 1.09 | 1.10 | 1.04 | 1.06 | 1.08 | 1.09 | 1.13 | 1.08 | 1.06 | 0.88 | 1.14 | 1.06 | |
Eu/Eu* | 0.85 | 0.89 | 0.91 | 0.88 | 0.88 | 0.92 | 0.84 | 0.91 | 0.96 | 0.91 | 0.87 | 0.99 | |
(La/Ce)N | 0.88 | 0.87 | 0.95 | 0.95 | 0.93 | 0.93 | 0.87 | 0.95 | 0.96 | 1.15 | 0.88 | 0.95 | |
(La/Yb)N | 1.28 | 0.78 | 0.95 | 0.93 | 1.13 | 1.34 | 1.26 | 1.36 | 1.27 | 1.28 | 1.15 | 1.39 |
Reference | This study | Sugisaki et al. (1982) | Hori et al. (2000) | |
Age | Triassic | Triassic | Triassic-Jurassic | |
Locality | Muyinhe | Kamiaso | Inuyama | |
Lithology | Siliceous rock | Chert | Gray-black chert | Red chert |
Number | 12 | 69 | 10 | 37 |
SiO2 | 84.99±2.14 | 96.22±2.23 | 97.55±1.56 | 95.52±1.10 |
Al2O3 | 7.26±1.36 | 1.74±0.86 | 1.21±0.30 | 2.30±0.57 |
Fe2O3 | 2.08±0.66 | 0.77±0.38 | 0.89±1.42 | 0.83±0.24 |
K2O | 1.20±0.29 | 0.40±0.23 | 0.27±0.09 | 0.62±0.19 |
Na2O | 1.36±1.12 | 0.082±0.023 | 0.18±0.02 | 0.07±0.03 |
MgO | 0.67±0.15 | 0.44±0.30 | 0.21±0.06 | 0.41±0.12 |
P2O5 | 0.04±0.01 | 0.035±0.015 | 0.045±0.024 | 0.029±0.019 |
CaO | 0.06±0.02 | 0.35±0.02 | 0.09±0.04 | 0.11±0.04 |
TiO2 | 0.27±0.05 | 0.077±0.04 | 0.04±0.02 | 0.09±0.03 |
MnO | 0.05±0.01 | 0.018±0.012 | 0.045±0.092 | 0.026±0.009 |
Unit: wt.% |