Ajaji, T., Weis, D., Giret, A., et al., 1998. Coeval Potassic and Sodic Calc-Alkaline Series in the Post-Collisional Hercynian Tanncherfi Intrusive Complex, Northeastern Morocco: Geochemical, Isotopic and Geochronological Evidence. Lithos, 45(1-4): 371-393. doi: 10.1016/s0024-4937(98)00040-1 |
Barbarin, B., Didier, J., 1992. Genesis and Evolution of Mafic Microgranular Enclaves through Various Types of Interaction between Coexisting Felsic and Mafic Magmas. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1/2): 145-153. doi: 10.1017/s0263593300007835 |
Beard, J. S., Lofgren, G. E., 1991. Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3, and 6.9 kb. Journal of Petrology, 32(2): 365-401. doi: 10.1093/petrology/32.2.365 |
Beard, J., Ragland, P., Rushmer, T., 2004. Hydration Crystallization Reactions between Anhydrous Minerals and Hydrous Melt to Yield Amphibole and Biotite in Igneous Rocks: Description and Implications. The Journal of Geology, 112(5): 617-621. doi: 10.1086/422670 |
Bellos, L. I., Castro, A., Díaz-Alvarado, J., et al., 2015. Multi- Pulse Cotectic Evolution and In-Situ Fractionation of Calc-Alkaline Tonalite-granodiorite Rocks, Sierra de Velasco Batholith, Famatinian Belt, Argentina. Gondwana Research, 27(1): 258-280. doi: 10.1016/j.gr.2013.09.019 |
Bergemann, C., Jung, S., Berndt, J., et al., 2014. Generation of Magnesian, High-K Alkali-Calcic Granites and Granodiorites from Amphibolitic Continental Crust in the Damara Orogen, Namibia. Lithos, 198/199: 217-233. doi: 10.1016/j.lithos.2014.03.033 |
Bian, Q. T., Li, D. H., Pospelov, I., et al., 2004. Age, Geochemistry and Tectonic Setting of Buqingshan Ophiolites, North Qinghai-Tibet Plateau, China. Journal of Asian Earth Sciences, 23(4): 577-596. doi: 10.1016/j.jseaes.2003.09.003 |
Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle- Crust System. Earth and Planetary Science Letters, 148(1/2): 243-258 http://www.sciencedirect.com/science/article/pii/S0012821X99002228 |
Bouilhol, P., Jagoutz, O., Hanchar, J. M., et al., 2013. Dating the India-Eurasia Collision through Arc Magmatic Records. Earth and Planetary Science Letters, 366: 163-175. doi: 10.1016/j.epsl.2013.01.023 |
Bucholz, C. E., Jagoutz, O., Schmidt, M. W., et al., 2014. Fractional Crystallization of High-K Arc Magmas: Biotite- Versus Amphibole-Dominated Fractionation Series in the Dariv Igneous Complex, Western Mongolia. Contributions to Mineralogy and Petrology, 168(5): 1-28. doi: 10.1007/s00410-014-1072-9 |
Castro, A., 2013. Tonalite-Granodiorite Suites as Cotectic Systems: A Review of Experimental Studies with Applications to Granitoid Petrogenesis. Earth-Science Reviews, 124: 68-95. doi: 10.1016/j.earscirev.2013.05.006 |
Castro, A., 2014. The Off-Crust Origin of Granite Batholiths. Geoscience Frontiers, 5(1): 63-75. doi: 10.1016/j.gsf.2013.06.006 |
Chappell, B. W., 1999. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535-551. doi: 10.1016/s0024-4937(98)00086-3 |
Chappell, B. W., White, A. J. R., 1974. Two Contrasting Granite Types. Pacific Geology, 8: 173-174 |
Chappell, B. W., White, A. J. R., 2001. Two Contrasting Granite Types: 25 Years Later. Australian Journal of Earth Sciences, 48(4): 489-499. doi: 10.1046/j.1440-0952.2001.00882.x |
Chen, N. S., Wang, X. Y., Zhang, H. F., et al., 2007a. Geochemistry and Nd-Sr-Pb Isotopic Compositions of Granitoids from Qaidam and Oulongbuluke Micro-Blocks, NW China: Constraints on Basement Nature and Tectonic Affinity. Earth Science—Jorunal of China University of Geosciences, 32(1): 7-21 (in Chinese with English Abstract) |
Chen, N. S., Xia, X. P., Li, X. Y., et al., 2007b. Timing of Magmatism of the Gneissic-Granite Plutons along North Qaidam Margin and Implications for Precambrian Crustal Accretions: Zircon U-Pb Dating and Hf Isotope Evidences. Acta Petrologica Sinica, 23(2): 501-512 (in Chinese with English Abstract) http://www.researchgate.net/publication/279551908_Timing_of_magmatism_of_the_gneissic-granite_plutons_along_north_Qaidam_margin_and_implications_for_Precambrian_crustal_accretions_Zircon_U-Pb_dating_and_Hf_isotope_evidences |
Chen, X. H., Gehrels, G., Yin, A., et al., 2012. Paleozoic and Mesozoic Basement Magmatisms of Eastern Qaidam Basin, Northern Qinghai-Tibet Plateau: LA-ICP-MS Zircon U-Pb Geochronology and Its Geological Significance. Acta Geologica Sinica—English Edition, 86(2): 350-369. doi: 10.1111/j.1755-6724.2012.00665.x |
Chen, X. H., Gehrels, G., Yin, A., et al., 2015. Geochemical and Nd-Sr-Pb-O Isotopic Constrains on Permo-Triassic Magmatism in Eastern Qaidam Basin, Northern Qinghai- Tibetan Plateau: Implications for the Evolution of the Paleo-Tethys. Journal of Asian Earth Sciences, 114: 674-692. doi: 10.1016/j.jseaes.2014.11.013 |
Chen, Y. X., Pei, X. Z., Li, R. B., et al., 2011. Zircon U-Pb Age of Xiaomiao Formation of Proterozoic in the Eastern Section of the East Kunlun Orogenic Belt. Geoscience, 25(3): 510-521 (in Chinese with English Abstract) http://www.researchgate.net/publication/285650077_Zircon_U-Pb_age_of_Xiaomiao_Formation_of_Proterozoic_in_the_eastern_section_of_the_East_Kunlun_Orogenic_Belt |
Cocherie, A., Rossi, P., Fouillac, A. M., et al., 1994. Crust and Mantle Contributions to Granite Genesis—An Example from the Variscan Batholith of Corsica, France, Studied by Trace-Element and Nd-Sr-O Isotope Systematics. Chemical Geology, 115(3/4): 173-211. doi: 10.1016/0009-2541(94)90186-4 |
Condie, K. C., 2014. Growth of Continental Crust: A Balance between Preservation and Recycling. Mineralogical Magazine, 78(3): 623-637. doi: 10.1180/minmag.2014.078.3.11 |
Corfu, F., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1): 469-500. doi: 10.2113/0530469 |
DePaolo, D. J., 1981. Trace Element and Isotopic Effects of Combined Wallrock Assimilation and Fractional Crystallization. Earth and Planetary Science Letters, 53(2): 189-202. doi: 10.1016/0012-821x(81)90153-9 |
Ding, Q. F., Jiang, S. Y., Sun, F. Y., 2014. Zircon U-Pb Geochronology, Geochemical and Sr-Nd-Hf Isotopic Compositions of the Triassic Granite and Diorite Dikes from the Wulonggou Mining Area in the Eastern Kunlun Orogen, NW China: Petrogenesis and Tectonic Implications. Lithos, 205: 266-283. doi: 10.1016/j.lithos.2014.07.015 |
Ding, S., Huang, H., Niu, Y. L., et al., 2011. Geochemistry, Geochronology and Petrogenesis of East Kunlun High Nb-Ta Rhyolites. Acta Petrologica Sinica, 27: 3603-3614 (in Chinese with English Abstract) http://www.oalib.com/paper/1474254 |
Eyal, M., Litvinovsky, B., Jahn, B. M., et al., 2010. Origin and Evolution of Post-Collisional Magmatism: Coeval Neoproterozoic Calc-Alkaline and Alkaline Suites of the Sinai Peninsula. Chemical Geology, 269(3/4): 153-179. doi: 10.1016/j.chemgeo.2009.09.010 |
Frost, B. R., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. doi: 10.1093/petrology/42.11.2033 |
Gerdes, A., Kemp, A. I. S., Hanchar, J. M., et al., 2009. Accessory Minerals as Tracers of Crustal Processes. Chemical Geology, 261(3/4): 197-198. doi: 10.1016/j.chemgeo.2009.03.001 |
Gong, S. L., Chen, N. S., Geng, H. Y., et al., 2014. Zircon Hf Isotopes and Geochemistry of the Early Paleoproterozoic High-Sr Low-Y Quartz-Diorite in the Quanji Massif, NW China: Crustal Growth and Tectonic Implications. Journal of Earth Science, 25(1): 74-86. doi: 10.1007/s12583-014-0401-2 |
Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. doi: 10.1016/s0016-7037(99)00343-9 |
Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3/4): 237-269. doi: 10.1016/s0024-4937(02)00082-8 |
Harris, N. B. W., Xu, R. H., Lewis, C. L., et al., 1988. Isotope Geochemistry of the 1985 Tibet Geotraverse, Lhasa to Golmud. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 327(1594): 263-285. doi: 10.1098/rsta.1988.0129 |
Harrison, T. M., Watson, E. B., 1984. The Behavior of Apatite during Crustal Anatexis: Equilibrium and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48(7): 1467-1477. doi: 10.1016/0016-7037(84)90403-4 |
Hawkesworth, C. J., Dhuime, B., Pietranik, A. B., et al., 2010. The Generation and Evolution of the Continental Crust. Journal of the Geological Society, 167(2): 229-248. doi: 10.1144/0016-76492009-072 |
Honarmand, M., Omran, N. R., Neubauer, F., et al., 2015. Geochemistry of Enclaves and Host Granitoids from the Kashan Granitoid Complex, Central Iran: Implications for Enclave Generation by Interaction of Cogenetic Magmas. Journal of Earth Science, 26(5): 626-647. doi: 10.1007/s12583-015-0584-1 |
Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. doi: 10.2113/0530027 |
Hu, Y., Niu, Y. L., Li, J. Y., et al., 2015. Petrogenesis and Tectonic Significance of the Late Triassic Mafic Dikes and Felsic Volcanic Rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau. Lithos, 245(2): 205-222. doi: 10.1016/j.lithos.2015.05.004 |
Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27: 1391-1399. doi: 10.1039/c2ja30078h |
Jagoutz, O., Schmidt, M. W., Enggist, A., et al., 2013. TTG-Type Plutonic Rocks Formed in a Modern Arc Batholith by Hydrous Fractionation in the Lower Arc Crust. Contributions to Mineralogy and Petrology, 166(4): 1099-1118. doi: 10.1007/s00410-013-0911-4 |
Jung, S., Masberg, P., Mihm, D., et al., 2009. Partial Melting of Diverse Crustal Sources—Constraints from Sr-Nd-O Isotope Compositions of Quartz Diorite-granodiorite- leucogranite Associations (Kaoko Belt, Namibia). Lithos, 111(3/4): 236-251. doi: 10.1016/j.lithos.2008.10.010 |
Li, X., Huang, X., Luo, M., et al., 2015. Petrogenesis and Geodynamic Implications of the Mid-Triassic Lavas from East Kunlun, Northern Tibetan Plateau. Journal of Asian Earth Sciences, 105: 32-47. doi: 10.1016/j.jseaes.2015.03.009 |
Liu, B., Ma, C. Q., Zhang, J., et al., 2014. 40Ar-39Ar Age and Geochemistry of Subduction-Related Mafic Dikes in Northern Tibet, China: Petrogenesis and Tectonic Implications. International Geology Review, 56(1): 57-73. doi: 10.1080/00206814.2013.818804 |
Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. doi: 10.1093/petrology/egp082 |
Ludwig, K. R., 2003. User's Manual for Isoplot/Ex Version 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication |
Ma, C. Q., Zhang, J. Y., Xiong, F. H., et al., 2012. Mantle Evolution from Plate Subduction to Post-Orogenic Extension: Evidence from Permo-Triassic Mafic Dike Swarms in Northern Tibet Plateau. Mineralogical Magazine, 76: 2046 http://www.researchgate.net/profile/Bin_Liu109/publication/282678037_Mantle_evolution_from_plate_subduction_to_post-orogenic_extension_Evidence_from_Permo-Triassic_mafic_dike_swarms_in_northern_Tibet_Plateau/links/56e0c15908aec4b3333d1660.pdf |
Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. doi:10.1130/0016-7606(1989)101<0635:tdog>2. 3.co;2 |
Martin, R. F., 2007. Amphiboles in the Igneous Environment. Reviews in Mineralogy and Geochemistry, 67(1): 323-358. doi: 10.2138/rmg.2007.67.9 |
Middlemost, E. A. K., 1994. Naming Materials in the Magma/ Igneous Rock System. Earth-Science Reviews, 37(3/4): 215-224. doi: 10.1016/0012-8252(94)90029-9 |
Mo, X. X., Dong, G. C., Zhao, Z. D., et al., 2009. Mantle Input to the Crust in Southern Gangdese, Tibet, during the Cenozoic: Zircon Hf Isotopic Evidence. Journal of Earth Science, 20(2): 241-249. doi: 10.1007/s12583-009-0023-2 |
Niu, Y. L., Batiza, R., 1997. Trace Element Evidence from Seamounts for Recycled Oceanic Crust in the Eastern Pacific Mantle. Earth and Planetary Science Letters, 148(3/4): 471-483. doi: 10.1016/s0012-821x(97)00048-4 |
Ostendorf, J., Jung, S., Berndt-Gerdes, J., et al., 2014. Syn-Orogenic High-Temperature Crustal Melting: Geochronological and Nd-Sr-Pb Isotope Constraints from Basement-Derived Granites (Central Damara Orogen, Namibia). Lithos, 192-195: 21-38. doi: 10.1016/j.lithos.2014.01.007 |
Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47. doi: 10.1007/bf00375192 |
Pitcher, W. S., 1987. Granites and yet more Granites Forty Years on. Geologische Rundschau, 76(1): 51-79. doi: 10.1007/bf01820573 |
Rapp, R. P., 1995. Amphibole-out Phase Boundary in Partially Melted Metabasalt, Its Control over Liquid Fraction and Composition, and Source Permeability. Journal of Geophysical Research, 100(B8): 15601-15610. doi: 10.1029/95jb00913 |
Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. doi: 10.1093/petrology/36.4.891 |
Rapp, R. P., Watson, E. B., Miller, C. F., 1991. Partial Melting of Amphibolite/Eclogite and the Origin of Archean Trondhjemites and Tonalites. Precambrian Research, 51(1-4): 1-25. doi: 10.1016/0301-9268(91)90092-o |
Roger, F., Arnaud, N., Gilder, S., et al., 2003. Geochronological and Geochemical Constraints on Mesozoic Suturing in East Central Tibet. Tectonics, 22(4): 1037. doi: 10.1029/2002tc001466 |
Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry, 33: 1-64. doi: 10.1016/b0-08-043751-6/03016-4 |
Simon, J. I., Weis, D., DePaolo, D. J., et al., 2014. Assimilation of Preexisting Pleistocene Intrusions at Long Valley by Periodic Magma Recharge Accelerates Rhyolite Generation: Rethinking the Remelting Model. Contributions to Mineralogy and Petrology, 167(1): 1-34. doi: 10.1007/s00410-013-0955-5 |
Sisson, T. W., Ratajeski, K., Hankins, W. B., et al., 2004. Voluminous Granitic Magmas from Common Basaltic Sources. Contributions to Mineralogy and Petrology, 148(6): 635-661. doi: 10.1007/s00410-004-0632-9 |
Söderlund, U., Patchett, P. J., Vervoort, J. D., et al., 2004. The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 219(3/4): 311-324. http://www.sciencedirect.com/science/article/pii/S0012821X04000123 |
Soesoo, A., 2000. Fractional Crystallization of Mantle-Derived Melts as a Mechanism for some Ⅰ-Type Granite Petrogenesis: An Example from Lachlan Fold Belt, Australia. Journal of the Geological Society, London, 157(1): 135-149. doi: 10.1144/jgs.157.1.135 |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. doi: 10.1144/gsl.sp.1989.042.01.19 |
Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford |
Tiepolo, M., Oberti, R., Zanetti, A., et al., 2007. Trace-Element Partitioning between Amphibole and Silicate Melt. Reviews in Mineralogy and Geochemistry, 67(1): 417-452. doi: 10.2138/rmg.2007.67.11 |
Wang, G. C., Wang, Q. H., Jian, P., et al., 2004. Zircon SHRIMP Ages of Precambrian Metamorphic Basement Rocks and Their Tectonic Significance in the Eastern Kunlun Mountains, Qinghai Province, China. Earth Science Frontiers, 11(4): 481-490 (in Chinese with English Abstract) http://www.researchgate.net/publication/285649553_Zircon_SHRIMP_ages_of_Precambrian_metamorphic_basement_rocks_and_their_tectonic_significance_in_the_eastern_Kunlun_Mountains_Qinghai_Province_China |
Wolf, M. B., Wyllie, P. J., 1994. Dehydration-Melting of Amphibolite at 10 kbar: The Effects of Temperature and Time. Contributions to Mineralogy and Petrology, 115(4): 369-383. doi: 10.1007/bf00320972 |
Wyllie, P. J., Wolf, M. B., 1993. Amphibolite Dehydration- Melting: Sorting out the Solidus. Geological Society, London, Special Publications, 76(1): 405-416. doi: 10.1144/gsl.sp.1993.076.01.20 |
Xia, R., Wang, C. M., Deng, J., et al., 2014. Crustal Thickening Prior to 220 Ma in the East Kunlun Orogenic Belt: Insights from the Late Triassic Granitoids in the Xiao-Nuomuhong Pluton. Journal of Asian Earth Sciences, 93: 193-210. doi: 10.1016/j.jseaes.2014.07.013 |
Xiong, F. H., Ma, C. Q., Jiang, H. A., et al., 2013. Petrogenetic and Tectonic Significance of Permian Calc-Alkaline Lamprophyres, East Kunlun Orogenic Belt, Northern Qinghai-Tibet Plateau. International Geology Review, 55(14): 1817-1834. doi: 10.1080/00206814.2013.804683 |
Xiong, F. H., Ma, C. Q., Zhang, J. Y., et al., 2011a. Zircon LA-ICP-MS U-Pb Dating and Geological Significance of Bairiqili Gabbro Pluton in Eastern Kunlun, Northern Qinghai-Tibet Plateau. Geological Bulletin of China, 30(8): 1196-1202 (in Chinese with English Abstract) |
Xiong, F. H., Ma, C. Q., Zhang, J. Y., et al., 2011b. LA-ICP-MS Zircon U-Pb Dating, Elements and Sr-Nd-Hf Isotope Geochemistry of the Early Mesozoic Mafic Dyke Swarms in Eastern Kunlun Orogenic Belt. Acta Petrologica Sinica, 27: 3350-3364 (in Chinese with English Abstract) |
Xiong, F. H., Ma, C. Q., Zhang, J. Y., et al., 2012. The Origin of Mafic Microgranular Enclaves and Their Host Granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau: Implications for Magma Mixing during Subduction of Paleo-Tethyan Lithosphere. Mineralogy and Petrology, 104(3/4): 211-224. doi: 10.1007/s00710-011-0187-1 |
Xiong, F. H., Ma, C. Q., Zhang, J. Y., et al., 2014. Reworking of Old Continental Lithosphere: An Important Crustal Evolution Mechanism in Orogenic Belts, as Evidenced by Triassic Ⅰ-Type Granitoids in the East Kunlun Orogen, Northern Tibetan Plateau. Journal of the Geological Society, 171(6): 847-863. doi: 10.1144/jgs2013-038 |
Xu, M. J., Li, C., Xu, W., et al., 2014. Petrology, Geochemistry and Geochronology of Gabbros from the Zhongcang Ophiolitic Mélange, Central Tibet: Implications for an Intra-Oceanic Subduction Zone within the Neo-Tethys Ocean. Journal of Earth Science, 25(2): 224-240. doi: 10.1007/s12583-014-0419-5 |
Xu, Z. Q., Yang, J. S., Jiang, M., et al., 2001. Deep Structure and Lithospheric Shear Faults in the East Kunlun- Qiangtang Region, Northern Tibetan Plateau. Science in China Series D: Earth Sciences, 44(S1): 1-9. doi: 10.1007/bf02911965 |
Yang, J. S., Robinson, P. T., Jiang, C. F., et al., 1996. Ophiolites of the Kunlun Mountains, China and Their Tectonic Implications. Tectonophysics, 258(1-4): 215-231. doi: 10.1016/0040-1951(95)00199-9 |
Yang, J. S., Shi, R. D., Wu, C. L., et al., 2009. Dur'ngoi Ophiolite in East Kunlun, Northeast Tibetan Plateau: Evidence for Paleo-Tethyan Suture in Northwest China. Journal of Earth Science, 20(2): 303-331. doi: 10.1007/s12583-009-0027-y |
Yang, J. S., Xu, Z. Q., Li, H. B., et al., 2005. The Paleo- Tethyan Volcanism and Plate Tectonic Regime in the A'nyemaqen Region of East Kunlun, Northern Tibet Plateau. Acta Petrologica et Mineralogica, 24(5): 369-380 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200505004.htm |
Yuan, C., Sun, M., Xiao, W. J., et al., 2009. Garnet-Bearing Tonalitic Porphyry from East Kunlun, Northeast Tibetan Plateau: Implications for Adakite and Magmas from the MASH Zone. International Journal of Earth Sciences, 98(6): 1489-1510. doi: 10.1007/s00531-008-0335-y |
Zhang, J. Y., Ma, C. Q., Xiong, F. H., et al., 2012. Petrogenesis and Tectonic Significance of the Late Permian-Middle Triassic Calc-Alkaline Granites in the Balong Region, Eastern Kunlun Orogen, China. Geological Magazine, 149(5): 892-908. doi: 10.1017/s0016756811001142 |
Zhu, Y. H., Zhu, Y. S., Lin, Q. X., et al., 2003. Characteristics of Early Jurassic Volcanic Rocks and Their Tectonic Significance in Haidewula, East Kunlun Orogenic Belt, Qinghai Province. Earth Science—Jorunal of China University of Geosciences, 28(6): 653-659 (in Chinese with English Abstract) http://www.researchgate.net/publication/291077410_Characteristics_of_Early_Jurassic_volcanic_rocks_and_their_tectonic_significance_in_Haidewula_east_Kunlun_orogenic_belt_Qinghai_Province |