Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 27 Issue 3
Jun 2016
Turn off MathJax
Article Contents
Fuhao Xiong, Changqian Ma, Hong'an Jiang, Hang Zhang. Geochronology and petrogenesis of Triassic high-K calc-alkaline granodiorites in the East Kunlun orogen, West China: Juvenile lower crustal melting during post-collisional extension. Journal of Earth Science, 2016, 27(3): 474-490. doi: 10.1007/s12583-016-0674-6
Citation: Fuhao Xiong, Changqian Ma, Hong'an Jiang, Hang Zhang. Geochronology and petrogenesis of Triassic high-K calc-alkaline granodiorites in the East Kunlun orogen, West China: Juvenile lower crustal melting during post-collisional extension. Journal of Earth Science, 2016, 27(3): 474-490. doi: 10.1007/s12583-016-0674-6

Geochronology and petrogenesis of Triassic high-K calc-alkaline granodiorites in the East Kunlun orogen, West China: Juvenile lower crustal melting during post-collisional extension

doi: 10.1007/s12583-016-0674-6
More Information
  • Corresponding author: Changqian Ma, cqma@cug.edu.cn
  • Received Date: 10 Jul 2015
  • Accepted Date: 01 Nov 2015
  • Publish Date: 10 Jun 2016
  • This study reports zircon U-Pb and Hf isotopes and whole-rock elemental data for granodiorites from the East Kunlun orogen. The zircon U-Pb dating defines their crystallization age of 235 Ma. The rocks are characterized by high-K calc-alkaline, magnesian and metaluminous with (K2O+Na2O)=6.38 wt.%–7.01 wt.%, Mg#=42–50 [Mg#=100×molar Mg/(Mg+FeOT)], A/CNK=0.92–0.98, coupled with highεHf(t) values from -0.65 to -1.80. The rocks were derived from partial melting of a juvenile mafic crustal source within normal crust thickness. The juvenile lower crust was generated by mixing lithospheric mantle-derived melt (55%–60%) and supracrustal melt (40%–45%) during the seafloor subduction. Together with available data from the East Kunlun, it is proposed that the studied Middle Triassic granodiorites were formed in post-collisional extension setting, in which melting of the juvenile lower crust in response to the basaltic magma underplating resulted in the production of high-K granodioritic melts.

     

  • loading
  • Ajaji, T., Weis, D., Giret, A., et al., 1998. Coeval Potassic and Sodic Calc-Alkaline Series in the Post-Collisional Hercynian Tanncherfi Intrusive Complex, Northeastern Morocco: Geochemical, Isotopic and Geochronological Evidence. Lithos, 45(1-4): 371-393. doi: 10.1016/s0024-4937(98)00040-1
    Barbarin, B., Didier, J., 1992. Genesis and Evolution of Mafic Microgranular Enclaves through Various Types of Interaction between Coexisting Felsic and Mafic Magmas. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1/2): 145-153. doi: 10.1017/s0263593300007835
    Beard, J. S., Lofgren, G. E., 1991. Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3, and 6.9 kb. Journal of Petrology, 32(2): 365-401. doi: 10.1093/petrology/32.2.365
    Beard, J., Ragland, P., Rushmer, T., 2004. Hydration Crystallization Reactions between Anhydrous Minerals and Hydrous Melt to Yield Amphibole and Biotite in Igneous Rocks: Description and Implications. The Journal of Geology, 112(5): 617-621. doi: 10.1086/422670
    Bellos, L. I., Castro, A., Díaz-Alvarado, J., et al., 2015. Multi- Pulse Cotectic Evolution and In-Situ Fractionation of Calc-Alkaline Tonalite-granodiorite Rocks, Sierra de Velasco Batholith, Famatinian Belt, Argentina. Gondwana Research, 27(1): 258-280. doi: 10.1016/j.gr.2013.09.019
    Bergemann, C., Jung, S., Berndt, J., et al., 2014. Generation of Magnesian, High-K Alkali-Calcic Granites and Granodiorites from Amphibolitic Continental Crust in the Damara Orogen, Namibia. Lithos, 198/199: 217-233. doi: 10.1016/j.lithos.2014.03.033
    Bian, Q. T., Li, D. H., Pospelov, I., et al., 2004. Age, Geochemistry and Tectonic Setting of Buqingshan Ophiolites, North Qinghai-Tibet Plateau, China. Journal of Asian Earth Sciences, 23(4): 577-596. doi: 10.1016/j.jseaes.2003.09.003
    Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle- Crust System. Earth and Planetary Science Letters, 148(1/2): 243-258 http://www.sciencedirect.com/science/article/pii/S0012821X99002228
    Bouilhol, P., Jagoutz, O., Hanchar, J. M., et al., 2013. Dating the India-Eurasia Collision through Arc Magmatic Records. Earth and Planetary Science Letters, 366: 163-175. doi: 10.1016/j.epsl.2013.01.023
    Bucholz, C. E., Jagoutz, O., Schmidt, M. W., et al., 2014. Fractional Crystallization of High-K Arc Magmas: Biotite- Versus Amphibole-Dominated Fractionation Series in the Dariv Igneous Complex, Western Mongolia. Contributions to Mineralogy and Petrology, 168(5): 1-28. doi: 10.1007/s00410-014-1072-9
    Castro, A., 2013. Tonalite-Granodiorite Suites as Cotectic Systems: A Review of Experimental Studies with Applications to Granitoid Petrogenesis. Earth-Science Reviews, 124: 68-95. doi: 10.1016/j.earscirev.2013.05.006
    Castro, A., 2014. The Off-Crust Origin of Granite Batholiths. Geoscience Frontiers, 5(1): 63-75. doi: 10.1016/j.gsf.2013.06.006
    Chappell, B. W., 1999. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535-551. doi: 10.1016/s0024-4937(98)00086-3
    Chappell, B. W., White, A. J. R., 1974. Two Contrasting Granite Types. Pacific Geology, 8: 173-174
    Chappell, B. W., White, A. J. R., 2001. Two Contrasting Granite Types: 25 Years Later. Australian Journal of Earth Sciences, 48(4): 489-499. doi: 10.1046/j.1440-0952.2001.00882.x
    Chen, N. S., Wang, X. Y., Zhang, H. F., et al., 2007a. Geochemistry and Nd-Sr-Pb Isotopic Compositions of Granitoids from Qaidam and Oulongbuluke Micro-Blocks, NW China: Constraints on Basement Nature and Tectonic Affinity. Earth ScienceJorunal of China University of Geosciences, 32(1): 7-21 (in Chinese with English Abstract)
    Chen, N. S., Xia, X. P., Li, X. Y., et al., 2007b. Timing of Magmatism of the Gneissic-Granite Plutons along North Qaidam Margin and Implications for Precambrian Crustal Accretions: Zircon U-Pb Dating and Hf Isotope Evidences. Acta Petrologica Sinica, 23(2): 501-512 (in Chinese with English Abstract) http://www.researchgate.net/publication/279551908_Timing_of_magmatism_of_the_gneissic-granite_plutons_along_north_Qaidam_margin_and_implications_for_Precambrian_crustal_accretions_Zircon_U-Pb_dating_and_Hf_isotope_evidences
    Chen, X. H., Gehrels, G., Yin, A., et al., 2012. Paleozoic and Mesozoic Basement Magmatisms of Eastern Qaidam Basin, Northern Qinghai-Tibet Plateau: LA-ICP-MS Zircon U-Pb Geochronology and Its Geological Significance. Acta Geologica Sinica—English Edition, 86(2): 350-369. doi: 10.1111/j.1755-6724.2012.00665.x
    Chen, X. H., Gehrels, G., Yin, A., et al., 2015. Geochemical and Nd-Sr-Pb-O Isotopic Constrains on Permo-Triassic Magmatism in Eastern Qaidam Basin, Northern Qinghai- Tibetan Plateau: Implications for the Evolution of the Paleo-Tethys. Journal of Asian Earth Sciences, 114: 674-692. doi: 10.1016/j.jseaes.2014.11.013
    Chen, Y. X., Pei, X. Z., Li, R. B., et al., 2011. Zircon U-Pb Age of Xiaomiao Formation of Proterozoic in the Eastern Section of the East Kunlun Orogenic Belt. Geoscience, 25(3): 510-521 (in Chinese with English Abstract) http://www.researchgate.net/publication/285650077_Zircon_U-Pb_age_of_Xiaomiao_Formation_of_Proterozoic_in_the_eastern_section_of_the_East_Kunlun_Orogenic_Belt
    Cocherie, A., Rossi, P., Fouillac, A. M., et al., 1994. Crust and Mantle Contributions to Granite Genesis—An Example from the Variscan Batholith of Corsica, France, Studied by Trace-Element and Nd-Sr-O Isotope Systematics. Chemical Geology, 115(3/4): 173-211. doi: 10.1016/0009-2541(94)90186-4
    Condie, K. C., 2014. Growth of Continental Crust: A Balance between Preservation and Recycling. Mineralogical Magazine, 78(3): 623-637. doi: 10.1180/minmag.2014.078.3.11
    Corfu, F., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1): 469-500. doi: 10.2113/0530469
    DePaolo, D. J., 1981. Trace Element and Isotopic Effects of Combined Wallrock Assimilation and Fractional Crystallization. Earth and Planetary Science Letters, 53(2): 189-202. doi: 10.1016/0012-821x(81)90153-9
    Ding, Q. F., Jiang, S. Y., Sun, F. Y., 2014. Zircon U-Pb Geochronology, Geochemical and Sr-Nd-Hf Isotopic Compositions of the Triassic Granite and Diorite Dikes from the Wulonggou Mining Area in the Eastern Kunlun Orogen, NW China: Petrogenesis and Tectonic Implications. Lithos, 205: 266-283. doi: 10.1016/j.lithos.2014.07.015
    Ding, S., Huang, H., Niu, Y. L., et al., 2011. Geochemistry, Geochronology and Petrogenesis of East Kunlun High Nb-Ta Rhyolites. Acta Petrologica Sinica, 27: 3603-3614 (in Chinese with English Abstract) http://www.oalib.com/paper/1474254
    Eyal, M., Litvinovsky, B., Jahn, B. M., et al., 2010. Origin and Evolution of Post-Collisional Magmatism: Coeval Neoproterozoic Calc-Alkaline and Alkaline Suites of the Sinai Peninsula. Chemical Geology, 269(3/4): 153-179. doi: 10.1016/j.chemgeo.2009.09.010
    Frost, B. R., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. doi: 10.1093/petrology/42.11.2033
    Gerdes, A., Kemp, A. I. S., Hanchar, J. M., et al., 2009. Accessory Minerals as Tracers of Crustal Processes. Chemical Geology, 261(3/4): 197-198. doi: 10.1016/j.chemgeo.2009.03.001
    Gong, S. L., Chen, N. S., Geng, H. Y., et al., 2014. Zircon Hf Isotopes and Geochemistry of the Early Paleoproterozoic High-Sr Low-Y Quartz-Diorite in the Quanji Massif, NW China: Crustal Growth and Tectonic Implications. Journal of Earth Science, 25(1): 74-86. doi: 10.1007/s12583-014-0401-2
    Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. doi: 10.1016/s0016-7037(99)00343-9
    Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3/4): 237-269. doi: 10.1016/s0024-4937(02)00082-8
    Harris, N. B. W., Xu, R. H., Lewis, C. L., et al., 1988. Isotope Geochemistry of the 1985 Tibet Geotraverse, Lhasa to Golmud. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 327(1594): 263-285. doi: 10.1098/rsta.1988.0129
    Harrison, T. M., Watson, E. B., 1984. The Behavior of Apatite during Crustal Anatexis: Equilibrium and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48(7): 1467-1477. doi: 10.1016/0016-7037(84)90403-4
    Hawkesworth, C. J., Dhuime, B., Pietranik, A. B., et al., 2010. The Generation and Evolution of the Continental Crust. Journal of the Geological Society, 167(2): 229-248. doi: 10.1144/0016-76492009-072
    Honarmand, M., Omran, N. R., Neubauer, F., et al., 2015. Geochemistry of Enclaves and Host Granitoids from the Kashan Granitoid Complex, Central Iran: Implications for Enclave Generation by Interaction of Cogenetic Magmas. Journal of Earth Science, 26(5): 626-647. doi: 10.1007/s12583-015-0584-1
    Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. doi: 10.2113/0530027
    Hu, Y., Niu, Y. L., Li, J. Y., et al., 2015. Petrogenesis and Tectonic Significance of the Late Triassic Mafic Dikes and Felsic Volcanic Rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau. Lithos, 245(2): 205-222. doi: 10.1016/j.lithos.2015.05.004
    Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27: 1391-1399. doi: 10.1039/c2ja30078h
    Jagoutz, O., Schmidt, M. W., Enggist, A., et al., 2013. TTG-Type Plutonic Rocks Formed in a Modern Arc Batholith by Hydrous Fractionation in the Lower Arc Crust. Contributions to Mineralogy and Petrology, 166(4): 1099-1118. doi: 10.1007/s00410-013-0911-4
    Jung, S., Masberg, P., Mihm, D., et al., 2009. Partial Melting of Diverse Crustal Sources—Constraints from Sr-Nd-O Isotope Compositions of Quartz Diorite-granodiorite- leucogranite Associations (Kaoko Belt, Namibia). Lithos, 111(3/4): 236-251. doi: 10.1016/j.lithos.2008.10.010
    Li, X., Huang, X., Luo, M., et al., 2015. Petrogenesis and Geodynamic Implications of the Mid-Triassic Lavas from East Kunlun, Northern Tibetan Plateau. Journal of Asian Earth Sciences, 105: 32-47. doi: 10.1016/j.jseaes.2015.03.009
    Liu, B., Ma, C. Q., Zhang, J., et al., 2014. 40Ar-39Ar Age and Geochemistry of Subduction-Related Mafic Dikes in Northern Tibet, China: Petrogenesis and Tectonic Implications. International Geology Review, 56(1): 57-73. doi: 10.1080/00206814.2013.818804
    Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. doi: 10.1093/petrology/egp082
    Ludwig, K. R., 2003. User's Manual for Isoplot/Ex Version 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication
    Ma, C. Q., Zhang, J. Y., Xiong, F. H., et al., 2012. Mantle Evolution from Plate Subduction to Post-Orogenic Extension: Evidence from Permo-Triassic Mafic Dike Swarms in Northern Tibet Plateau. Mineralogical Magazine, 76: 2046 http://www.researchgate.net/profile/Bin_Liu109/publication/282678037_Mantle_evolution_from_plate_subduction_to_post-orogenic_extension_Evidence_from_Permo-Triassic_mafic_dike_swarms_in_northern_Tibet_Plateau/links/56e0c15908aec4b3333d1660.pdf
    Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. doi:10.1130/0016-7606(1989)101<0635:tdog>2. 3.co;2
    Martin, R. F., 2007. Amphiboles in the Igneous Environment. Reviews in Mineralogy and Geochemistry, 67(1): 323-358. doi: 10.2138/rmg.2007.67.9
    Middlemost, E. A. K., 1994. Naming Materials in the Magma/ Igneous Rock System. Earth-Science Reviews, 37(3/4): 215-224. doi: 10.1016/0012-8252(94)90029-9
    Mo, X. X., Dong, G. C., Zhao, Z. D., et al., 2009. Mantle Input to the Crust in Southern Gangdese, Tibet, during the Cenozoic: Zircon Hf Isotopic Evidence. Journal of Earth Science, 20(2): 241-249. doi: 10.1007/s12583-009-0023-2
    Niu, Y. L., Batiza, R., 1997. Trace Element Evidence from Seamounts for Recycled Oceanic Crust in the Eastern Pacific Mantle. Earth and Planetary Science Letters, 148(3/4): 471-483. doi: 10.1016/s0012-821x(97)00048-4
    Ostendorf, J., Jung, S., Berndt-Gerdes, J., et al., 2014. Syn-Orogenic High-Temperature Crustal Melting: Geochronological and Nd-Sr-Pb Isotope Constraints from Basement-Derived Granites (Central Damara Orogen, Namibia). Lithos, 192-195: 21-38. doi: 10.1016/j.lithos.2014.01.007
    Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47. doi: 10.1007/bf00375192
    Pitcher, W. S., 1987. Granites and yet more Granites Forty Years on. Geologische Rundschau, 76(1): 51-79. doi: 10.1007/bf01820573
    Rapp, R. P., 1995. Amphibole-out Phase Boundary in Partially Melted Metabasalt, Its Control over Liquid Fraction and Composition, and Source Permeability. Journal of Geophysical Research, 100(B8): 15601-15610. doi: 10.1029/95jb00913
    Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. doi: 10.1093/petrology/36.4.891
    Rapp, R. P., Watson, E. B., Miller, C. F., 1991. Partial Melting of Amphibolite/Eclogite and the Origin of Archean Trondhjemites and Tonalites. Precambrian Research, 51(1-4): 1-25. doi: 10.1016/0301-9268(91)90092-o
    Roger, F., Arnaud, N., Gilder, S., et al., 2003. Geochronological and Geochemical Constraints on Mesozoic Suturing in East Central Tibet. Tectonics, 22(4): 1037. doi: 10.1029/2002tc001466
    Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry, 33: 1-64. doi: 10.1016/b0-08-043751-6/03016-4
    Simon, J. I., Weis, D., DePaolo, D. J., et al., 2014. Assimilation of Preexisting Pleistocene Intrusions at Long Valley by Periodic Magma Recharge Accelerates Rhyolite Generation: Rethinking the Remelting Model. Contributions to Mineralogy and Petrology, 167(1): 1-34. doi: 10.1007/s00410-013-0955-5
    Sisson, T. W., Ratajeski, K., Hankins, W. B., et al., 2004. Voluminous Granitic Magmas from Common Basaltic Sources. Contributions to Mineralogy and Petrology, 148(6): 635-661. doi: 10.1007/s00410-004-0632-9
    Söderlund, U., Patchett, P. J., Vervoort, J. D., et al., 2004. The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 219(3/4): 311-324. http://www.sciencedirect.com/science/article/pii/S0012821X04000123
    Soesoo, A., 2000. Fractional Crystallization of Mantle-Derived Melts as a Mechanism for some Ⅰ-Type Granite Petrogenesis: An Example from Lachlan Fold Belt, Australia. Journal of the Geological Society, London, 157(1): 135-149. doi: 10.1144/jgs.157.1.135
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. doi: 10.1144/gsl.sp.1989.042.01.19
    Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford
    Tiepolo, M., Oberti, R., Zanetti, A., et al., 2007. Trace-Element Partitioning between Amphibole and Silicate Melt. Reviews in Mineralogy and Geochemistry, 67(1): 417-452. doi: 10.2138/rmg.2007.67.11
    Wang, G. C., Wang, Q. H., Jian, P., et al., 2004. Zircon SHRIMP Ages of Precambrian Metamorphic Basement Rocks and Their Tectonic Significance in the Eastern Kunlun Mountains, Qinghai Province, China. Earth Science Frontiers, 11(4): 481-490 (in Chinese with English Abstract) http://www.researchgate.net/publication/285649553_Zircon_SHRIMP_ages_of_Precambrian_metamorphic_basement_rocks_and_their_tectonic_significance_in_the_eastern_Kunlun_Mountains_Qinghai_Province_China
    Wolf, M. B., Wyllie, P. J., 1994. Dehydration-Melting of Amphibolite at 10 kbar: The Effects of Temperature and Time. Contributions to Mineralogy and Petrology, 115(4): 369-383. doi: 10.1007/bf00320972
    Wyllie, P. J., Wolf, M. B., 1993. Amphibolite Dehydration- Melting: Sorting out the Solidus. Geological Society, London, Special Publications, 76(1): 405-416. doi: 10.1144/gsl.sp.1993.076.01.20
    Xia, R., Wang, C. M., Deng, J., et al., 2014. Crustal Thickening Prior to 220 Ma in the East Kunlun Orogenic Belt: Insights from the Late Triassic Granitoids in the Xiao-Nuomuhong Pluton. Journal of Asian Earth Sciences, 93: 193-210. doi: 10.1016/j.jseaes.2014.07.013
    Xiong, F. H., Ma, C. Q., Jiang, H. A., et al., 2013. Petrogenetic and Tectonic Significance of Permian Calc-Alkaline Lamprophyres, East Kunlun Orogenic Belt, Northern Qinghai-Tibet Plateau. International Geology Review, 55(14): 1817-1834. doi: 10.1080/00206814.2013.804683
    Xiong, F. H., Ma, C. Q., Zhang, J. Y., et al., 2011a. Zircon LA-ICP-MS U-Pb Dating and Geological Significance of Bairiqili Gabbro Pluton in Eastern Kunlun, Northern Qinghai-Tibet Plateau. Geological Bulletin of China, 30(8): 1196-1202 (in Chinese with English Abstract)
    Xiong, F. H., Ma, C. Q., Zhang, J. Y., et al., 2011b. LA-ICP-MS Zircon U-Pb Dating, Elements and Sr-Nd-Hf Isotope Geochemistry of the Early Mesozoic Mafic Dyke Swarms in Eastern Kunlun Orogenic Belt. Acta Petrologica Sinica, 27: 3350-3364 (in Chinese with English Abstract)
    Xiong, F. H., Ma, C. Q., Zhang, J. Y., et al., 2012. The Origin of Mafic Microgranular Enclaves and Their Host Granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau: Implications for Magma Mixing during Subduction of Paleo-Tethyan Lithosphere. Mineralogy and Petrology, 104(3/4): 211-224. doi: 10.1007/s00710-011-0187-1
    Xiong, F. H., Ma, C. Q., Zhang, J. Y., et al., 2014. Reworking of Old Continental Lithosphere: An Important Crustal Evolution Mechanism in Orogenic Belts, as Evidenced by Triassic Ⅰ-Type Granitoids in the East Kunlun Orogen, Northern Tibetan Plateau. Journal of the Geological Society, 171(6): 847-863. doi: 10.1144/jgs2013-038
    Xu, M. J., Li, C., Xu, W., et al., 2014. Petrology, Geochemistry and Geochronology of Gabbros from the Zhongcang Ophiolitic Mélange, Central Tibet: Implications for an Intra-Oceanic Subduction Zone within the Neo-Tethys Ocean. Journal of Earth Science, 25(2): 224-240. doi: 10.1007/s12583-014-0419-5
    Xu, Z. Q., Yang, J. S., Jiang, M., et al., 2001. Deep Structure and Lithospheric Shear Faults in the East Kunlun- Qiangtang Region, Northern Tibetan Plateau. Science in China Series D: Earth Sciences, 44(S1): 1-9. doi: 10.1007/bf02911965
    Yang, J. S., Robinson, P. T., Jiang, C. F., et al., 1996. Ophiolites of the Kunlun Mountains, China and Their Tectonic Implications. Tectonophysics, 258(1-4): 215-231. doi: 10.1016/0040-1951(95)00199-9
    Yang, J. S., Shi, R. D., Wu, C. L., et al., 2009. Dur'ngoi Ophiolite in East Kunlun, Northeast Tibetan Plateau: Evidence for Paleo-Tethyan Suture in Northwest China. Journal of Earth Science, 20(2): 303-331. doi: 10.1007/s12583-009-0027-y
    Yang, J. S., Xu, Z. Q., Li, H. B., et al., 2005. The Paleo- Tethyan Volcanism and Plate Tectonic Regime in the A'nyemaqen Region of East Kunlun, Northern Tibet Plateau. Acta Petrologica et Mineralogica, 24(5): 369-380 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200505004.htm
    Yuan, C., Sun, M., Xiao, W. J., et al., 2009. Garnet-Bearing Tonalitic Porphyry from East Kunlun, Northeast Tibetan Plateau: Implications for Adakite and Magmas from the MASH Zone. International Journal of Earth Sciences, 98(6): 1489-1510. doi: 10.1007/s00531-008-0335-y
    Zhang, J. Y., Ma, C. Q., Xiong, F. H., et al., 2012. Petrogenesis and Tectonic Significance of the Late Permian-Middle Triassic Calc-Alkaline Granites in the Balong Region, Eastern Kunlun Orogen, China. Geological Magazine, 149(5): 892-908. doi: 10.1017/s0016756811001142
    Zhu, Y. H., Zhu, Y. S., Lin, Q. X., et al., 2003. Characteristics of Early Jurassic Volcanic Rocks and Their Tectonic Significance in Haidewula, East Kunlun Orogenic Belt, Qinghai Province. Earth ScienceJorunal of China University of Geosciences, 28(6): 653-659 (in Chinese with English Abstract) http://www.researchgate.net/publication/291077410_Characteristics_of_Early_Jurassic_volcanic_rocks_and_their_tectonic_significance_in_Haidewula_east_Kunlun_orogenic_belt_Qinghai_Province
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views(968) PDF downloads(282) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return