Antler, G., Turchyn, A. V., Rennie, V., et al., 2013. Coupled Sulfur and Oxygen Isotope Insight into Bacterial Sulfate Reduction in the Natural Environment. Geochimica et Cosmochimica Acta, 118(0): 98-117 http://www.sciencedirect.com/science/article/pii/S001670371300269X |
Böttcher, M. E., Thamdrup, B., 2001. Anaerobic Sulfide Oxidation and Stable Isotope Fractionation Associated with Bacterial Sulfur Disproportionation in the Presence of MnO2. Geochimica et Cosmochimica Acta, 65(10): 1573-1581 doi: 10.1016/S0016-7037(00)00622-0 |
Balci, N., Shanks Iii, W. C., Mayer, B., et al., 2007. Oxygen and Sulfur Isotope Systematics of Sulfate Produced by Bacterial and Abiotic Oxidation of Pyrite. Geochimica et Cosmochimica Acta, 71(15): 3796-3811 doi: 10.1016/j.gca.2007.04.017 |
Bao, H., 2006. Purifying Barite for Oxygen Isotope Measurement by Dissolution and Reprecipitation in a Chelating Solution. Analytical Chemistry, 78(1): 304-309 doi: 10.1021/ac051568z |
Bao, Z. X., Wan, R. J., Bao, J. M., 2002. Vanadium Deposits of Black Shale in Upper Yangtze Platform. Yunnan Geology, 21: 175-182 |
Bohlke, J. K., Mroczkowski, S. J., Coplen, T. B., 2003. Oxygen isotopes In Nitrate: New Reference Materials for O-18: O-17: O-16 Measurements and Observations on Nitrate-Water Equilibration. Rapid Communications in Mass Spectrometry, 17: 1835-1846 doi: 10.1002/rcm.1123 |
Brand, W. A., Coplen, T. B., Aerts-Bijma, A. T., et al., 2009. Comprehensive inter-Laboratory Calibration of Reference Materials for Delta O-18 versus VSMOW Using Various On-Line High-Temperature Conversion Techniques. Rapid Communications in Mass Spectrometry, 23: 999-1019 doi: 10.1002/rcm.3958 |
Brimblecombe, P., Heinrich, D. H., Karl, K. T., 2003. The Global Sulfur Cycle. Treatise on Geochemistry, Pergamon: Oxford. 645-682 |
Bruland, K. W., Lohan, M. C., 2003. Controls of Trace Metals in Seawater. In: Holland, H. D., Turekian, K. K., eds. Treatise on Geochemistry, Elsevier, 6: Oxford, Pergamon. 23-47 |
Brunner, B., Bernascon, S. M., 2005. A Revised Isotope Fractionation Model for Dissimilatory Sulfate Reduction in Sulfate Reducing Bacteria. Geochimica et Cosmochimica Acta, 69(20): 4759-4771 doi: 10.1016/j.gca.2005.04.015 |
Brunner, B., Bernasconi, S. M., Kleikemper, J., et al., 2005. A Model for Oxygen and Sulfur Isotope Fractionation in Sulfate during Bacterial Sulfate Reduction Processes. Geochimica et Cosmochimica Acta, 69(20): 4773-4785 doi: 10.1016/j.gca.2005.04.017 |
Canfield, D. E., 2004. The Evolution of the Earth Surface Sulfur Reservoir. Am. J. Sci. , 304: 839-861 doi: 10.2475/ajs.304.10.839 |
Canfield, D. E., Farquhar, J., 2009. Animal Evolution, Bioturbation, and the Sulfate Concentration of the Oceans. Proceedings of the National Academy of Sciences, 106(20): 8123-8127 doi: 10.1073/pnas.0902037106 |
Chen, D., Zhou, X., Fu, Y., et al., 2015. New U-Pb Zircon Ages of the Ediacaran-Cambrian Boundary Strata in South China. Terra Nova, 27(1): 62-68 doi: 10.1111/ter.12134 |
Cheng, M., Hu, X., Sun, J., et al., 2012. Overview on the Cambrian Black Shale-Hosted Vanadium Deposit in Hunan. Contributions to Geology and Mineral Resources Research, 27: 410-420 http://en.cnki.com.cn/Article_en/CJFDTotal-DZZK201204003.htm |
Farquhar, J., Canfield, D. E., Masterson, A., et al., 2008. Sulfur and Oxygen Isotope Study of Sulfate Reduction in Experiments with Natural Populations from Fællestrand, Denmark. Geochimica et Cosmochimica Acta, 72(12): 2805-2821 doi: 10.1016/j.gca.2008.03.013 |
Feng, D., Roberts, H. H., 2011. Geochemical Characteristics of the Barite Deposits at Cold Seeps from the Northern Gulf of Mexico Continental Slope. Earth and Planetary Science Letters, 309(1-2): 89-99 http://www.researchgate.net/profile/Dong_Feng4/publication/251556972_Geochemical_characteristics_of_the_barite_deposits_at_cold_seeps_from_the_northern_Gulf_of_Mexico_continental_slope/links/54d372cc0cf2b0c6146d8b0b.pdf |
Feng, L., Li, C., Huang, J., et al., 2014. A Sulfate Control on Marine Mid-Depth Euxinia on the Early Cambrian (Ca. 529-521 Ma) Yangtze Platform, South China. Precambrian Research, 246(0): 123-133 http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201501009004.htm |
Fike, D. A., Grotzinger, J. P., Pratt, L. M., et al., 2006. Oxidation of the Ediacaran Ocean. Nature, 444: 744-747 doi: 10.1038/nature05345 |
Foellmi, K. B., 1996. The Phosphorus Cycle, Phosphogenesis and Marine Phosphate-Rich Deposits. Earth Science Reviews, 40: 55-124 doi: 10.1016/0012-8252(95)00049-6 |
Fry, B., Ruf, W., Gest, H., et al., 1988. Sulfur Isotope Effects Associated with Oxidation of Sulfide by O2 in Aqueous Solution. Chemical Geology: Isotope Geoscience section, 73(3): 205-210 doi: 10.1016/0168-9622(88)90001-2 |
Fu, Y., Dong, L., Li, C., et al., 2016. New Re-Os Isotopic Constrains on the Formation of the Metalliferous Deposits of the Lower Cambrian Niutitang Formation. Journal of Earth Science, 27(2): this issue doi: 10.1007/s12583-016-0606-7 |
Gill, B. C., Lyons, T. W., Young, S. A., et al., 2011. Geochemical Evidence for Widespread Euxinia in the Later Cambrian Ocean. Nature, 469(7328): 80-83 doi: 10.1038/nature09700 |
Glenn, C. R., Follmi, K. B., Riggs, S. R., et al., 1994. Phosphorus and Phosphorites: Sedimentology and Environments of Formation. Eclogae Geologicae Helvetiae, 87: 747-788 http://www.researchgate.net/publication/259590468_Phosphorus_and_Phosphorites_Sedimentology_and_Environments_of_Formation |
Goldberg, T., Poulton, S. W., Strauss, H., 2005. Sulphur and Oxygen Isotope Signatures of Late Neoproterozoic to Early Cambrian Sulphate, Yangtze Platform, China: Diagenetic Constraints and Seawater Evolution. Precambrian Research, 137: 223-241 doi: 10.1016/j.precamres.2005.03.003 |
Grotzinger, J. P., Fike, D. A., Fischer, W. W., 2011. Enigmatic Origin of the Largest-Known Carbon Isotope Excursion in Earth's History. Nature Geosci, 4(5): 285-292 doi: 10.1038/ngeo1138 |
Guo, Q., Strauss, H., Zhao, Y., et al., 2014. Reconstructing Marine Redox Conditions for the Transition between Cambrian Series 2 and Cambrian Series 3, Kaili Area, Yangtze Platform: Evidence from Biogenic Sulfur and Degree of Pyritization. Palaeogeography, Palaeoclimatology, Palaeoecology, 398(0): 144-153 http://www.sciencedirect.com/science/article/pii/S0031018213004483 |
Habicht, K. S., Canfield, D. E., 1997. Sulfur Isotope Fractionation during Bacterial Sulfate Reduction in Organic-Rich Sediments. Geochimica et Cosmochimica Acta, 61: 5351-5361 doi: 10.1016/S0016-7037(97)00311-6 |
Hu, J., Xiao, S., Yuan, X., 2002. Articulated Sponges from the Early Cambrian Hetang Formation in South China. GSA Annual Meeting Abstracts with Programs, 34: 425 http://www.mendeley.com/research/articulated-sponges-early-cambrian-hetang-formation-south-china/ |
Hubert, C., Voordouw, G., Mayer, B., 2009. Elucidating Microbial Processes in Nitrate- and Sulfate-Reducing Systems Using Sulfur and Oxygen Isotope Ratios: the Example of Oil Reservoir Souring Control. Geochimica et Cosmochimica Acta, 73(13): 3864-3879 doi: 10.1016/j.gca.2009.03.025 |
Jørgensen, B. B., Fossing, H., Wirsen, C. O., et al., 1991. Sulfide Oxidation in the Anoxic Black Sea Chemocline. Deep Sea Research Part A. Oceanographic Research Papers, 38, Supplement 2(0): S1083-S1103 http://www.sciencedirect.com/science/article/pii/S0198014910800251 |
Jiang, S. Y., Yang, J. H., Ling, H. F., et al., 2007. Extreme Enrichment of Polymetallic Ni-Mo-PGE-Au in Lower Cambrian Black Shales of South China: An Os Isotope and PGE Geochemical Investigation. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 217-228 doi: 10.1016/j.palaeo.2007.03.024 |
Jiang, S. Y., Zhao, H. X., Chen, Y. Q., et al., 2007. Trace and Rare Earth Element Geochemistry of Phosphate Nodules from the Lower Cambrian Black Shale Sequence in the Mufu Mountain of Nanjing, Jiangsu Province, China. Chemical Geology, 244(3-4): 584-604 doi: 10.1016/j.chemgeo.2007.07.010 |
Jiang, S. Y., Zhao, K. D., Li, L., et al., 2007. Highly Metalliferous Carbonaceous Shale and Early Cambrian Seawater: Comment and Reply: Comment. Geology, 35(1): e158-e159 doi: 10.1130/G24437C.1 |
Jiang, S. Y., Pi, D. H., Heubeck, C., et al., 2009. Early Cambrian Ocean Anoxia in South China. Nature, 459(7248): E5-E6 doi: 10.1038/nature08048 |
Jiang, S., Yang, J., Ling, H., et al., 2003. Re-Os Isotopes and PGE Geochemistry of Black Shales and Intercalated Ni-Mo Polymetallic Sulfide Bed from the Lower Cambrian Niutitang Formation, South China. Progress in Natural Science, 13: 788-794 doi: 10.1080/10020070312331344440 |
Jin, C., Li, C., Peng, X., et al., 2014. Spatiotemporal Variability of Ocean Chemistry in the Early Cambrian, South China. Science China Earth Sciences, 57(4): 579-591 doi: 10.1007/s11430-013-4779-y |
Lehmann, B., Nägler, T. F., Holland, H. D., et al., 2007. Highly Metalliferous Carbonaceous Shale and Early Cambrian Seawater. Geology, 35: 403-406 doi: 10.1130/G23543A.1 |
Li, C., Cheng, M., Algeo, T., et al., 2015. A Theoretical Prediction of Chemical Zonation in Early Oceans (>520 Ma). Science China Earth Sciences, 58(11): 1901-1909 doi: 10.1007/s11430-015-5190-7 |
Luther, G. W., Findlay, A. J., MacDonald, D. J., et al., 2011. Thermodynamics and Kinetics of Sulfide Oxidation by Oxygen: A Look at Inorganically Controlled Reactions and Biologically Mediated Processes in the Environment. Frontiers in Microbiology, 2 http://pubmedcentralcanada.ca/pmcc/articles/PMC3153037/ |
Marenco, P. J., Corsetti, F. A., Hammond, D. E., et al., 2008. Oxidation of Pyrite during Extraction of Carbonate Associated Sulfate. Chemical Geology, 247: 124-132 doi: 10.1016/j.chemgeo.2007.10.006 |
Marshall, C. R., 2006. Explaining the Cambrian "Explosion" of Animals. Annual Review of Earth and Planetary Sciences, 34: 355-384 doi: 10.1146/annurev.earth.33.031504.103001 |
Mazumdar, A., Goldberg, T., Strauss, H., 2008. Abiotic Oxidation of Pyrite by Fe(Ⅲ) in Acidic Media and its Implications for Sulfur Isotope Measurements of Lattice-Bound Sulfate in Sediments. Chemical Geology, 253(1-2): 30-37 doi: 10.1016/j.chemgeo.2008.03.014 |
McFadden, K. A., Huang, J., Chu, X., et al., 2008. Pulsed Oxidation and Biological Evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences, 105: 3197-3202 doi: 10.1073/pnas.0708336105 |
Moses, C. O., Kirk Nordstrom, D., Herman, J. S., et al., 1987. Aqueous Pyrite Oxidation by Dissolved Oxygen and by Ferric Iron. Geochimica et Cosmochimica Acta, 51(6): 1561-1571 doi: 10.1016/0016-7037(87)90337-1 |
Moses, C. O., Herman, J. S., 1991. Pyrite Oxidation at Circumneutral pH. Geochimica et Cosmochimica Acta, 55(2): 471-482 doi: 10.1016/0016-7037(91)90005-P |
Och, L. M., Shields Zhou, G. A., 2012. The Neoproterozoic Oxygenation Event: Environmental Perturbations and Biogeochemical Cycling. Earth-Science Reviews, 110(1-4): 26-57 http://www.sciencedirect.com/science/article/pii/S0012825211001498 |
Och, L. M., Shields Zhou, G. A., Poulton, S. W., et al., 2013. Redox Changes in Early Cambrian Black Shales at Xiaotan Section, Yunnan Province, South China. Precambrian Research, 225: 166-189 doi: 10.1016/j.precamres.2011.10.005 |
Orberger, B., Vymazalova, A., Wagner, C., et al., 2006. Origin of MoSC Phases in Lower Cambrian Black Shales (Southern China). Geochimica et Cosmochimica Acta, 70(18, Supplement): A462 http://www.sciencedirect.com/science/article/pii/S001670370600946X |
Peng, Y., Bao, H., Pratt, L. M., et al., 2014. Widespread Contamination of Carbonate-Associated Sulfate by Present-Day Secondary Atmospheric Sulfate: Evidence from Triple Oxygen Isotopes. Geology, 42(9): 815-818 doi: 10.1130/G35852.1 |
Pi, D. H., Liu, C. Q., Shields Zhou, G. A., et al., 2013. Trace and Rare Earth Element Geochemistry of Black Shale and Kerogen in the Early Cambrian Niutitang Formation in Guizhou Province, South China: Constraints for Redox Environments and Origin of Metal Enrichments. Precambrian Research, 225: 218-229 doi: 10.1016/j.precamres.2011.07.004 |
Rasmussen, B., Buick, R., Taylor, W. R., 1998. Removal of Oceanic REE by Authigenic Precipitation of Phosphatic Minerals. Earth and Planetary Science Letters, 164(1-2): 135-149 doi: 10.1016/S0012-821X(98)00199-X |
Rickard, D., 1997. Kinetics Of Pyrite Formation by the H2S Oxidation of Iron (Ⅱ) Monosulfide in Aqueous Solutions Between 25 And 125 ℃: The Rate Equation. Geochimica et Cosmochimica Acta, 61(1): 115-134 doi: 10.1016/S0016-7037(96)00321-3 |
Ruttenberg, K. C., Heinrich, D. H., Karl, K. T., 2003. The Global Phosphorus Cycle. Treatise on Geochemistry, Pergamon: Oxford. 585-643 http://adsabs.harvard.edu/abs/2003TrGeo...8..585R |
Schippers, A., Jørgensen, B. B., 2001. Oxidation of Pyrite and Iron Sulfide by Manganese Dioxide in Marine Sediments. Geochimica et Cosmochimica Acta, 65(6): 915-922 doi: 10.1016/S0016-7037(00)00589-5 |
Shields, G., Kimura, H., Yang, J., et al., 2004. Sulphur Isotopic Evolution of Neoproterozoic-Cambrian Seawater: New Francolite-Bound Sulphate D34s Data and a Critical Appraisal of the Existing Record. Chemical Geology, 204: 163-182 doi: 10.1016/j.chemgeo.2003.12.001 |
Shu, D., 2008. Cambrian explosion: Birth of Tree of Animals. Gondwana Research, 14(1-2): 219-240 doi: 10.1016/j.gr.2007.08.004 |
Sperling, E. A., Wolock, C. J., Morgan, A. S., et al., 2015. Statistical Analysis of Iron Geochemical Data Suggests Limited Late Proterozoic Oxygenation. Nature, 523(7561): 451-454 doi: 10.1038/nature14589 |
Su, D. Y., Wu, Z. C., Zhang, M. Q., et al., 2012. Geological Characteristics and Metallogenic Prediction of Vanadium Deposit in Northeast Guizhou. Guizhou Geology, 29: 173-182 http://en.cnki.com.cn/Article_en/CJFDTotal-GZDZ201203005.htm |
Tarhan, L. G., Droser, M. L., 2014. Widespread Delayed Mixing in Early to Middle Cambrian Marine Shelfal Settings. Palaeogeography, Palaeoclimatology, Palaeoecology, 399(0): 310-322 http://www.sciencedirect.com/science/article/pii/S0031018214000340 |
Van Stempvoort, D. R., Krouse, H. R., 1994. Controls of Sulfate δ18O: A General Model and Application to Specific Environments. In: Alpers, C. N., Blowes, D. W., eds. Environmental Geochemistry of Sulfide Oxidation, American Chemical Society: Washington, D.C. 446-480 |
Wang, J., Chen, D., Yan, D., et al., 2012. Evolution from an Anoxic to Oxic Deep Ocean during the Ediacaran-Cambrian Transition and Implications for Bioradiation. Chemical Geology, 306-307: 129-138 doi: 10.1016/j.chemgeo.2012.03.005 |
Wang, X., Shi, X., Jiang, G., et al., 2012. New U-Pb Age from the Basal Niutitang Formation in South China: Implications for Diachronous Development and Condensation of Stratigraphic Units across the Yangtze Platform at the Ediacaran-Cambrian Transition. Journal of Asian Earth Sciences, 48(0): 1-8 http://www.sciencedirect.com/science/article/pii/S1367912012000119 |
Xiao, S., Hu, J., Yuan, X., et al., 2005. Articulated Sponges from the Lower Cambrian Hetang Formation in Southern Anhui, South China: Their Age and Implications for the Early Evolution of Sponges. Palaeogeography, Palaeoclimatology, Palaeoecology, 220(1-2): 89-117 doi: 10.1016/j.palaeo.2002.02.001 |
Xu, L., Lehmann, B., Mao, J., et al., 2011. Re-Os Age of Polymetallic Ni-Mo-PGE-Au Mineralization in Early Cambrian Black Shales of South China-A Reassessment. Economic Geology, 106(3): 511-522 doi: 10.2113/econgeo.106.3.511 |
Xu, L., Lehmann, B., Mao, J., 2013. Seawater Contribution to Polymetallic Ni-Mo-PGE-Au Mineralization in Early Cambrian Black Shales of South China: Evidence from Mo Isotope, PGE, Trace Element, and REE Geochemistry. Ore Geology Reviews, 52: 66-84 doi: 10.1016/j.oregeorev.2012.06.003 |
Yang, J. H., Jiang, S. Y., Ling, H. F., et al., 2004. Paleoceangraphic Significance of Redox-Sensitive Metals of Black Shales in the Basal Lower Cambrian Niutitang Formation in Guizhou Province, South China. Progress in Natural Science, 14: 152-157 doi: 10.1080/10020070412331343291 |
Yang, R., Zhu, L., Gao, H., et al., 2005. A Study on Charateristics of the Hydrothermal Vent and Relating Biota at the Cambrian Bottom in Songlin, Zunyi County, Guizhou Province. Geological Review, 51: 481-492 http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200505001.htm |
Yuan, X., Xiao, S., Parsley, R. L., et al., 2002. Towering Sponges in an Early Cambrian Lagerstätte: Disparity Between Non-Bilaterian and Bilaterian Epifaunal Tiers during the Neoproterozoic-Cambrian Transition. Geology, 30(4): 363-366 doi: 10.1130/0091-7613(2002)030<0363:TSIAEC>2.0.CO;2 |
Zhou, C., Jiang, S. Y., 2009. Palaeoceanographic Redox Environments for the Lower Cambrian Hetang Formation in South China: Evidence from Pyrite Framboids, Redox Sensitive Trace Elements, and Sponge Biota Occurrence. Palaeogeography, Palaeoclimatology, Palaeoecology, 271(3-4): 279-286 doi: 10.1016/j.palaeo.2008.10.024 |
Zhu, B., Jiang, S. Y., Yang, J. H., et al., 2014. Rare Earth Element and Sr-Nd Isotope Geochemistry of Phosphate Nodules from the Lower Cambrian Niutitang Formation, NW Hunan Province, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 398(0): 132-143 http://www.sciencedirect.com/science/article/pii/S0031018213004471 |
Zhu, M. Y., Zhang, J. M., Steiner, M., et al., 2003. Sinian-Cambrian Stratigraphic Framework for Shallow- to Deep-Water Environments of the Yangtze Platform: An Integrated Approach. Progress in Natural Science, 13: 351-960 |