Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 27 Issue 2
Mar 2016
Turn off MathJax
Article Contents
Wenlang Qiao, Xianguo Lang, Yongbo Peng, Kaiyuan Jiang, Wu Chen, Kangjun Huang, Bing Shen. Sulfur and Oxygen Isotopes of Sulfate Extracted from Early Cambrian Phosphorite Nodules: Implications for Marine Redox Evolution in the Yangtze Platform. Journal of Earth Science, 2016, 27(2): 170-179. doi: 10.1007/s12583-016-0688-2
Citation: Wenlang Qiao, Xianguo Lang, Yongbo Peng, Kaiyuan Jiang, Wu Chen, Kangjun Huang, Bing Shen. Sulfur and Oxygen Isotopes of Sulfate Extracted from Early Cambrian Phosphorite Nodules: Implications for Marine Redox Evolution in the Yangtze Platform. Journal of Earth Science, 2016, 27(2): 170-179. doi: 10.1007/s12583-016-0688-2

Sulfur and Oxygen Isotopes of Sulfate Extracted from Early Cambrian Phosphorite Nodules: Implications for Marine Redox Evolution in the Yangtze Platform

doi: 10.1007/s12583-016-0688-2
More Information
  • Corresponding author: Bing Shen, bingshen@pku.edu.cn
  • Received Date: 05 Dec 2015
  • Accepted Date: 05 Mar 2016
  • Publish Date: 01 Apr 2016
  • Phosphorite nodule beds are discovered in the black shale of basal Niutitang Formation throughout the Yangtze Platform in South China, recording an important phosphorite-generation event. Platform-wide phosphorite precipitation requires special oceanographic and geochemical conditions, thus the origin of the Niutitang phosphorite nodules may provide valuable information about the ocean chemistry in the Early Cambrian. In this study, we measured sulfur and oxygen isotopic compositions of sulfate extracted from phosphorite nodules collected from the basal Niutitang Formation. Phosphorite associated sulfate (PAS) is a trace amount of sulfate that incorporates into crystal lattice during phosphorite precipitation, accordingly PAS records the geochemical signals during phosphorite nodule formation. Sulfur isotopic composition of PAS (δ34SPAS) ranges from -1.16‰ to +24.48‰ (mean=+8.19‰, n=11), and oxygen isotopic value (δ18OPAS) varies between -5.3‰ and +26.3‰ (mean=+7.0‰, n=8). Most phosphorite nodules have low δ34SPAS and low δ18OPAS values, suggesting PAS mainly derived from anaerobic oxidation of H2S within suboxic sediment porewater. We propose that phosphate was delivered to the Yangtze Platform by a series of upwelling events, and was scavenged from seawater with the precipitation of FeOOH. The absorbed phosphate was released into suboxic porewater by the reduction of FeOOH at the oxic-suboxic redox boundary in sediments, and phosphorite nodule precipitated by the reaction of phosphate with Ca2+ diffused from the overlying seawater. The platform-wide deposition of phosphorite nodules in the basal Niutitang Formation implies the bottom water might be suboxic or even oxic, at least sporadically, in Early Cambrian. We speculate that the intensified ocean circulation as evident with frequent occurrences of upwelling events might be the primary reason for the episodic oxidation of the Yangtze Platform in Early Cambrian.

     

  • Wenlang Qiao and Xianguo Lang are Co-first authors.
  • loading
  • Antler, G., Turchyn, A. V., Rennie, V., et al., 2013. Coupled Sulfur and Oxygen Isotope Insight into Bacterial Sulfate Reduction in the Natural Environment. Geochimica et Cosmochimica Acta, 118(0): 98-117 http://www.sciencedirect.com/science/article/pii/S001670371300269X
    Böttcher, M. E., Thamdrup, B., 2001. Anaerobic Sulfide Oxidation and Stable Isotope Fractionation Associated with Bacterial Sulfur Disproportionation in the Presence of MnO2. Geochimica et Cosmochimica Acta, 65(10): 1573-1581 doi: 10.1016/S0016-7037(00)00622-0
    Balci, N., Shanks Iii, W. C., Mayer, B., et al., 2007. Oxygen and Sulfur Isotope Systematics of Sulfate Produced by Bacterial and Abiotic Oxidation of Pyrite. Geochimica et Cosmochimica Acta, 71(15): 3796-3811 doi: 10.1016/j.gca.2007.04.017
    Bao, H., 2006. Purifying Barite for Oxygen Isotope Measurement by Dissolution and Reprecipitation in a Chelating Solution. Analytical Chemistry, 78(1): 304-309 doi: 10.1021/ac051568z
    Bao, Z. X., Wan, R. J., Bao, J. M., 2002. Vanadium Deposits of Black Shale in Upper Yangtze Platform. Yunnan Geology, 21: 175-182
    Bohlke, J. K., Mroczkowski, S. J., Coplen, T. B., 2003. Oxygen isotopes In Nitrate: New Reference Materials for O-18: O-17: O-16 Measurements and Observations on Nitrate-Water Equilibration. Rapid Communications in Mass Spectrometry, 17: 1835-1846 doi: 10.1002/rcm.1123
    Brand, W. A., Coplen, T. B., Aerts-Bijma, A. T., et al., 2009. Comprehensive inter-Laboratory Calibration of Reference Materials for Delta O-18 versus VSMOW Using Various On-Line High-Temperature Conversion Techniques. Rapid Communications in Mass Spectrometry, 23: 999-1019 doi: 10.1002/rcm.3958
    Brimblecombe, P., Heinrich, D. H., Karl, K. T., 2003. The Global Sulfur Cycle. Treatise on Geochemistry, Pergamon: Oxford. 645-682
    Bruland, K. W., Lohan, M. C., 2003. Controls of Trace Metals in Seawater. In: Holland, H. D., Turekian, K. K., eds. Treatise on Geochemistry, Elsevier, 6: Oxford, Pergamon. 23-47
    Brunner, B., Bernascon, S. M., 2005. A Revised Isotope Fractionation Model for Dissimilatory Sulfate Reduction in Sulfate Reducing Bacteria. Geochimica et Cosmochimica Acta, 69(20): 4759-4771 doi: 10.1016/j.gca.2005.04.015
    Brunner, B., Bernasconi, S. M., Kleikemper, J., et al., 2005. A Model for Oxygen and Sulfur Isotope Fractionation in Sulfate during Bacterial Sulfate Reduction Processes. Geochimica et Cosmochimica Acta, 69(20): 4773-4785 doi: 10.1016/j.gca.2005.04.017
    Canfield, D. E., 2004. The Evolution of the Earth Surface Sulfur Reservoir. Am. J. Sci. , 304: 839-861 doi: 10.2475/ajs.304.10.839
    Canfield, D. E., Farquhar, J., 2009. Animal Evolution, Bioturbation, and the Sulfate Concentration of the Oceans. Proceedings of the National Academy of Sciences, 106(20): 8123-8127 doi: 10.1073/pnas.0902037106
    Chen, D., Zhou, X., Fu, Y., et al., 2015. New U-Pb Zircon Ages of the Ediacaran-Cambrian Boundary Strata in South China. Terra Nova, 27(1): 62-68 doi: 10.1111/ter.12134
    Cheng, M., Hu, X., Sun, J., et al., 2012. Overview on the Cambrian Black Shale-Hosted Vanadium Deposit in Hunan. Contributions to Geology and Mineral Resources Research, 27: 410-420 http://en.cnki.com.cn/Article_en/CJFDTotal-DZZK201204003.htm
    Farquhar, J., Canfield, D. E., Masterson, A., et al., 2008. Sulfur and Oxygen Isotope Study of Sulfate Reduction in Experiments with Natural Populations from Fællestrand, Denmark. Geochimica et Cosmochimica Acta, 72(12): 2805-2821 doi: 10.1016/j.gca.2008.03.013
    Feng, D., Roberts, H. H., 2011. Geochemical Characteristics of the Barite Deposits at Cold Seeps from the Northern Gulf of Mexico Continental Slope. Earth and Planetary Science Letters, 309(1-2): 89-99 http://www.researchgate.net/profile/Dong_Feng4/publication/251556972_Geochemical_characteristics_of_the_barite_deposits_at_cold_seeps_from_the_northern_Gulf_of_Mexico_continental_slope/links/54d372cc0cf2b0c6146d8b0b.pdf
    Feng, L., Li, C., Huang, J., et al., 2014. A Sulfate Control on Marine Mid-Depth Euxinia on the Early Cambrian (Ca. 529-521 Ma) Yangtze Platform, South China. Precambrian Research, 246(0): 123-133 http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201501009004.htm
    Fike, D. A., Grotzinger, J. P., Pratt, L. M., et al., 2006. Oxidation of the Ediacaran Ocean. Nature, 444: 744-747 doi: 10.1038/nature05345
    Foellmi, K. B., 1996. The Phosphorus Cycle, Phosphogenesis and Marine Phosphate-Rich Deposits. Earth Science Reviews, 40: 55-124 doi: 10.1016/0012-8252(95)00049-6
    Fry, B., Ruf, W., Gest, H., et al., 1988. Sulfur Isotope Effects Associated with Oxidation of Sulfide by O2 in Aqueous Solution. Chemical Geology: Isotope Geoscience section, 73(3): 205-210 doi: 10.1016/0168-9622(88)90001-2
    Fu, Y., Dong, L., Li, C., et al., 2016. New Re-Os Isotopic Constrains on the Formation of the Metalliferous Deposits of the Lower Cambrian Niutitang Formation. Journal of Earth Science, 27(2): this issue doi: 10.1007/s12583-016-0606-7
    Gill, B. C., Lyons, T. W., Young, S. A., et al., 2011. Geochemical Evidence for Widespread Euxinia in the Later Cambrian Ocean. Nature, 469(7328): 80-83 doi: 10.1038/nature09700
    Glenn, C. R., Follmi, K. B., Riggs, S. R., et al., 1994. Phosphorus and Phosphorites: Sedimentology and Environments of Formation. Eclogae Geologicae Helvetiae, 87: 747-788 http://www.researchgate.net/publication/259590468_Phosphorus_and_Phosphorites_Sedimentology_and_Environments_of_Formation
    Goldberg, T., Poulton, S. W., Strauss, H., 2005. Sulphur and Oxygen Isotope Signatures of Late Neoproterozoic to Early Cambrian Sulphate, Yangtze Platform, China: Diagenetic Constraints and Seawater Evolution. Precambrian Research, 137: 223-241 doi: 10.1016/j.precamres.2005.03.003
    Grotzinger, J. P., Fike, D. A., Fischer, W. W., 2011. Enigmatic Origin of the Largest-Known Carbon Isotope Excursion in Earth's History. Nature Geosci, 4(5): 285-292 doi: 10.1038/ngeo1138
    Guo, Q., Strauss, H., Zhao, Y., et al., 2014. Reconstructing Marine Redox Conditions for the Transition between Cambrian Series 2 and Cambrian Series 3, Kaili Area, Yangtze Platform: Evidence from Biogenic Sulfur and Degree of Pyritization. Palaeogeography, Palaeoclimatology, Palaeoecology, 398(0): 144-153 http://www.sciencedirect.com/science/article/pii/S0031018213004483
    Habicht, K. S., Canfield, D. E., 1997. Sulfur Isotope Fractionation during Bacterial Sulfate Reduction in Organic-Rich Sediments. Geochimica et Cosmochimica Acta, 61: 5351-5361 doi: 10.1016/S0016-7037(97)00311-6
    Hu, J., Xiao, S., Yuan, X., 2002. Articulated Sponges from the Early Cambrian Hetang Formation in South China. GSA Annual Meeting Abstracts with Programs, 34: 425 http://www.mendeley.com/research/articulated-sponges-early-cambrian-hetang-formation-south-china/
    Hubert, C., Voordouw, G., Mayer, B., 2009. Elucidating Microbial Processes in Nitrate- and Sulfate-Reducing Systems Using Sulfur and Oxygen Isotope Ratios: the Example of Oil Reservoir Souring Control. Geochimica et Cosmochimica Acta, 73(13): 3864-3879 doi: 10.1016/j.gca.2009.03.025
    Jørgensen, B. B., Fossing, H., Wirsen, C. O., et al., 1991. Sulfide Oxidation in the Anoxic Black Sea Chemocline. Deep Sea Research Part A. Oceanographic Research Papers, 38, Supplement 2(0): S1083-S1103 http://www.sciencedirect.com/science/article/pii/S0198014910800251
    Jiang, S. Y., Yang, J. H., Ling, H. F., et al., 2007. Extreme Enrichment of Polymetallic Ni-Mo-PGE-Au in Lower Cambrian Black Shales of South China: An Os Isotope and PGE Geochemical Investigation. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 217-228 doi: 10.1016/j.palaeo.2007.03.024
    Jiang, S. Y., Zhao, H. X., Chen, Y. Q., et al., 2007. Trace and Rare Earth Element Geochemistry of Phosphate Nodules from the Lower Cambrian Black Shale Sequence in the Mufu Mountain of Nanjing, Jiangsu Province, China. Chemical Geology, 244(3-4): 584-604 doi: 10.1016/j.chemgeo.2007.07.010
    Jiang, S. Y., Zhao, K. D., Li, L., et al., 2007. Highly Metalliferous Carbonaceous Shale and Early Cambrian Seawater: Comment and Reply: Comment. Geology, 35(1): e158-e159 doi: 10.1130/G24437C.1
    Jiang, S. Y., Pi, D. H., Heubeck, C., et al., 2009. Early Cambrian Ocean Anoxia in South China. Nature, 459(7248): E5-E6 doi: 10.1038/nature08048
    Jiang, S., Yang, J., Ling, H., et al., 2003. Re-Os Isotopes and PGE Geochemistry of Black Shales and Intercalated Ni-Mo Polymetallic Sulfide Bed from the Lower Cambrian Niutitang Formation, South China. Progress in Natural Science, 13: 788-794 doi: 10.1080/10020070312331344440
    Jin, C., Li, C., Peng, X., et al., 2014. Spatiotemporal Variability of Ocean Chemistry in the Early Cambrian, South China. Science China Earth Sciences, 57(4): 579-591 doi: 10.1007/s11430-013-4779-y
    Lehmann, B., Nägler, T. F., Holland, H. D., et al., 2007. Highly Metalliferous Carbonaceous Shale and Early Cambrian Seawater. Geology, 35: 403-406 doi: 10.1130/G23543A.1
    Li, C., Cheng, M., Algeo, T., et al., 2015. A Theoretical Prediction of Chemical Zonation in Early Oceans (>520 Ma). Science China Earth Sciences, 58(11): 1901-1909 doi: 10.1007/s11430-015-5190-7
    Luther, G. W., Findlay, A. J., MacDonald, D. J., et al., 2011. Thermodynamics and Kinetics of Sulfide Oxidation by Oxygen: A Look at Inorganically Controlled Reactions and Biologically Mediated Processes in the Environment. Frontiers in Microbiology, 2 http://pubmedcentralcanada.ca/pmcc/articles/PMC3153037/
    Marenco, P. J., Corsetti, F. A., Hammond, D. E., et al., 2008. Oxidation of Pyrite during Extraction of Carbonate Associated Sulfate. Chemical Geology, 247: 124-132 doi: 10.1016/j.chemgeo.2007.10.006
    Marshall, C. R., 2006. Explaining the Cambrian "Explosion" of Animals. Annual Review of Earth and Planetary Sciences, 34: 355-384 doi: 10.1146/annurev.earth.33.031504.103001
    Mazumdar, A., Goldberg, T., Strauss, H., 2008. Abiotic Oxidation of Pyrite by Fe(Ⅲ) in Acidic Media and its Implications for Sulfur Isotope Measurements of Lattice-Bound Sulfate in Sediments. Chemical Geology, 253(1-2): 30-37 doi: 10.1016/j.chemgeo.2008.03.014
    McFadden, K. A., Huang, J., Chu, X., et al., 2008. Pulsed Oxidation and Biological Evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences, 105: 3197-3202 doi: 10.1073/pnas.0708336105
    Moses, C. O., Kirk Nordstrom, D., Herman, J. S., et al., 1987. Aqueous Pyrite Oxidation by Dissolved Oxygen and by Ferric Iron. Geochimica et Cosmochimica Acta, 51(6): 1561-1571 doi: 10.1016/0016-7037(87)90337-1
    Moses, C. O., Herman, J. S., 1991. Pyrite Oxidation at Circumneutral pH. Geochimica et Cosmochimica Acta, 55(2): 471-482 doi: 10.1016/0016-7037(91)90005-P
    Och, L. M., Shields Zhou, G. A., 2012. The Neoproterozoic Oxygenation Event: Environmental Perturbations and Biogeochemical Cycling. Earth-Science Reviews, 110(1-4): 26-57 http://www.sciencedirect.com/science/article/pii/S0012825211001498
    Och, L. M., Shields Zhou, G. A., Poulton, S. W., et al., 2013. Redox Changes in Early Cambrian Black Shales at Xiaotan Section, Yunnan Province, South China. Precambrian Research, 225: 166-189 doi: 10.1016/j.precamres.2011.10.005
    Orberger, B., Vymazalova, A., Wagner, C., et al., 2006. Origin of MoSC Phases in Lower Cambrian Black Shales (Southern China). Geochimica et Cosmochimica Acta, 70(18, Supplement): A462 http://www.sciencedirect.com/science/article/pii/S001670370600946X
    Peng, Y., Bao, H., Pratt, L. M., et al., 2014. Widespread Contamination of Carbonate-Associated Sulfate by Present-Day Secondary Atmospheric Sulfate: Evidence from Triple Oxygen Isotopes. Geology, 42(9): 815-818 doi: 10.1130/G35852.1
    Pi, D. H., Liu, C. Q., Shields Zhou, G. A., et al., 2013. Trace and Rare Earth Element Geochemistry of Black Shale and Kerogen in the Early Cambrian Niutitang Formation in Guizhou Province, South China: Constraints for Redox Environments and Origin of Metal Enrichments. Precambrian Research, 225: 218-229 doi: 10.1016/j.precamres.2011.07.004
    Rasmussen, B., Buick, R., Taylor, W. R., 1998. Removal of Oceanic REE by Authigenic Precipitation of Phosphatic Minerals. Earth and Planetary Science Letters, 164(1-2): 135-149 doi: 10.1016/S0012-821X(98)00199-X
    Rickard, D., 1997. Kinetics Of Pyrite Formation by the H2S Oxidation of Iron (Ⅱ) Monosulfide in Aqueous Solutions Between 25 And 125 ℃: The Rate Equation. Geochimica et Cosmochimica Acta, 61(1): 115-134 doi: 10.1016/S0016-7037(96)00321-3
    Ruttenberg, K. C., Heinrich, D. H., Karl, K. T., 2003. The Global Phosphorus Cycle. Treatise on Geochemistry, Pergamon: Oxford. 585-643 http://adsabs.harvard.edu/abs/2003TrGeo...8..585R
    Schippers, A., Jørgensen, B. B., 2001. Oxidation of Pyrite and Iron Sulfide by Manganese Dioxide in Marine Sediments. Geochimica et Cosmochimica Acta, 65(6): 915-922 doi: 10.1016/S0016-7037(00)00589-5
    Shields, G., Kimura, H., Yang, J., et al., 2004. Sulphur Isotopic Evolution of Neoproterozoic-Cambrian Seawater: New Francolite-Bound Sulphate D34s Data and a Critical Appraisal of the Existing Record. Chemical Geology, 204: 163-182 doi: 10.1016/j.chemgeo.2003.12.001
    Shu, D., 2008. Cambrian explosion: Birth of Tree of Animals. Gondwana Research, 14(1-2): 219-240 doi: 10.1016/j.gr.2007.08.004
    Sperling, E. A., Wolock, C. J., Morgan, A. S., et al., 2015. Statistical Analysis of Iron Geochemical Data Suggests Limited Late Proterozoic Oxygenation. Nature, 523(7561): 451-454 doi: 10.1038/nature14589
    Su, D. Y., Wu, Z. C., Zhang, M. Q., et al., 2012. Geological Characteristics and Metallogenic Prediction of Vanadium Deposit in Northeast Guizhou. Guizhou Geology, 29: 173-182 http://en.cnki.com.cn/Article_en/CJFDTotal-GZDZ201203005.htm
    Tarhan, L. G., Droser, M. L., 2014. Widespread Delayed Mixing in Early to Middle Cambrian Marine Shelfal Settings. Palaeogeography, Palaeoclimatology, Palaeoecology, 399(0): 310-322 http://www.sciencedirect.com/science/article/pii/S0031018214000340
    Van Stempvoort, D. R., Krouse, H. R., 1994. Controls of Sulfate δ18O: A General Model and Application to Specific Environments. In: Alpers, C. N., Blowes, D. W., eds. Environmental Geochemistry of Sulfide Oxidation, American Chemical Society: Washington, D.C. 446-480
    Wang, J., Chen, D., Yan, D., et al., 2012. Evolution from an Anoxic to Oxic Deep Ocean during the Ediacaran-Cambrian Transition and Implications for Bioradiation. Chemical Geology, 306-307: 129-138 doi: 10.1016/j.chemgeo.2012.03.005
    Wang, X., Shi, X., Jiang, G., et al., 2012. New U-Pb Age from the Basal Niutitang Formation in South China: Implications for Diachronous Development and Condensation of Stratigraphic Units across the Yangtze Platform at the Ediacaran-Cambrian Transition. Journal of Asian Earth Sciences, 48(0): 1-8 http://www.sciencedirect.com/science/article/pii/S1367912012000119
    Xiao, S., Hu, J., Yuan, X., et al., 2005. Articulated Sponges from the Lower Cambrian Hetang Formation in Southern Anhui, South China: Their Age and Implications for the Early Evolution of Sponges. Palaeogeography, Palaeoclimatology, Palaeoecology, 220(1-2): 89-117 doi: 10.1016/j.palaeo.2002.02.001
    Xu, L., Lehmann, B., Mao, J., et al., 2011. Re-Os Age of Polymetallic Ni-Mo-PGE-Au Mineralization in Early Cambrian Black Shales of South China-A Reassessment. Economic Geology, 106(3): 511-522 doi: 10.2113/econgeo.106.3.511
    Xu, L., Lehmann, B., Mao, J., 2013. Seawater Contribution to Polymetallic Ni-Mo-PGE-Au Mineralization in Early Cambrian Black Shales of South China: Evidence from Mo Isotope, PGE, Trace Element, and REE Geochemistry. Ore Geology Reviews, 52: 66-84 doi: 10.1016/j.oregeorev.2012.06.003
    Yang, J. H., Jiang, S. Y., Ling, H. F., et al., 2004. Paleoceangraphic Significance of Redox-Sensitive Metals of Black Shales in the Basal Lower Cambrian Niutitang Formation in Guizhou Province, South China. Progress in Natural Science, 14: 152-157 doi: 10.1080/10020070412331343291
    Yang, R., Zhu, L., Gao, H., et al., 2005. A Study on Charateristics of the Hydrothermal Vent and Relating Biota at the Cambrian Bottom in Songlin, Zunyi County, Guizhou Province. Geological Review, 51: 481-492 http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200505001.htm
    Yuan, X., Xiao, S., Parsley, R. L., et al., 2002. Towering Sponges in an Early Cambrian Lagerstätte: Disparity Between Non-Bilaterian and Bilaterian Epifaunal Tiers during the Neoproterozoic-Cambrian Transition. Geology, 30(4): 363-366 doi: 10.1130/0091-7613(2002)030<0363:TSIAEC>2.0.CO;2
    Zhou, C., Jiang, S. Y., 2009. Palaeoceanographic Redox Environments for the Lower Cambrian Hetang Formation in South China: Evidence from Pyrite Framboids, Redox Sensitive Trace Elements, and Sponge Biota Occurrence. Palaeogeography, Palaeoclimatology, Palaeoecology, 271(3-4): 279-286 doi: 10.1016/j.palaeo.2008.10.024
    Zhu, B., Jiang, S. Y., Yang, J. H., et al., 2014. Rare Earth Element and Sr-Nd Isotope Geochemistry of Phosphate Nodules from the Lower Cambrian Niutitang Formation, NW Hunan Province, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 398(0): 132-143 http://www.sciencedirect.com/science/article/pii/S0031018213004471
    Zhu, M. Y., Zhang, J. M., Steiner, M., et al., 2003. Sinian-Cambrian Stratigraphic Framework for Shallow- to Deep-Water Environments of the Yangtze Platform: An Integrated Approach. Progress in Natural Science, 13: 351-960
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views(1092) PDF downloads(357) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return