Antcliffe, J. B., Callow, R. H. T., Brasier, M. D., 2014. Giving the Early Fossil Record of Sponges A Squeeze. Biological Reviews, 89: 972-1004 doi: 10.1111/brv.12090 |
Berkner, L. V., Marshall, L. C., 1965. On the Origin and Rise of Oxygen Concentration in the Earth's Atmosphere. Journal of Atmospheric Sciences, 22: 225-261 doi: 10.1175/1520-0469(1965)022<0225:OTOARO>2.0.CO;2 |
Blair, J. E., 2009. Animals (Metazoa). In: Hedges, S. B., Kumar, S., eds., The Timetree of Life. Oxford University Press, Oxford. 223-230 |
Braddy, S. J., Poschmann, M., Tetlie, O. E., 2008. Giant Claw Reveals the Largest Ever Arthropod. Biology Letter, 4: 106-109 doi: 10.1098/rsbl.2007.0491 |
Butterfield, N. J., 2009. Oxygen, Animals and Oceanic Ventilation: An Alternative View. Geobiology, 7: 1-7 doi: 10.1111/j.1472-4669.2009.00188.x |
Campbell, I. H., Allen, C. M., 2008. Formation of Supercontinents Linked to Increases in Atmospheric Oxygen. Nature Geoscience, 1: 554-558 doi: 10.1038/ngeo259 |
Campbell, I. H., Squire, R. J., 2010. The Mountains that Triggered the Late Neoproterozoic Increase in Oxygen: the Second Great Oxidation Event. Geochimica et Cosmochimica Acta, 74: 4187-4206 doi: 10.1016/j.gca.2010.04.064 |
Canfield, D. E., 2005. The Early History of Atmospheric Oxygen: Homage to Robert M. Garrels. Annual Review of Earth and Planetary Science, 33: 1-36 doi: 10.1146/annurev.earth.33.092203.122711 |
Canfield, D. E., Poulton, S. W., Narbonne, G. M., 2007. Late-Neoproterozoic Deep-Ocean Oxygenation and the Rise of Animal Life. Science, 315: 92-95 doi: 10.1126/science.1135013 |
Catling, D. C., Glein, C. R., Zahnle, K. J., et al., 2005. Why O2 Is Required by Complex Life on Habitable Planets and the Concept of Planetary ※Oxygenation Time§. Astrobiology, 5: 415-438 doi: 10.1089/ast.2005.5.415 |
Chen, X., Ling, H. F., Vance, D., et al., 2015. Rise to Modern Levels of Ocean Oxygenation Coincided with the Cambrian Radiation of Animals. Nature Communications, 6: 7142 (DOI: 10.1038/ncomms8142) |
Cloud, P. E Jr., 1948. Some Problems and Patterns of Evolution Exemplified by Fossil Invertebrates. Evolution, 2: 322-350 doi: 10.1111/j.1558-5646.1948.tb02750.x |
Cloud, P. E., 1976. Beginnings of Biospheric Evolution and Their Biogeochemical Consequences. Paleobiology, 2: 351-387 doi: 10.1017/S009483730000498X |
Conway M. S., Peel, J. S., 2008. The Earliest Annelids: Lower Cambrian Polychaetes from the Sirius Passet Lagerstätte, Peary Land, North Greenland. Acta Palaeontologica Polonica, 53: 137-148 doi: 10.4202/app.2008.0110 |
Danovaro, R., Dell'Anno, A., Pusceddu, A., Gambi, C., Heiner, I., Kristensen, R.M., 2010. The First Metazoa Living in Permanently Anoxic Conditions. BMC Biology, 8: 30. doi: 10.1186/1741-7007-8-30 |
Decker, H., van Holde, K. E., 2011. Oxygen and the Evolution of Life. Springer, Berlin. 172 |
Diaz, R. J., Rosenberg, R., 1995. Marine Benthic Hypoxia: A Review of Its Ecological Effects and the Behavioural Responses of Benthic Macrofauna. Oceanography and Marine Biology: An Annual Review, 33: 245-303 http://www.researchgate.net/publication/236628341_Marine_benthic_hypoxia_A_review_of_its_ecological_effects_and_the_behavioural_response_of_benthic_macrofauna |
Dries, R. R., Theede, H., 1974. Sauerstoffmangelresistenz Mariner Bodenvertebraten aus der Westlichen Ostsee. Marine Biology, 25: 327-333 doi: 10.1007/BF00404975 |
Erwin, D. H., Laflamme, M., Tweedt, S. M., et al. 2011. The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals. Science, 334: 1901-1907 http://gbe.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=sci&resid=334/6059/1091 |
Erwin, D. H., Tweedt, S., 2012. Ecological Drivers of the Ediacaran-Cambrian Diversification of Metazoa. Evolutionary Ecology, 26: 417-433 doi: 10.1007/s10682-011-9505-7 |
Erwin, D. H., Valentine, J. W., 2013. The Cambrian Explosion: the Construction of Animal Biodiversity. Roberts and Company Publishers, Inc., Greenwood Village. 406 |
Fedonkin, M. A., Waggoner, B. M., 1997. The Late Precambrian Fossil Kimberella Is a Mollusc-Like Bilaterian Organism. Nature, 388: 868-871 doi: 10.1038/42242 |
Feng, L. J., Li, C., Huang, J., et al., 2014. A sulfate Control on Marine Mid-Depth Euxinia on the Early Cambrian (Ca. 529-521 Ma) Yangtze Platform, South China. Precambrian Research, 246: 123-133 doi: 10.1016/j.precamres.2014.03.002 |
Gray, J. S., Wu, R. S., Or, Y. Y., 2002. Effects of Hypoxia and Organic Enrichment on the Coastal Marine Environment. Marine Ecology Progress Series, 238: 249-270 doi: 10.3354/meps238249 |
Henriksson, R., 1969. Influence of Pollution on the Bottom Fauna of the Sound (Öresund). Oikos, 20: 507-523 doi: 10.2307/3543212 |
Hua, H., Chen, Z., Yuan, X. L., et al., 2005. Skeletogenesis and Asexual Reproduction in the Earliest Biomineralizing Animal Cloudina. Geology, 33: 277-280 doi: 10.1130/G21198.1 |
Jin, C. S., Li, C., Peng, X. F., et al., 2014. Spatiotemporal Variability of Ocean Chemistry in the Early Cambrian, South China. Science China: Earth Science, 57: 579-591 doi: 10.1007/s11430-013-4779-y |
Kasting, J. F., 1993. Earth's Early Atmosphere. Science, 259: 920-926 doi: 10.1126/science.11536547 |
Kendall, B., Anbar, A. D., Kappler, A., et al., 2012. The Global Iron Cycle. In: Knoll, A. H., Canfield, D. E., Konhauser, K. O., eds., Fundamentals of Geobiology. Wiley-Blackewll, Oxford. 65-92 |
Knoll, A. H., Sperling, E. A., 2014. Oxygen and Animals in Earth History. Proceedings of the National Academy of Sciences of the United States of America, 111: 3907-3908 doi: 10.1073/pnas.1401745111 |
Knoll, A.H., Carroll, S.B., 1999. Early Animal Evolution: Emerging Views from Comparative Biology and Geology. Science, 284: 2129-2137 doi: 10.1126/science.284.5423.2129 |
Knoll, A. H., Walter, M. R., 1992. Latest Proterozoic Stratigraphy and Earth History. Nature, 356: 673-678 doi: 10.1038/356673a0 |
Kouchinsky, A., Bengtson, S., Clausen, S., et al., 2015. A Lower Cambrian Fauna of Skeletal Fossils from the Emyaksin Formation, Northern Siberia. Acta Palaeontologica Polonica (in press). doi: 10.4202/app.2012.0004 |
Kouchinsky, A., Bengtson, S., Runnegar, B., et al., 2012. Chronology of Early Cambrian Biomineralization. Geological Magazine, 149: 221-251 doi: 10.1017/S0016756811000720 |
Kump, L. R., 2008. The Rise of Atmospheric Oxygen. Nature, 451: 277-278 doi: 10.1038/nature06587 |
Landing, E., Geyer, G., Brasier, M. D., et al., 2013. Cambrian Evolutionary Radiation: Context, Correlation, and Chronostratigraphy〞Overcoming Deficiencies of the First Appearance Datum (FAD) Concept. Earth-Science Reviews, 123: 133-172 doi: 10.1016/j.earscirev.2013.03.008 |
Li, C., Love, G. D., Lyons, T. W., et al., 2010. A Stratified Redox Model for the Ediacaran Oc ean. Science, 328: 80-83 doi: 10.1126/science.1182369 |
Li, Z. X., Powell, C. M., 2001. An Outline of the Palaeongeographic Evolution of the Australasian Region since the Beginning of the Neoproterozoic. Earth-Science Review, 53: 237-277 doi: 10.1016/S0012-8252(00)00021-0 |
Ling, H. F., Chen, X., Li, D., et al., 2013. Cerium Anomaly Variations in Ediacaran-Earliest Cambrian Carbonates from the Yangtze Gorges Area, South China: Implications for Oxygenation of Coeval Shallow Seawater. Precambrian Research, 225: 110-127 doi: 10.1016/j.precamres.2011.10.011 |
Love, G. D., Grosjean, E., Fike, D. A., et al., 2009. Fossil Steroid Record the Appearance of Demospongiae during the Cryogenian Period. Nature, 457: 718-721 doi: 10.1038/nature07673 |
Lyons, T. W., Reinhard, C. T., Love, G. D., et al., 2012. Geobiology of the Proterozoic Eon. In: Knoll, A. H., Canfield, D. E., Konhauser, K. O., eds., Fundamentals of Geobiology. Wiley-Blackewll, Oxford. 371-402 |
Mángano, M. G., Buatois, L. A., 2014. Decoupling of Body-Plan Diversification and Ecological Structuring during the Ediacaran-Cambrian Transition: Evolutionary and Geobiological Feedbacks. Proceedings of the Royal Society B 281, 20140038. doi: 10.1098/rspb.2014.0038 |
Meert, J. G., 2003. Proterozoic East Gondwana: Supercontinent Assembly and Breakup. Special Publication 206, Eos, Transactions American Geophysical Union, 84: 372 http://www.sciencedirect.com/science/article/pii/S1342937X05709965 |
Meert, J. G., 2011. Gondwanaland, Formation. In: Reitner, J., Thiel, V., eds., Encyclopedia of Geobiology, Springer, Berlin. 434-436 |
Mentel, M., Martin, W., 2010. Anaerobic Animals from an Ancient, Anoxic Ecological Niche. BMC Biology, 8: 32 doi: 10.1186/1741-7007-8-32 |
Miller D. C., Poucher SL., Coiro L., et al., 1995. Effects of Hypoxia on Growth and Survival of Crustaceans and Fishes of Long Island Sound. In: McElroy A., Zeidner J., eds., Proceedings of the Long Island Sound Research Conference: Is the Sound Getting Better or Worse. New York Sea Grant Institute, Stony Brook, NY, p1-92 |
Mills, D. B, Ward, L. M., Jones, C. A., et al., 2014. Oxygen Requirements of the Earliest Animals. Proceedings of the National Academy of Sciences of the United States of America, 111: 4168-4172 doi: 10.1073/pnas.1400547111 |
Nielsen, C., 2012 (3rd edition). Animal Evolution: Interrelationships of the Living Phyla. Oxford University Press, Oxford. 402 |
Papineau, D., 2010. Global Biogeochemical Changes at Both Ends of the Proterozoic: Insights from Phosphorites. Astrobiology, 10: 165-181 doi: 10.1089/ast.2009.0360 |
Partin, C. A., Bekker, A., Planavsky, N. J., et al., 2013. Large-Scale Fluctuations in Precambrian Atmospheric and Oceanic Oxygen Levels from the Record of U in Shales. Earth and Planetary Science Letter, 369-370: 284-293 doi: 10.1016/j.epsl.2013.03.031 |
Petsch, S. T., 2004. The Global Oxygen Cycle. In: Schlesinger, W. H., ed., Biogeochemistry. Treatise on Geochemistry, 8: 515-555 |
Planavsky, N. J., Rouxel, O. J., Bekker, A., et al., 2010. The Evolution of the Marine Phosphate Reservoir. Nature, 467: 1088-1090 doi: 10.1038/nature09485 |
Rhoads, D. C., Morse, J. W., 1971. Evolutionary and Ecological Significance of Oxygen-Deficient Marine Basins. Lethaia, 4: 413-428 doi: 10.1111/j.1502-3931.1971.tb01864.x |
Rogers, J. J. W., Santosh, M., 2004. Continents and Supercontinents. Oxford University Press, Oxford. 289 |
Rosenberg, R., 1972. Benthic Faunal Recovery in a Swedish Fjord Following the Closure of a Sulphite Pulp Mill. Oikos, 23: 92-108 doi: 10.2307/3543930 |
Runnegar, B., 1982. Oxygen Requirements, Biology and Phylogenetic Significance of the Late Precambrian Worm Dickinsonia, and the Evolution of the Burrowing Habit. Alcheringa, 6: 223-239 doi: 10.1080/03115518208565415 |
Runnegar, B., 1991. Precambrian Oxygen Levels Estimated from the Biochemistry and Physiology of Early Eukaryotes. Global and Planetary Change, 97: 97-111 http://www.sciencedirect.com/science/article/pii/092181819190131F |
Shu, D. G., Luo, H. L., Conway Morris, S., et al., 1999. Lower Cambrian Vertebrates from South China. Nature, 402: 42-46 doi: 10.1038/46965 |
Shu, D. G., Isozaki, Y., Zhang, X. L., et al., 2014. Birth and Early Evolution of Metazoans. Gondwana Research, 25: 884-895 doi: 10.1016/j.gr.2013.09.001 |
Skovsted, C., B., Peel, J. S., 2011. Hyolithellus in life position from the Lower Cambrian of North Greenland. Journal of Paleontology, 85: 37-47 doi: 10.1666/10-065.1 |
Sperling, E. A., Frieder, C. A., Raman, A. V., 2013a. Oxygen, Ecology, and the Cambrian Radiation of Animals. Proceedings of the National Academy of Sciences of the United States of America, 110: 13446-13451 doi: 10.1073/pnas.1312778110 |
Sperling, E. A., Halverson, G. P., Knoll., A. H., et al., 2013b. A Basin Redox Transect at the Dawn of Animal Life. Earth and Planetary Science Letter, 371-372: 143-155 doi: 10.1016/j.epsl.2013.04.003 |
Wang, J. G., Chen, D. Z., Yan, D. T., et al., 2012. Evolution from An Anoxic to Oxic Deep Ocean during the Ediacaran-Cambrian Transition and Implications for Bioradiation. Chemical Geology, 306: 129-138 http://cpfd.cnki.com.cn/article/cpfdtotal-dzdq201301004015.htm |
Wang, H., Li, C., Hu, C., et al., 2015. Spurious Thermoluminescence Characteristics of the Ediacaran Doushantuo Formation (Ca. 635-551 Ma) and Its Implications for Marine Dissolved Organic Carbon Reservoir. Journal of Earth Science, 26(6): 883-892 doi: 10.1007/s12583-015-0650-3 |
Wen, H. J., Carignan, J., Chu, X. L., et al., 2014. Selenium Isotopes Trace Anoxic and Ferruginous Seawater Conditions in the Early Cambrian. Chemical Geology, 390: 164-172 doi: 10.1016/j.chemgeo.2014.10.022 |
Wang, Y., Wang, X. L., Wang, Y., 2015. Cambrian Ichnofossils from the Zhoujieshan Formation (Quanji Group) Overlying Tillites in the Northern Margin of the Qaidam Basin, NW China. Journal of Earth Science, 26(2): 203-210 doi: 10.1007/s12583-015-0532-0 |
Wray, G. A., 2015. Molecular Clocks and the Early Evolution of Metazoan Nervous Systems. Philosophical Transactions of the Royal Society Series B, 370 (150046), 1-11 doi: 10.1098/rstb.2015.0046 |
Yang, B., Steiner, M., Li, G. X., et al., 2014. Terreneuvian Small Shelly Faunas of East Yunnan (South China) and Their Biostratigraphic Implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 398: 28-58 doi: 10.1016/j.palaeo.2013.07.003 |
Yin, Z. J., Zhu, M. Y., Davidson, E. H., et al., 2015. Sponge Grade Body Fossil with Cellular Resolution Dating 60 Myr before the Cambrian. Proceedings of the National Academy of Sciences of the United States of America, 112: E1453-1460 doi: 10.1073/pnas.1414577112 |
Zhang, X. L., Shu, D. G., 2014. Causes and Consequences of the Cambrian Explosion. Science China-Earth Sciences, 57: 930-942 doi: 10.1007/s11430-013-4751-x |
Zhang, X., Shu, D., Han, J., et al., 2014. Triggers for the Cambrian Explosion: Hypotheses and Problems. Gondwana Research, 25: 896-909 doi: 10.1016/j.gr.2013.06.001 |