Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 27 Issue 2
Mar 2016
Turn off MathJax
Article Contents
Xingliang Zhang, Linhao Cui. Oxygen Requirements for the Cambrian Explosion. Journal of Earth Science, 2016, 27(2): 187-195. doi: 10.1007/s12583-016-0690-8
Citation: Xingliang Zhang, Linhao Cui. Oxygen Requirements for the Cambrian Explosion. Journal of Earth Science, 2016, 27(2): 187-195. doi: 10.1007/s12583-016-0690-8

Oxygen Requirements for the Cambrian Explosion

doi: 10.1007/s12583-016-0690-8
More Information
  • Corresponding author: Xingliang Zhang, xzhang69@nwu.edu.cn
  • Received Date: 05 Mar 2015
  • Accepted Date: 12 Sep 2015
  • Publish Date: 01 Apr 2016
  • Hypoxic tolerance experiments may be helpful to constrain the oxygen requirement for animal evolution. Based on literature review, available data demonstrate that fishes are more sensitive to hypoxia than crustaceans and echinoderms, which in turn are more sensitive than annelids, whilst mollusks are the least sensitive. Mortalities occur where O2 concentrations are below 2.0 mg/L, equivalent to saturation with oxygen content about 25% PAL (present atmospheric level). Therefore, the minimal oxygen requirement for maintaining animal diversity since Cambrian is determined as 25% PAL. The traditional view is that a rise in atmospheric oxygen concentrations led to the oxygenation of the ocean, thus triggering the evolution of animals. Geological and geochemical studies suggest a constant increase of the oxygen level and a contraction of anoxic oceans during Ediacaran-Cambrian transition when the world oceans experienced a rapid diversification of metazoan lineages. However, fossil first appearances of animal phyla are obviously asynchronous and episodic, showing a sequence as: basal metazoans>lophotrochozoans>ecdysozoans and deuterostomes. According to hitherto known data of fossil record and hypoxic sensitivity of animals, the appearance sequence of different animals is broadly consistent with their hypoxic sensitivity: animals like molluscs and annelids that are less sensitive to hypoxia appeared earlier, while animals like echinoderms and fishes that are more sensitive to hypoxia came later. Therefore, it is very likely that the appearance order of animals is corresponding to the increasing oxygen level and/or the contraction of anoxic oceans during Ediacaran-Cambrian transition.

     

  • loading
  • Antcliffe, J. B., Callow, R. H. T., Brasier, M. D., 2014. Giving the Early Fossil Record of Sponges A Squeeze. Biological Reviews, 89: 972-1004 doi: 10.1111/brv.12090
    Berkner, L. V., Marshall, L. C., 1965. On the Origin and Rise of Oxygen Concentration in the Earth's Atmosphere. Journal of Atmospheric Sciences, 22: 225-261 doi: 10.1175/1520-0469(1965)022<0225:OTOARO>2.0.CO;2
    Blair, J. E., 2009. Animals (Metazoa). In: Hedges, S. B., Kumar, S., eds., The Timetree of Life. Oxford University Press, Oxford. 223-230
    Braddy, S. J., Poschmann, M., Tetlie, O. E., 2008. Giant Claw Reveals the Largest Ever Arthropod. Biology Letter, 4: 106-109 doi: 10.1098/rsbl.2007.0491
    Butterfield, N. J., 2009. Oxygen, Animals and Oceanic Ventilation: An Alternative View. Geobiology, 7: 1-7 doi: 10.1111/j.1472-4669.2009.00188.x
    Campbell, I. H., Allen, C. M., 2008. Formation of Supercontinents Linked to Increases in Atmospheric Oxygen. Nature Geoscience, 1: 554-558 doi: 10.1038/ngeo259
    Campbell, I. H., Squire, R. J., 2010. The Mountains that Triggered the Late Neoproterozoic Increase in Oxygen: the Second Great Oxidation Event. Geochimica et Cosmochimica Acta, 74: 4187-4206 doi: 10.1016/j.gca.2010.04.064
    Canfield, D. E., 2005. The Early History of Atmospheric Oxygen: Homage to Robert M. Garrels. Annual Review of Earth and Planetary Science, 33: 1-36 doi: 10.1146/annurev.earth.33.092203.122711
    Canfield, D. E., Poulton, S. W., Narbonne, G. M., 2007. Late-Neoproterozoic Deep-Ocean Oxygenation and the Rise of Animal Life. Science, 315: 92-95 doi: 10.1126/science.1135013
    Catling, D. C., Glein, C. R., Zahnle, K. J., et al., 2005. Why O2 Is Required by Complex Life on Habitable Planets and the Concept of Planetary ※Oxygenation Time§. Astrobiology, 5: 415-438 doi: 10.1089/ast.2005.5.415
    Chen, X., Ling, H. F., Vance, D., et al., 2015. Rise to Modern Levels of Ocean Oxygenation Coincided with the Cambrian Radiation of Animals. Nature Communications, 6: 7142 (DOI: 10.1038/ncomms8142)
    Cloud, P. E Jr., 1948. Some Problems and Patterns of Evolution Exemplified by Fossil Invertebrates. Evolution, 2: 322-350 doi: 10.1111/j.1558-5646.1948.tb02750.x
    Cloud, P. E., 1976. Beginnings of Biospheric Evolution and Their Biogeochemical Consequences. Paleobiology, 2: 351-387 doi: 10.1017/S009483730000498X
    Conway M. S., Peel, J. S., 2008. The Earliest Annelids: Lower Cambrian Polychaetes from the Sirius Passet Lagerstätte, Peary Land, North Greenland. Acta Palaeontologica Polonica, 53: 137-148 doi: 10.4202/app.2008.0110
    Danovaro, R., Dell'Anno, A., Pusceddu, A., Gambi, C., Heiner, I., Kristensen, R.M., 2010. The First Metazoa Living in Permanently Anoxic Conditions. BMC Biology, 8: 30. doi: 10.1186/1741-7007-8-30
    Decker, H., van Holde, K. E., 2011. Oxygen and the Evolution of Life. Springer, Berlin. 172
    Diaz, R. J., Rosenberg, R., 1995. Marine Benthic Hypoxia: A Review of Its Ecological Effects and the Behavioural Responses of Benthic Macrofauna. Oceanography and Marine Biology: An Annual Review, 33: 245-303 http://www.researchgate.net/publication/236628341_Marine_benthic_hypoxia_A_review_of_its_ecological_effects_and_the_behavioural_response_of_benthic_macrofauna
    Dries, R. R., Theede, H., 1974. Sauerstoffmangelresistenz Mariner Bodenvertebraten aus der Westlichen Ostsee. Marine Biology, 25: 327-333 doi: 10.1007/BF00404975
    Erwin, D. H., Laflamme, M., Tweedt, S. M., et al. 2011. The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals. Science, 334: 1901-1907 http://gbe.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=sci&resid=334/6059/1091
    Erwin, D. H., Tweedt, S., 2012. Ecological Drivers of the Ediacaran-Cambrian Diversification of Metazoa. Evolutionary Ecology, 26: 417-433 doi: 10.1007/s10682-011-9505-7
    Erwin, D. H., Valentine, J. W., 2013. The Cambrian Explosion: the Construction of Animal Biodiversity. Roberts and Company Publishers, Inc., Greenwood Village. 406
    Fedonkin, M. A., Waggoner, B. M., 1997. The Late Precambrian Fossil Kimberella Is a Mollusc-Like Bilaterian Organism. Nature, 388: 868-871 doi: 10.1038/42242
    Feng, L. J., Li, C., Huang, J., et al., 2014. A sulfate Control on Marine Mid-Depth Euxinia on the Early Cambrian (Ca. 529-521 Ma) Yangtze Platform, South China. Precambrian Research, 246: 123-133 doi: 10.1016/j.precamres.2014.03.002
    Gray, J. S., Wu, R. S., Or, Y. Y., 2002. Effects of Hypoxia and Organic Enrichment on the Coastal Marine Environment. Marine Ecology Progress Series, 238: 249-270 doi: 10.3354/meps238249
    Henriksson, R., 1969. Influence of Pollution on the Bottom Fauna of the Sound (Öresund). Oikos, 20: 507-523 doi: 10.2307/3543212
    Hua, H., Chen, Z., Yuan, X. L., et al., 2005. Skeletogenesis and Asexual Reproduction in the Earliest Biomineralizing Animal Cloudina. Geology, 33: 277-280 doi: 10.1130/G21198.1
    Jin, C. S., Li, C., Peng, X. F., et al., 2014. Spatiotemporal Variability of Ocean Chemistry in the Early Cambrian, South China. Science China: Earth Science, 57: 579-591 doi: 10.1007/s11430-013-4779-y
    Kasting, J. F., 1993. Earth's Early Atmosphere. Science, 259: 920-926 doi: 10.1126/science.11536547
    Kendall, B., Anbar, A. D., Kappler, A., et al., 2012. The Global Iron Cycle. In: Knoll, A. H., Canfield, D. E., Konhauser, K. O., eds., Fundamentals of Geobiology. Wiley-Blackewll, Oxford. 65-92
    Knoll, A. H., Sperling, E. A., 2014. Oxygen and Animals in Earth History. Proceedings of the National Academy of Sciences of the United States of America, 111: 3907-3908 doi: 10.1073/pnas.1401745111
    Knoll, A.H., Carroll, S.B., 1999. Early Animal Evolution: Emerging Views from Comparative Biology and Geology. Science, 284: 2129-2137 doi: 10.1126/science.284.5423.2129
    Knoll, A. H., Walter, M. R., 1992. Latest Proterozoic Stratigraphy and Earth History. Nature, 356: 673-678 doi: 10.1038/356673a0
    Kouchinsky, A., Bengtson, S., Clausen, S., et al., 2015. A Lower Cambrian Fauna of Skeletal Fossils from the Emyaksin Formation, Northern Siberia. Acta Palaeontologica Polonica (in press). doi: 10.4202/app.2012.0004
    Kouchinsky, A., Bengtson, S., Runnegar, B., et al., 2012. Chronology of Early Cambrian Biomineralization. Geological Magazine, 149: 221-251 doi: 10.1017/S0016756811000720
    Kump, L. R., 2008. The Rise of Atmospheric Oxygen. Nature, 451: 277-278 doi: 10.1038/nature06587
    Landing, E., Geyer, G., Brasier, M. D., et al., 2013. Cambrian Evolutionary Radiation: Context, Correlation, and Chronostratigraphy〞Overcoming Deficiencies of the First Appearance Datum (FAD) Concept. Earth-Science Reviews, 123: 133-172 doi: 10.1016/j.earscirev.2013.03.008
    Li, C., Love, G. D., Lyons, T. W., et al., 2010. A Stratified Redox Model for the Ediacaran Oc ean. Science, 328: 80-83 doi: 10.1126/science.1182369
    Li, Z. X., Powell, C. M., 2001. An Outline of the Palaeongeographic Evolution of the Australasian Region since the Beginning of the Neoproterozoic. Earth-Science Review, 53: 237-277 doi: 10.1016/S0012-8252(00)00021-0
    Ling, H. F., Chen, X., Li, D., et al., 2013. Cerium Anomaly Variations in Ediacaran-Earliest Cambrian Carbonates from the Yangtze Gorges Area, South China: Implications for Oxygenation of Coeval Shallow Seawater. Precambrian Research, 225: 110-127 doi: 10.1016/j.precamres.2011.10.011
    Love, G. D., Grosjean, E., Fike, D. A., et al., 2009. Fossil Steroid Record the Appearance of Demospongiae during the Cryogenian Period. Nature, 457: 718-721 doi: 10.1038/nature07673
    Lyons, T. W., Reinhard, C. T., Love, G. D., et al., 2012. Geobiology of the Proterozoic Eon. In: Knoll, A. H., Canfield, D. E., Konhauser, K. O., eds., Fundamentals of Geobiology. Wiley-Blackewll, Oxford. 371-402
    Mángano, M. G., Buatois, L. A., 2014. Decoupling of Body-Plan Diversification and Ecological Structuring during the Ediacaran-Cambrian Transition: Evolutionary and Geobiological Feedbacks. Proceedings of the Royal Society B 281, 20140038. doi: 10.1098/rspb.2014.0038
    Meert, J. G., 2003. Proterozoic East Gondwana: Supercontinent Assembly and Breakup. Special Publication 206, Eos, Transactions American Geophysical Union, 84: 372 http://www.sciencedirect.com/science/article/pii/S1342937X05709965
    Meert, J. G., 2011. Gondwanaland, Formation. In: Reitner, J., Thiel, V., eds., Encyclopedia of Geobiology, Springer, Berlin. 434-436
    Mentel, M., Martin, W., 2010. Anaerobic Animals from an Ancient, Anoxic Ecological Niche. BMC Biology, 8: 32 doi: 10.1186/1741-7007-8-32
    Miller D. C., Poucher SL., Coiro L., et al., 1995. Effects of Hypoxia on Growth and Survival of Crustaceans and Fishes of Long Island Sound. In: McElroy A., Zeidner J., eds., Proceedings of the Long Island Sound Research Conference: Is the Sound Getting Better or Worse. New York Sea Grant Institute, Stony Brook, NY, p1-92
    Mills, D. B, Ward, L. M., Jones, C. A., et al., 2014. Oxygen Requirements of the Earliest Animals. Proceedings of the National Academy of Sciences of the United States of America, 111: 4168-4172 doi: 10.1073/pnas.1400547111
    Nielsen, C., 2012 (3rd edition). Animal Evolution: Interrelationships of the Living Phyla. Oxford University Press, Oxford. 402
    Papineau, D., 2010. Global Biogeochemical Changes at Both Ends of the Proterozoic: Insights from Phosphorites. Astrobiology, 10: 165-181 doi: 10.1089/ast.2009.0360
    Partin, C. A., Bekker, A., Planavsky, N. J., et al., 2013. Large-Scale Fluctuations in Precambrian Atmospheric and Oceanic Oxygen Levels from the Record of U in Shales. Earth and Planetary Science Letter, 369-370: 284-293 doi: 10.1016/j.epsl.2013.03.031
    Petsch, S. T., 2004. The Global Oxygen Cycle. In: Schlesinger, W. H., ed., Biogeochemistry. Treatise on Geochemistry, 8: 515-555
    Planavsky, N. J., Rouxel, O. J., Bekker, A., et al., 2010. The Evolution of the Marine Phosphate Reservoir. Nature, 467: 1088-1090 doi: 10.1038/nature09485
    Rhoads, D. C., Morse, J. W., 1971. Evolutionary and Ecological Significance of Oxygen-Deficient Marine Basins. Lethaia, 4: 413-428 doi: 10.1111/j.1502-3931.1971.tb01864.x
    Rogers, J. J. W., Santosh, M., 2004. Continents and Supercontinents. Oxford University Press, Oxford. 289
    Rosenberg, R., 1972. Benthic Faunal Recovery in a Swedish Fjord Following the Closure of a Sulphite Pulp Mill. Oikos, 23: 92-108 doi: 10.2307/3543930
    Runnegar, B., 1982. Oxygen Requirements, Biology and Phylogenetic Significance of the Late Precambrian Worm Dickinsonia, and the Evolution of the Burrowing Habit. Alcheringa, 6: 223-239 doi: 10.1080/03115518208565415
    Runnegar, B., 1991. Precambrian Oxygen Levels Estimated from the Biochemistry and Physiology of Early Eukaryotes. Global and Planetary Change, 97: 97-111 http://www.sciencedirect.com/science/article/pii/092181819190131F
    Shu, D. G., Luo, H. L., Conway Morris, S., et al., 1999. Lower Cambrian Vertebrates from South China. Nature, 402: 42-46 doi: 10.1038/46965
    Shu, D. G., Isozaki, Y., Zhang, X. L., et al., 2014. Birth and Early Evolution of Metazoans. Gondwana Research, 25: 884-895 doi: 10.1016/j.gr.2013.09.001
    Skovsted, C., B., Peel, J. S., 2011. Hyolithellus in life position from the Lower Cambrian of North Greenland. Journal of Paleontology, 85: 37-47 doi: 10.1666/10-065.1
    Sperling, E. A., Frieder, C. A., Raman, A. V., 2013a. Oxygen, Ecology, and the Cambrian Radiation of Animals. Proceedings of the National Academy of Sciences of the United States of America, 110: 13446-13451 doi: 10.1073/pnas.1312778110
    Sperling, E. A., Halverson, G. P., Knoll., A. H., et al., 2013b. A Basin Redox Transect at the Dawn of Animal Life. Earth and Planetary Science Letter, 371-372: 143-155 doi: 10.1016/j.epsl.2013.04.003
    Wang, J. G., Chen, D. Z., Yan, D. T., et al., 2012. Evolution from An Anoxic to Oxic Deep Ocean during the Ediacaran-Cambrian Transition and Implications for Bioradiation. Chemical Geology, 306: 129-138 http://cpfd.cnki.com.cn/article/cpfdtotal-dzdq201301004015.htm
    Wang, H., Li, C., Hu, C., et al., 2015. Spurious Thermoluminescence Characteristics of the Ediacaran Doushantuo Formation (Ca. 635-551 Ma) and Its Implications for Marine Dissolved Organic Carbon Reservoir. Journal of Earth Science, 26(6): 883-892 doi: 10.1007/s12583-015-0650-3
    Wen, H. J., Carignan, J., Chu, X. L., et al., 2014. Selenium Isotopes Trace Anoxic and Ferruginous Seawater Conditions in the Early Cambrian. Chemical Geology, 390: 164-172 doi: 10.1016/j.chemgeo.2014.10.022
    Wang, Y., Wang, X. L., Wang, Y., 2015. Cambrian Ichnofossils from the Zhoujieshan Formation (Quanji Group) Overlying Tillites in the Northern Margin of the Qaidam Basin, NW China. Journal of Earth Science, 26(2): 203-210 doi: 10.1007/s12583-015-0532-0
    Wray, G. A., 2015. Molecular Clocks and the Early Evolution of Metazoan Nervous Systems. Philosophical Transactions of the Royal Society Series B, 370 (150046), 1-11 doi: 10.1098/rstb.2015.0046
    Yang, B., Steiner, M., Li, G. X., et al., 2014. Terreneuvian Small Shelly Faunas of East Yunnan (South China) and Their Biostratigraphic Implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 398: 28-58 doi: 10.1016/j.palaeo.2013.07.003
    Yin, Z. J., Zhu, M. Y., Davidson, E. H., et al., 2015. Sponge Grade Body Fossil with Cellular Resolution Dating 60 Myr before the Cambrian. Proceedings of the National Academy of Sciences of the United States of America, 112: E1453-1460 doi: 10.1073/pnas.1414577112
    Zhang, X. L., Shu, D. G., 2014. Causes and Consequences of the Cambrian Explosion. Science China-Earth Sciences, 57: 930-942 doi: 10.1007/s11430-013-4751-x
    Zhang, X., Shu, D., Han, J., et al., 2014. Triggers for the Cambrian Explosion: Hypotheses and Problems. Gondwana Research, 25: 896-909 doi: 10.1016/j.gr.2013.06.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(1)

    Article Metrics

    Article views(656) PDF downloads(266) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return