Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 27 Issue 2
Mar 2016
Turn off MathJax
Article Contents
Yali Chen, Xuelei Chu, Xingliang Zhang, Mingguo Zhai. Secondary Phosphatization of the Earliest Cambrian Small Shelly Fossil Anabarites from Southern Shaanxi. Journal of Earth Science, 2016, 27(2): 196-203. doi: 10.1007/s12583-016-0691-7
Citation: Yali Chen, Xuelei Chu, Xingliang Zhang, Mingguo Zhai. Secondary Phosphatization of the Earliest Cambrian Small Shelly Fossil Anabarites from Southern Shaanxi. Journal of Earth Science, 2016, 27(2): 196-203. doi: 10.1007/s12583-016-0691-7

Secondary Phosphatization of the Earliest Cambrian Small Shelly Fossil Anabarites from Southern Shaanxi

doi: 10.1007/s12583-016-0691-7
More Information
  • Biomineralization may have an extremely long evolutionary history since the Paleoarchean, while the widespread biomineralization among metazoan lineages started at the earliest Cambrian. However, the primary mineralogy of Anabarites shell remains controversial. Optical microscopic observations combined with the Back-Scattered Electron (BSE) and Energy-Dispersive X-ray Spectroscopy (EDS) analyses are used to study the shell of the fossil Anabarites from the Kuanchuanpu fauna in southern Shaanxi Province in China, which is correlated to the Cambrian Fortunian Stage. The EDS analysis shows that the phosphorus-rich layer closely adjacent to the calcified layer exhibits a Ca: P: C ratio compositionally similar to the mineral fluorapatite (Ca5(PO4, CO3)3(F, CO3). The result that the calcified layer and the phosphorus-rich layer have different chemical compositions is consistent with the optical observation that there is an obvious gap between these two layers and the phosphorus-rich layer can extend to the phosphatic material inside of the tube, suggesting the phosphorus-rich layer doesn't belong to the original shell. We suggest that the phosphorous-rich layer is diagenetic in origin, precipitated as a result of phosphorus release during the decay of organic matter by microbes. Considering the outermost shell layer (OMS, biologically controlled carbonate shell layer) should display different isotopic information from the carbonate matrix (i.e., OMS is 12C concentrated due to the biogenic organic matter template is readily rich in 12C), NanoSIMS was used to map ion distributions of C and N in the shell of Anabarites and matrix. However, ion images show that the concentration differences of 12C, 13C and 26CN among the OMS and the matrix are unclear, while 12C and 26CN are supposed to be enriched in the OMS. Therefore, the minor isotopic differences between the shell and the matrix is hard to be detected by NanoSIMS, at least in our sample, probably due to alteration of the 12C-rich characteristic of the Anabarites OMS during the late diagenesis.

     

  • loading
  • Abaimova, G. P., 1978. Anabaritids-Ancient Fossils with Carbonate Skeleton. Trudy SNⅡGGIMS, 260: 77-83
    Allison, P. A., 1988. Konservat-Lagerstatten: Cause and Classification. Paleobiology, 14: 331-344 doi: 10.1017/S0094837300012082
    Atlas, E. L., 1975. Phosphate Equilibria in Seawater and Interstitial Waters: [Dissertation]. Oregon State University, Oregon state.
    Brasier, M. D., 1992. Paleoceanography and Changes in the Biological Cycling of Phosphorus across the Precambrian-Cambrian Boundary. In: Lipps, J. H. and Signor, P. W., eds., Origin and Early Evolution of the Metazoa. Plenum Publishing Co., New York. 483-523
    Briggs, D. E., Kear, A. J. 1994. Decay and Mineralization of Shrimps. Palaios, 9: 431-456 doi: 10.2307/3515135
    Briggs, D. E., Wilby, P. R., 1996. The Role of the Calcium Carbonate-Calcium Phosphate Switch in the Mineralization of Soft-Bodied Fossils. Journal of the Geological Society, 153: 665-668 doi: 10.1144/gsjgs.153.5.0665
    Cai, Y. P., Hua, H., Xiao, S. H., et al., 2010. Biostratinomy of the Late Ediacaran Pyritized Gaojiashan Lagerstatte from Southern Shaanxi, South China: Importance of Event Deposits. Palaios, 25: 487-506 doi: 10.2110/palo.2009.p09-133r
    Chen, J. Y., Peng, Q. Q., 2005. An Early Cambrian Problematic Organism (ANABARITES) and its Possible Affinity (Chinese). Acta Palaeontologica Sinica, 44: 57-65 http://europepmc.org/abstract/cba/472398
    Chen, Y. Q., Jiang, S. Y., Ling, H. F., et al., 2007. Isotopic Compositions of Small Shelly Fossil Anabarites from Lower Cambrian in Yangtze Platform of South China: Implications for Palaeocean Temperature. Progress in Natural Science, 17: 1185-1191
    Conway Morris, S., Chen, M. E., 1989. Lower Cambrian Anabaritids from South China. Geological Magazine, 126: 615-632 doi: 10.1017/S0016756800006920
    Creveling, J. R., Johnston, D. T., Poulton, S. W., et al., 2014. Phosphorus Sources for Phosphatic Cambrian Carbonates. Geological Society of America Bulletin, 126: 145-163 doi: 10.1130/B30819.1
    Degens, E. T., 1976. Molecular Mechanisms on Carbonate, Phosphate, and Silica Deposition in the Living Cell. In: Degens, E. T., Luck, W. A. P., Perrin, D. D., eds., Topics in Current Chemistry-Inorganic Biochemistry. Springer, Berlin. 1-112
    Ding, L. F., Zhang, L. Y., Li, Y., et al., 1992. The Study of the Late Sinian-Early Cambrian Biotas from the Northern Margin of the Yangtze Platform (Chinese). Scientific and Technical Documentation Press, Beijing. 1-156
    Dzik, J., 1986. Turrilepadida and Other Machaeridia. Problematic Fossil Taxa, 5: 116-134
    Fedonkin, M., 1986. Precambrian Problematic Animals: Their Body Plan and Phylogeny. In: Hoffman, A., Nitecki, M. H., eds., Problematic Fossil Taxa. Oxford University Press, New York. 59-67
    Feng, M., 2005. Comparison of the Early Cambrian Anabarites between Ningqiang area, Shaanxi and Chaohu Area, Anhui (Chinese). Acta Micropalaeontologica Sinica, 22: 412-416 http://europepmc.org/abstract/cba/602825
    Fortin, D., Ferris, F. G., Beveridge, T. J., 1997. Surface-Mediated Mineral Development by Bacteria. Reviews in mineralogy and geochemistry, 35: 161-180 http://www.researchgate.net/publication/285013871_Surface-mediated_mineral_development_by_bacteria
    Frankel, R. B., Bazylinski, D. A., 2003. Biologically Induced Mineralization By Bacteria. Reviews in mineralogy and geochemistry, 54: 95-114 doi: 10.2113/0540095
    Glaessner, M. F., 1976. Early Phanerozoic Annelid Worms and Their Geological and Biological Significance. Journal of the Geological Society, 132: 259-275 doi: 10.1144/gsjgs.132.3.0259
    Kouchinsky, A., 2000. Shell Microstructures in Early Cambrian Molluscs. Acta Palaeontologica Polonica, 45: 119-150 http://www.researchgate.net/publication/228594376_Shell_microstructures_in_Early_Cambrian_molluscs
    Kouchinsky, A., Bengtson, S., Feng, W. M., et al., 2009. The Lower Cambrian Fossil Anabaritids: Affinities, Occurrences and Systematics. Journal of Systematic Palaeontology, 7: 241-298 doi: 10.1017/S1477201909002715
    Li, P., Hua, H., Zhang, L. Y., et al., 2007. Internal Microstructure and Affinity of the Lower Cambrian Anabarites from Southern Shaanxi, China (Chinese). Acta Palaeontologica Sinica 46: 327-333 http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSWX200703006.htm
    Missarzhevsky, V. V., 1969. Opisanie Khiolitov, Gastropod, Khiolitel'mintov, Kamenidi form Neyasnogo Sistematicheskogo Polozheniya[Descriptions of Hyoliths, Gastropods, Hyolithelminths, Camenids, and Forms of An Obscure Systematic Position]. In: Rozanov, A. Yu., Missarzhevsky, V. V., Volkova, N. A., Voronova, L. G., Krylov, I. N., Keller, B. M., Korolyuk, I. K., Lendzion, K., Mikhnyak, R., Pykhova, N. G., Sidorov, A. D., eds., Tommotskij yarus i problema nizhnej granitsy Kembriya. Nauka Publishers, Moscow. 105-175
    Missarzhevsky, V. V., 1974. Novye Dannye o Drevnejshikh Okamenelostyakh Rannego Kembriya Sibirskoj Platformy[New data on the Oldest Early Cambrian Fossils of the Siberian Platform]. In: Zhuravleva, I. T., Rozanov, A. Y., eds., Biostratigrafiya I Paleontologiya Nizhnego Kembryiya Evropy I Severnoj Azii. Nauka, Moscow. 179-189
    Runnegar, B., 1985. Shell Microstructures of Cambrian Molluscs Replicated by Phosphate. Alcheringa 9, 245-257 doi: 10.1080/03115518508618971
    Skinner, H., Jahren, A., 2003. Biomineralization. Treatise on geochemistry, 8: 117-184
    Steiner, M., Li, G. X., Qian, Y., et al., 2007. Neoproterozoic to Early Cambrian Small Shelly Fossil Assemblages and a Revised Biostratigraphic Correlation of the Yangtze Platform (China). Palaeogeography, Palaeoclimatology, Palaeoecology, 254: 67-99 doi: 10.1016/j.palaeo.2007.03.046
    Tebo, B. M., Ghiorse, W. C., van Waasbergen, L. G., et al., 1997. Bacterially Mediated Mineral Formation; Insights into Manganese (Ⅱ) Oxidation from Molecular Genetic and Biochemical Studies. Reviews in Mineralogy and Geochemistry, 35: 225-266. http://rimg.geoscienceworld.org/content/35/1/225
    Vol'kov, A. K., 1982. Biostratigrafiya Nizhnego Kembriya Vostoka Sibirskoj Platformy[Biostratigraphy of the Lower Cambrian of the eastern Siberian platform]. 1-99
    Voronova, L. G., Missarzhevsky, V. V., 1969. Nakhodki Vodoroslej I Trubok Chervej V Pogranichnykh Sloyakh Kembriya I Dokembriya Na Severe Sibirskoj Platformy[Finds of Algae and Worm Tubes in the Precambrian-Cambrian Boundary Beds of the Northern Part of the Siberian Platform]. Doklady AN SSSR, 184: 207-210
    Weiner, S., Dove, P. M., 2003. An Overview of Biomineralization Processes and the Problem of the Vital Effect. Reviews in mineralogy and geochemistry, 54: 1-29 doi: 10.2113/0540001
    Zhang, X. L., 2012. Lecture Notes of Geobiology. Geological Publishing House, Beijing.
    Zhu, M. Y., Qian, Y., Jiang, Z. W., et al., 1996. A Preliminary Study on the Preservation, Shell Composition and Microstructure of Cambrian Small Shelly Fossils (Chinese). Acta Micropalaeontologica Sinica, 13: 241-254 http://europepmc.org/abstract/CBA/294024
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views(582) PDF downloads(323) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return