Athy, L. F., 1930. Density, Porosity, and Compaction of Sedimentary Rocks. American Association of Petroleum Geologists Bulletin, 14(1): 1-24 http://femsec.oxfordjournals.org/lookup/ijlink?linkType=ABST&journalCode=gsaapgbull&resid=14/1/1&atom=%2Ffemsec%2F87%2F1%2F113.atom |
Canfield, D. E., 1998. A New Model for Proterozoic Ocean Chemistry. Nature, 396: 450-453. doi: 10.1038/24839 |
Cai, C., Xiang, L., Yuan, Y., et al., 2015. Marine C, S and N Biogeochemical Processes in the Redox-Stratified Early Cambrian Yangtze ocean. Journal of the Geological Society, London, 172: 390-406. doi: 10.1144/0016-76492014-054. |
Chen, J., Summons, R. E., 2001. Complex Patterns of Steroidal Biomarkers in Tertiary Lacustrine Sediments of the Biyang Basin, China. Organic Geochemistry, 32: 115-126. doi: 10.1016/S0146-6380(00)00145-5 |
Compston, W., Zhang, Z., Cooper, J. A., et al., 2008. Further SHRIMP Geochronology on the Early Cambrian of South China. American Journal of Science, 308: 399-420. doi: 10.2475/04.2008.01 |
Dutta, S., Greenwood, P. F., Brocke, R., et al., 2006. New Insights into the Relationship between Tasmanites and Tricyclic Terpenoids. Organic Geochemistry, 37: 117-127. doi: 10.1016/j.orggeochem.2005.08.010 |
Du, X., Wang, P., 1992. Calculation of the Original Sedimentary Rate. Journal of Changchun University of Earth Sciences, 22(1): 67-70 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ199201012.htm |
Dykstra, J., 1987. Compaction Correction for Burial History Curves: Application to Lopatin's Method for Source Rock Maturation Determination. Geobyte, 87: 16-23 http://www.researchgate.net/publication/236374385_Compaction_correction_for_burial_history_curves_Application_to_Lopatin's_method_for_source_rock_maturation_determination |
Falkowski, P. G., Barber, R. T., Smetacek, V., 1998. Biogeochemical Controls and Feedbacks on Ocean Primary Production. Science, 281: 200-206. DOI: 10.1126/science.281.5374.200 |
Feng, Z., Peng, Y., Jin, Z., et al., 2002. Lithofacies PalaeoGeography of the Early Cambrian in China. Journal of Palaeogeography, 4(1): 1-12. doi: 10.3969/j.issn.1671-1505.2002.03.001(in Chinese with English Abstract) |
Feng, L., Li, C., Huang, J., et al., 2014. A Sulfate Control on Marine Mid-Depth Euxinia on the Early Cambrian (ca. 529-521 Ma) Yangtze Platform, South China. Precambrian Research, 246: 123-133. doi: 10.1016/j.precamres.2014.03.002 |
Fike, D. A., Grotzinger, J. P., Pratt, L. M., et al., 2006. Oxidation of the Ediacaran Ocean. Nature, 444: 744-747. doi: 10.1038/nature05345 |
Follows, M. J., Dutkiewicz, S., Grant, S., et al., 2007. Emergent Biogeography of Microbial Communities in a Model Ocean. Science, 315: 1843-1846. doi: 10.1126/science.1138544 |
Fu, J., Qin, K., 1995. Kerogen Geochemistry. Guangdong Science and Technology Press, Guangzhou. 641 (in Chinese) |
Gao, S., Ling, W., Qiu, Y., et al., 1999. Contrasting geochemical and Sm-Nd Isotopic Compositions of Archean Metasediments from the Kongling High-Grade Terrain of the Yangtze Craton: Evidence for Cratonic Evolution and Redistribution of REE during Crustal Anatexis. Geochimica et Cosmochimica Acta, 63: 2071-2088. doi: 10.1016/S0016-7037(99)00153-2 |
Goossens, H., de Leeuw, J. W., Schenck, P. A., et al., 1984. Tocopherols as Likely Precursors of Pristane in Ancient Sediments and Crude Oils. Nature, 312: 440-442. doi: 10.1038/312440a0 |
Grantham, P. J., Wakefield, L. L., 1988. Variations in the Sterane Carbon Number Distributions of Marine Source Rock Derived Crude Oils through Geological Time. Organic Geochemistry, 12: 61-73. doi: 10.1016/0146-6380(88)90115-5 |
Greenwood, P. F., Arouri, K. R., George, S. C., 2000. Tricyclic Terpenoid Composition of Tasmanites Kerogen as Determined by Pyrolysis GC-MS. Geochimica et Cosmochimica Acta, 64: 1249-1263. doi: 10.1016/S0016-7037(99)00326-9 |
He, J., Duan, Y., Zhang, X., et al., 2011. Hydrocarbon Generation Conditions of the Shale in Niutitang Formation of Lower Cambrian, Southern Chongqing and Northern Guizhou. Marine Geology Frontiers, 27(7): 34-40. doi: 1009-2722(2011)07-0034-07(in Chinese with English Abstract) |
Huang, B., Zhu, R., Otofuji, Y., et al., 2000. The Early Paleozoic Paleogeography of the North China Block and the Other Major Blocks of China. Chinese Science Bulletin, 45(12): 1057-1065. doi: 10.1007/BF02887174 |
Jenkins, R. J. F., Cooper, J. A., Compston, W., 2002. Age and Biostratigraphy of Early Cambrian Tuffs from SE Australia and Southern China. Journal of the Geological Society, London, 159: 645-658. doi: 10.1144/0016-764901-127 |
Jiang, S., Pi, D., Heubeck, C., et al., 2009. Early Cambrian Ocean Anoxia in South China. Nature, 459: E5-E6. doi: 10.1038/nature08048 |
Jiao, N., Herndl, G. J., Hansell, D. A., et al., 2010. Microbial Production of Recalcitrant Dissolved Organic Matter: Long-Term Carbon Storage in the Global Ocean. Nature Reviews Microbiology, 8: 593-599. doi: 10.1038/nrmicro2386 |
Jin, Q., 1989. The Restoration of Initial Organic Carbon in Source Rock. Journal of the University of Petroleum, China, 13(5): 1-8 http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDX198905002.htm |
Johnston, D. T., Poulton, S. W., Goldberg, T., et al., 2012. Late Ediacaran Redox Stability and Metazoan Evolution. Earth and Planetary Science Letters, 335-336: 25-35. doi: 10.1016/j.epsl.2012.05.010 |
Jones, B., Manning, D. A. C., 1994. Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chemical Geology, 111: 111-129. doi: 10.1016/0009-2541(94)90085-X |
Li, S., Wu, C., Wu, J., et al., 2000. A New Method for Compaction Correction. Experimental Petroleum Geology, 22(2): 110-114. doi: 10.11781/sysydz200002110 (in Chinese with English Abstract) |
Li, C., Love, G. D., Lyons, T. W., et al., 2010. A Stratified Redox Model for the Ediacaran Ocean. Science, 328: 80-83. doi: 10.1126/science.1182369 |
Li, L., Xie, J., Deng, H., et al., 2012. Study on Characteristics and Its Stratigraphic Classification and Correlation of Cambrian in Sichuan Basin. Geology and Mineral Resources of South China, 28(3): 197-202. doi: 10.3969/j.issn.1007-3701.2012.03.002(in Chinese with English Abstract) |
Li, M., Yao, S., Ding, H., et al., 2013. Geochemistry, Paleontology and Sedimentary Environment Significance of Niutitang Formation in Western Hunan Province of China. Journal of China Coal Society, 38(5): 857-863. doi: 0253-9993(2013)05-0857-07(in Chinese with English Abstract) |
Li, P., Xiong, Y., Wang, K., et al., 1995. SY/T 5124-1995, The Determination of Vitrinite Reflectance in Sedimentary Rock. China National Petroleum Corporation. (in Chinese) |
Lian, J., Zhao, Z., 1998. Cohesive Sediment Entrainment from Soft Muddy Bed by Waves. Journal of Hydraulic Engineering, 8: 47-51. (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-SLXB808.009.htm |
Lin, J., Fuller, M., Zhang, W., 1985. Paleogeography of the North and South China Blocks during the Cambrian. Journal of Geodynamics, 2(2-3): 91-114. doi: 10.1016/0264-3707(85)90003-1 |
Lu, S., Xue, H., Zhong, N., 2003. Simulating Calculation of the Variation of Organic Matter Abundance and Hydrocarbon -Generating Potential during Geological Processes. Geological Review, 49(3): 292-297. doi: 10.3321/j.issn:0371-5736.2003.03.011(in Chinese with English Abstract) |
Lyons, T. W., Reinhard, C. T., Planavsky, N. J., 2014. The Rise of Oxygen in Earth's Early Ocean and Atmosphere. Nature, 506: 307-315 doi: 10.1038/nature13068 |
Madigan, M. T., Martinko, J. M., Bender, K. S., et al., 2014. Brock Biology of Microorganisms. Pearson, Illinois. 1005 |
Maloof, A. C., Ramezani, J., Bowring, S. A., et al., 2010. Constraints on Early Cambrian Carbon Cycling from the Duration of the Nemakit-Daldynian-Tommotian Boundary δ13C shift, Morocco. Geology, 38: 623-626. doi: 10.1130/G30726.1 |
Marzi, R., Torkelson, B. E., Olson, R. K., 1993. A Revised Carbon Preference Index. Organic Geochemistry, 20(8): 1303-1306. doi: 10.1016/0146-6380(93)90016-5 |
McFadden, K. A., Huang, J., Chu, X., et al., 2008. Pulsed Oxidation and Biological Evolution in the Ediacaran Doushantuo Formation. Proceedings of National Academy of Sciences of the United States of America, 105(9): 3197-3202. doi: 10.1016/0146-6380(93)90016-5 |
Meng, F., Zhou, C., Yan, K., et al., 2006. Biological Origin of Early Palaeozoic and Precambrian Hydrocarbon Source Rocks Based on C27/C29 Sterane Ratio and Organic Carbon Isotope. Acta Micropalaeontologica Sinica, 23(1): 51-56. doi: 10.3969/j.issn.1000-0674.2006.01.006(in Chinese with English Abstract) |
Mou, C., Liang, W., Zhou, K., et al., 2012. Sedimentary Facies and Palaeogeography of the Middle-Upper Yangtze Area during the Early Cambrian (Terreneuvian-Series 2). Sedimentary Geology and Tethyan Geology, 32(3): 41-53. doi: 10.3969/j.issn.1009-3850.2012.03.004 |
Pancost, R. D., Colemana, J M., Love, G. D., et al., 2008. Kerogen-Bound Glycerol Dialkyl Tetraether Lipids Released by Hydropyrolysis of Marine Sediments: A Bias against Incorporation of Sedimentary Organisms? Organic Geochemistry, 39: 1359-1371. doi: 10.1016/j.orggeochem.2008.05.002 |
Peng, J., 2005. The Early Cambrian Balang Fauna from Guizhou, China: [Dissertation]. Guizhou University, Guiyang. 1-7 (in Chinese with English Abstract) |
Peng, S., 2008. Revision on Cambrian Chronostratigrapy of South China and Related Remarks. Journal of Stratigraphy, 32(3): 239-245. doi: 10.3969/j.issn.0253-4959.2008.03.002(in Chinese with English Abstract) |
Peng, P., Qing, Y., Zhang, H., et al., 2008. Kinetics of Kerogen TransFormation by Heating in Closed System. Marine Origin Petroleum Geology, 13(2): 27-36. doi: 1672-9854(2008)-02-0027-10(in Chinese with English Abstract) |
Peng, S., 2009. The Newly-Developed Cambrian Biostratigraphic Succession and Chronostratigraphic Scheme for South China. Chinese Science Bulletin, 54: 4161-4170. doi: 10.1007/s11434-009-0667-4 |
Peters, K. E., Walters, C. C., Moldowan, J. M., 2005. The Biomarker Guide. Cambridge University Press, Cambridge. 1132 |
Piper, D. Z., 1994. Seawater as the Source of Minor Elements in Black Shales, Phosphorites and Other Sedimentary Rocks. Chemical Geology, 117: 95-114. doi: 10.1016/0009-2541(94)90044-2 |
Qin, J., Zheng, L., Tenger, 2007. Study on the Restitution Coefficient of Original Total Organic Carbon for High Mature Marine Source Rocks. Frontiers of Earth Science in China, 1(4): 482-490. doi: 10.1007/s11707-007-0059-5 |
Sawaki, Y., Nishizawa, M., Suo, T., et al., 2008. Internal Structures and U-Pb Ages of Zircons from a Tuff Layer in the Meishucunian Formation, Yunnan Province, South China. Gondwana Research, 14: 148-158. doi: 10.1016/j.gr.2007.12.003 |
Scheffler, K., Buehmann, D., Schwark, L., 2006. Analysis of Late Palaeozoic Glacial to Postglacial Sedimentary Successions in South Africa by Geochemical Proxies〞Response to Climate Evolution and Sedimentary Environment. Palaeogeography, Palaeoclimatology, Palaeoecology, 240: 184-203. doi: 10.1016/j.palaeo.2006.03.059 |
Schieber, J., 1999. Distribution and Deposition of Mudstone Facies in the Upper Devonian Sonyea Group of New York. Journal of Sedimentary Research, 69: 909-925. doi: 10.2110/jsr.69.909 |
Schouten, S., Hopmans, E. C., Pancost, R. D., et al., 2000. Widespread Occurrence of Structurally Diverse Tetraether Membranelipids: Evidence for the Ubiquitous Presence of Low-Temperature Relatives of Hyperthermophiles. Proceedings of the National Academy of Sciences of the United States of America, 97: 14421-14426. doi: 10.1073/pnas.97.26.14421 |
Schumacher, B. A., 2002. Methods for the Determination of Total Organic Carbon (TOC) in Soil and Sediments. U. S. United States Environmental Protection Agency Environmental Sciences Division National Exposure Research Laboratory. http://www.researchgate.net/publication/237792048_Methods_for_the_Determination_of_Total_Organic_Carbon_TOC_In_Soils_and_Sediments |
Scotese, C. R., Mckrrow, W. S., 1990. Revised World Maps and Introduction. Geological Society, 12: 1-21. doi: 10.1144/GSL.MEM.1990.012.01.01 |
Sperlinga, E. A., Friederb, C. A., Ramanc, A. V., et al., 2013a. Oxygen, Ecology, and the Cambrian Radiation of Animals. Proceedings of National Academy of Sciences of the United States of America, 110 (33): 13446-13451. doi: 10.1073/pnas.1312778110 |
Sperling, E. A., Halverson G. P., Knoll A. H., et al., 2013b. A Basin Redox Transect at the Dawn of Animal Life. Earth and Planetary Science Letters, 371-372: 143-155. doi: 10.1016/j.epsl.2013.04.003 |
Steiner, M., Li, G., Qian, Y., et al., 2007. Neoproterozoic to Early Cambrian Small Shelly Fossil Assemblages and a Revised Biostratigraphic Correlation of the Yangtze Platform (China). Palaeogeography, Palaeoclimatology, Palaeoecology, 254: 67-99. doi: 10.1016/j.palaeo.2007.03.046 |
Ten Haven, H. L., de Leeuw, J. W., Peakman, T. M., et al., 1986. Anomalies in Steroid and Hopanoid Maturity Indices. Geochimica et Cosmochimica Acta, 50: 853-855. doi: 10.1016/0016-7037(86)90361-3 |
Tissot, B. P., Welte, D. H., 1984. Petroleum Formation and Occurrence: Second Revised and Enlarged Edition. Springer-Verlag, Berlin. 699 doi: 10.1007/978-3-642-87813-8_8 |
Volkman, J. K., 1986. A review of Sterol Markers for Marine and Terrigenous Organic Matter. Organic Geochemistry, 9: 83-99. doi: 10.1016/0146-6380(86)90089-6 |
Volkman, J. K., Barrett, S. M., Dunstan, G. A., et al., 1994. Sterol Biomarkers for Microalgae from the Green Algal Class Prasinophyceae. Organic Geochemistry, 21: 1211-1218. doi: 10.1016/0146-6380(94)90164-3 |
Wang, H., Li, C., Hu, C., et al., 2015. Spurious Thermoluminescence Characteristics of the Ediacaran Doushantuo Formation (Ca. 635-551 Ma) and Its Implications for Marine Dissolved Organic Carbon Reservoir. Journal of Earth Science, 26(6): 883-892 doi: 10.1007/s12583-015-0650-3 |
Wang, X., Shi, X., Jiang, G., et al., 2012. New U-Pb Age from the Basal Niutitang Formation in South China: Implications for Diachronous Development and Condensation of Stratigraphic Units across the Yangtze Platform at the Ediacaran-Cambrian Transition. Journal of Asia Earth Science, 48: 1-18. doi: 10.1016/j.jseaes.2011.12.023 |
Xu, G., Hu, W., 1997. SY/T 5116-1997, The Determination of Total Organic Carbon in Sedimentary Rock. China National Petroleum Corporation (in Chinese) |
Xu, L., Lehmann, B., Mao, J., et al., 2011. Re-Os Age of Polymetallic Ni-Mo-PGE-Au Mineralization in Early Cambrian Black Shales of South China-A Reassessment. Economic Geology, 106: 511-522. DOI: 0361-0128/11/3957/511-12 |
Yang, Q., Qi, J., 2003. Method of Delaminated Decompaction Correction. Petroleum Geology & Experiment, 25(2): 206-210. doi: 10.3969/j.issn.1001-6112.2003.02.019(in Chinese with English Abstract) |
Yang, P., Wang, Z. J., Xie, Y., et al., 2012. The Biomarker Characteristics and Sedimentary Environment of Lower Cambrian Niutitang Formation Source Rock in Northern Guizhou. Geological Bulletin of China, 31(11): 1910-1921. doi: 10.3969/j.issn.1671-2552.2012.11.016(in Chinese with English Abstract) |
Zhang, C., Jiang, W., Pan, H., 2009. Application and Principles of Sonic Logging. Petroleum Industry Press, Beijing. 189 (in Chinese) |
Zhang, C., Zhang, W., Guo, Y., 2012. Sedimentary Environment and its Effect on Hydrocarbon Source Rocks of Longmaxi Formation in Southeast Sichuan and Northern Guizhou. Earth Science Frontiers, 19(1): 136-145. (in Chinese with English Abstract) http://www.cqvip.com/QK/98600X/201201/40825990.html |
Zhang, H., Peng, P., Liu, D., et al., 2008. Weight Loss of Organic Matter, Organic Carbon, Hydrogen and Nitrogen in an Open System: Kinetic Approaches. Acta Geologica Sinica, 82(5): 710-720. doi: 10.3321/j.issn:0001-5717.2008.05.016(in Chinese with English Abstract) |
Zhou, M., Luo, T., Li, Z., et al., 2008. SHRIMP U-Pb Zircon Age of Tuff at the Bottom of the Lower Cambrian Niutitang Formation, Zunyi, South China. Chinese Science Bulletin, 53(4): 576-583. doi: 10.1007/s11434-008-0084-0 |
Zhou, M., Luo, T., Liu, S., et al., 2013. SHRIMP Zircon Age for a K-Bentonite in the Top of the Laobao Formation at the Pingyin Section, Guizhou, South China. Science China: Earth Sciences, 56: 1677-1687. doi: 10.1007/s11430-013-4604-7 |
Zhu, M., Zhang, J., Steiner, M., et al., 2003. Sinian-Cambrian Stratigraphic Framework for Shallow- to Deep-Water Environments of the Yangtze Platform: An Integrated Approach. Progress in Natural Science, 13(12): 951-960. doi: 10.1080/10020070312331344710 |