Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 27 Issue 2
Mar 2016
Turn off MathJax
Article Contents
Kunyu Wu, Tingshan Zhang, Yang Yang, Yuchuan Sun, Daoxian Yuan. Contribution of Oxygenic Photosynthesis to Palaeo-Oceanic Organic Carbon Sink Fluxes in Early Cambrian Upper Yangtze Shallow Sea: Evidence from Black Shale Record. Journal of Earth Science, 2016, 27(2): 211-224. doi: 10.1007/s12583-016-0693-5
Citation: Kunyu Wu, Tingshan Zhang, Yang Yang, Yuchuan Sun, Daoxian Yuan. Contribution of Oxygenic Photosynthesis to Palaeo-Oceanic Organic Carbon Sink Fluxes in Early Cambrian Upper Yangtze Shallow Sea: Evidence from Black Shale Record. Journal of Earth Science, 2016, 27(2): 211-224. doi: 10.1007/s12583-016-0693-5

Contribution of Oxygenic Photosynthesis to Palaeo-Oceanic Organic Carbon Sink Fluxes in Early Cambrian Upper Yangtze Shallow Sea: Evidence from Black Shale Record

doi: 10.1007/s12583-016-0693-5
More Information
  • Corresponding author: Tingshan Zhang, zts_3@126.com
  • Received Date: 05 Sep 2014
  • Accepted Date: 05 Mar 2015
  • Publish Date: 01 Apr 2016
  • The extensive transgression that occurred on the Yangtze Plate in Early Cambrian led to a massive organic carbon pool in the Niutitang Formation. A black shale core section from 3 251.08 to 3 436.08 m beneath the Earth's surface was studied to estimate the contribution of oxygenic photosynthesis to organic carbon sink fluxes in Early Cambrian Upper Yangtze shallow sea. Results indicate that the oxygenic photosynthesis played the most important role in carbon fixation in Early Cambrian. Organic carbon sink was mainly contributed by photosynthetic microorganisms, e.g., cyanobacteria, algae and archaea. The Niutitang Formation was formed in a deep anoxic marine shelf sedimentary environment at a sedimentation rate of ~0.09±0.03 mm/yr. The initial TOC abundance in Niutitang shale ranged from 0.18% to 7.09%, with an average of 2.15%. In accordance with the sedimentation rate and initial TOC abundance, organic carbon sink fluxes were calculated and found to range from 0.21 to 8.10×103 kg/km2·yr-1, especially the organic carbon sink fluxes in depth between 3 385 and 3 470 m range from 3.80 to 8.10×103 kg/km2·yr-1, with an average of ~6.03×103 kg/km2·yr-1, which is much higher than that of contemporary marine sediments. The organic carbon sink fluxes of Niutitang shale are equal to 0.56 to 21.61×103 kg/km2·yr-1 net oxygen emitted into the Early Cambrian ocean and atmosphere, this emitted oxygen may have significantly promoted the oxygen level of the Earth's surface and diversification of metazoans.

     

  • loading
  • Athy, L. F., 1930. Density, Porosity, and Compaction of Sedimentary Rocks. American Association of Petroleum Geologists Bulletin, 14(1): 1-24 http://femsec.oxfordjournals.org/lookup/ijlink?linkType=ABST&journalCode=gsaapgbull&resid=14/1/1&atom=%2Ffemsec%2F87%2F1%2F113.atom
    Canfield, D. E., 1998. A New Model for Proterozoic Ocean Chemistry. Nature, 396: 450-453. doi: 10.1038/24839
    Cai, C., Xiang, L., Yuan, Y., et al., 2015. Marine C, S and N Biogeochemical Processes in the Redox-Stratified Early Cambrian Yangtze ocean. Journal of the Geological Society, London, 172: 390-406. doi: 10.1144/0016-76492014-054.
    Chen, J., Summons, R. E., 2001. Complex Patterns of Steroidal Biomarkers in Tertiary Lacustrine Sediments of the Biyang Basin, China. Organic Geochemistry, 32: 115-126. doi: 10.1016/S0146-6380(00)00145-5
    Compston, W., Zhang, Z., Cooper, J. A., et al., 2008. Further SHRIMP Geochronology on the Early Cambrian of South China. American Journal of Science, 308: 399-420. doi: 10.2475/04.2008.01
    Dutta, S., Greenwood, P. F., Brocke, R., et al., 2006. New Insights into the Relationship between Tasmanites and Tricyclic Terpenoids. Organic Geochemistry, 37: 117-127. doi: 10.1016/j.orggeochem.2005.08.010
    Du, X., Wang, P., 1992. Calculation of the Original Sedimentary Rate. Journal of Changchun University of Earth Sciences, 22(1): 67-70 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ199201012.htm
    Dykstra, J., 1987. Compaction Correction for Burial History Curves: Application to Lopatin's Method for Source Rock Maturation Determination. Geobyte, 87: 16-23 http://www.researchgate.net/publication/236374385_Compaction_correction_for_burial_history_curves_Application_to_Lopatin's_method_for_source_rock_maturation_determination
    Falkowski, P. G., Barber, R. T., Smetacek, V., 1998. Biogeochemical Controls and Feedbacks on Ocean Primary Production. Science, 281: 200-206. DOI: 10.1126/science.281.5374.200
    Feng, Z., Peng, Y., Jin, Z., et al., 2002. Lithofacies PalaeoGeography of the Early Cambrian in China. Journal of Palaeogeography, 4(1): 1-12. doi: 10.3969/j.issn.1671-1505.2002.03.001(in Chinese with English Abstract)
    Feng, L., Li, C., Huang, J., et al., 2014. A Sulfate Control on Marine Mid-Depth Euxinia on the Early Cambrian (ca. 529-521 Ma) Yangtze Platform, South China. Precambrian Research, 246: 123-133. doi: 10.1016/j.precamres.2014.03.002
    Fike, D. A., Grotzinger, J. P., Pratt, L. M., et al., 2006. Oxidation of the Ediacaran Ocean. Nature, 444: 744-747. doi: 10.1038/nature05345
    Follows, M. J., Dutkiewicz, S., Grant, S., et al., 2007. Emergent Biogeography of Microbial Communities in a Model Ocean. Science, 315: 1843-1846. doi: 10.1126/science.1138544
    Fu, J., Qin, K., 1995. Kerogen Geochemistry. Guangdong Science and Technology Press, Guangzhou. 641 (in Chinese)
    Gao, S., Ling, W., Qiu, Y., et al., 1999. Contrasting geochemical and Sm-Nd Isotopic Compositions of Archean Metasediments from the Kongling High-Grade Terrain of the Yangtze Craton: Evidence for Cratonic Evolution and Redistribution of REE during Crustal Anatexis. Geochimica et Cosmochimica Acta, 63: 2071-2088. doi: 10.1016/S0016-7037(99)00153-2
    Goossens, H., de Leeuw, J. W., Schenck, P. A., et al., 1984. Tocopherols as Likely Precursors of Pristane in Ancient Sediments and Crude Oils. Nature, 312: 440-442. doi: 10.1038/312440a0
    Grantham, P. J., Wakefield, L. L., 1988. Variations in the Sterane Carbon Number Distributions of Marine Source Rock Derived Crude Oils through Geological Time. Organic Geochemistry, 12: 61-73. doi: 10.1016/0146-6380(88)90115-5
    Greenwood, P. F., Arouri, K. R., George, S. C., 2000. Tricyclic Terpenoid Composition of Tasmanites Kerogen as Determined by Pyrolysis GC-MS. Geochimica et Cosmochimica Acta, 64: 1249-1263. doi: 10.1016/S0016-7037(99)00326-9
    He, J., Duan, Y., Zhang, X., et al., 2011. Hydrocarbon Generation Conditions of the Shale in Niutitang Formation of Lower Cambrian, Southern Chongqing and Northern Guizhou. Marine Geology Frontiers, 27(7): 34-40. doi: 1009-2722(2011)07-0034-07(in Chinese with English Abstract)
    Huang, B., Zhu, R., Otofuji, Y., et al., 2000. The Early Paleozoic Paleogeography of the North China Block and the Other Major Blocks of China. Chinese Science Bulletin, 45(12): 1057-1065. doi: 10.1007/BF02887174
    Jenkins, R. J. F., Cooper, J. A., Compston, W., 2002. Age and Biostratigraphy of Early Cambrian Tuffs from SE Australia and Southern China. Journal of the Geological Society, London, 159: 645-658. doi: 10.1144/0016-764901-127
    Jiang, S., Pi, D., Heubeck, C., et al., 2009. Early Cambrian Ocean Anoxia in South China. Nature, 459: E5-E6. doi: 10.1038/nature08048
    Jiao, N., Herndl, G. J., Hansell, D. A., et al., 2010. Microbial Production of Recalcitrant Dissolved Organic Matter: Long-Term Carbon Storage in the Global Ocean. Nature Reviews Microbiology, 8: 593-599. doi: 10.1038/nrmicro2386
    Jin, Q., 1989. The Restoration of Initial Organic Carbon in Source Rock. Journal of the University of Petroleum, China, 13(5): 1-8 http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDX198905002.htm
    Johnston, D. T., Poulton, S. W., Goldberg, T., et al., 2012. Late Ediacaran Redox Stability and Metazoan Evolution. Earth and Planetary Science Letters, 335-336: 25-35. doi: 10.1016/j.epsl.2012.05.010
    Jones, B., Manning, D. A. C., 1994. Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chemical Geology, 111: 111-129. doi: 10.1016/0009-2541(94)90085-X
    Li, S., Wu, C., Wu, J., et al., 2000. A New Method for Compaction Correction. Experimental Petroleum Geology, 22(2): 110-114. doi: 10.11781/sysydz200002110 (in Chinese with English Abstract)
    Li, C., Love, G. D., Lyons, T. W., et al., 2010. A Stratified Redox Model for the Ediacaran Ocean. Science, 328: 80-83. doi: 10.1126/science.1182369
    Li, L., Xie, J., Deng, H., et al., 2012. Study on Characteristics and Its Stratigraphic Classification and Correlation of Cambrian in Sichuan Basin. Geology and Mineral Resources of South China, 28(3): 197-202. doi: 10.3969/j.issn.1007-3701.2012.03.002(in Chinese with English Abstract)
    Li, M., Yao, S., Ding, H., et al., 2013. Geochemistry, Paleontology and Sedimentary Environment Significance of Niutitang Formation in Western Hunan Province of China. Journal of China Coal Society, 38(5): 857-863. doi: 0253-9993(2013)05-0857-07(in Chinese with English Abstract)
    Li, P., Xiong, Y., Wang, K., et al., 1995. SY/T 5124-1995, The Determination of Vitrinite Reflectance in Sedimentary Rock. China National Petroleum Corporation. (in Chinese)
    Lian, J., Zhao, Z., 1998. Cohesive Sediment Entrainment from Soft Muddy Bed by Waves. Journal of Hydraulic Engineering, 8: 47-51. (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-SLXB808.009.htm
    Lin, J., Fuller, M., Zhang, W., 1985. Paleogeography of the North and South China Blocks during the Cambrian. Journal of Geodynamics, 2(2-3): 91-114. doi: 10.1016/0264-3707(85)90003-1
    Lu, S., Xue, H., Zhong, N., 2003. Simulating Calculation of the Variation of Organic Matter Abundance and Hydrocarbon -Generating Potential during Geological Processes. Geological Review, 49(3): 292-297. doi: 10.3321/j.issn:0371-5736.2003.03.011(in Chinese with English Abstract)
    Lyons, T. W., Reinhard, C. T., Planavsky, N. J., 2014. The Rise of Oxygen in Earth's Early Ocean and Atmosphere. Nature, 506: 307-315 doi: 10.1038/nature13068
    Madigan, M. T., Martinko, J. M., Bender, K. S., et al., 2014. Brock Biology of Microorganisms. Pearson, Illinois. 1005
    Maloof, A. C., Ramezani, J., Bowring, S. A., et al., 2010. Constraints on Early Cambrian Carbon Cycling from the Duration of the Nemakit-Daldynian-Tommotian Boundary δ13C shift, Morocco. Geology, 38: 623-626. doi: 10.1130/G30726.1
    Marzi, R., Torkelson, B. E., Olson, R. K., 1993. A Revised Carbon Preference Index. Organic Geochemistry, 20(8): 1303-1306. doi: 10.1016/0146-6380(93)90016-5
    McFadden, K. A., Huang, J., Chu, X., et al., 2008. Pulsed Oxidation and Biological Evolution in the Ediacaran Doushantuo Formation. Proceedings of National Academy of Sciences of the United States of America, 105(9): 3197-3202. doi: 10.1016/0146-6380(93)90016-5
    Meng, F., Zhou, C., Yan, K., et al., 2006. Biological Origin of Early Palaeozoic and Precambrian Hydrocarbon Source Rocks Based on C27/C29 Sterane Ratio and Organic Carbon Isotope. Acta Micropalaeontologica Sinica, 23(1): 51-56. doi: 10.3969/j.issn.1000-0674.2006.01.006(in Chinese with English Abstract)
    Mou, C., Liang, W., Zhou, K., et al., 2012. Sedimentary Facies and Palaeogeography of the Middle-Upper Yangtze Area during the Early Cambrian (Terreneuvian-Series 2). Sedimentary Geology and Tethyan Geology, 32(3): 41-53. doi: 10.3969/j.issn.1009-3850.2012.03.004
    Pancost, R. D., Colemana, J M., Love, G. D., et al., 2008. Kerogen-Bound Glycerol Dialkyl Tetraether Lipids Released by Hydropyrolysis of Marine Sediments: A Bias against Incorporation of Sedimentary Organisms? Organic Geochemistry, 39: 1359-1371. doi: 10.1016/j.orggeochem.2008.05.002
    Peng, J., 2005. The Early Cambrian Balang Fauna from Guizhou, China: [Dissertation]. Guizhou University, Guiyang. 1-7 (in Chinese with English Abstract)
    Peng, S., 2008. Revision on Cambrian Chronostratigrapy of South China and Related Remarks. Journal of Stratigraphy, 32(3): 239-245. doi: 10.3969/j.issn.0253-4959.2008.03.002(in Chinese with English Abstract)
    Peng, P., Qing, Y., Zhang, H., et al., 2008. Kinetics of Kerogen TransFormation by Heating in Closed System. Marine Origin Petroleum Geology, 13(2): 27-36. doi: 1672-9854(2008)-02-0027-10(in Chinese with English Abstract)
    Peng, S., 2009. The Newly-Developed Cambrian Biostratigraphic Succession and Chronostratigraphic Scheme for South China. Chinese Science Bulletin, 54: 4161-4170. doi: 10.1007/s11434-009-0667-4
    Peters, K. E., Walters, C. C., Moldowan, J. M., 2005. The Biomarker Guide. Cambridge University Press, Cambridge. 1132
    Piper, D. Z., 1994. Seawater as the Source of Minor Elements in Black Shales, Phosphorites and Other Sedimentary Rocks. Chemical Geology, 117: 95-114. doi: 10.1016/0009-2541(94)90044-2
    Qin, J., Zheng, L., Tenger, 2007. Study on the Restitution Coefficient of Original Total Organic Carbon for High Mature Marine Source Rocks. Frontiers of Earth Science in China, 1(4): 482-490. doi: 10.1007/s11707-007-0059-5
    Sawaki, Y., Nishizawa, M., Suo, T., et al., 2008. Internal Structures and U-Pb Ages of Zircons from a Tuff Layer in the Meishucunian Formation, Yunnan Province, South China. Gondwana Research, 14: 148-158. doi: 10.1016/j.gr.2007.12.003
    Scheffler, K., Buehmann, D., Schwark, L., 2006. Analysis of Late Palaeozoic Glacial to Postglacial Sedimentary Successions in South Africa by Geochemical Proxies〞Response to Climate Evolution and Sedimentary Environment. Palaeogeography, Palaeoclimatology, Palaeoecology, 240: 184-203. doi: 10.1016/j.palaeo.2006.03.059
    Schieber, J., 1999. Distribution and Deposition of Mudstone Facies in the Upper Devonian Sonyea Group of New York. Journal of Sedimentary Research, 69: 909-925. doi: 10.2110/jsr.69.909
    Schouten, S., Hopmans, E. C., Pancost, R. D., et al., 2000. Widespread Occurrence of Structurally Diverse Tetraether Membranelipids: Evidence for the Ubiquitous Presence of Low-Temperature Relatives of Hyperthermophiles. Proceedings of the National Academy of Sciences of the United States of America, 97: 14421-14426. doi: 10.1073/pnas.97.26.14421
    Schumacher, B. A., 2002. Methods for the Determination of Total Organic Carbon (TOC) in Soil and Sediments. U. S. United States Environmental Protection Agency Environmental Sciences Division National Exposure Research Laboratory. http://www.researchgate.net/publication/237792048_Methods_for_the_Determination_of_Total_Organic_Carbon_TOC_In_Soils_and_Sediments
    Scotese, C. R., Mckrrow, W. S., 1990. Revised World Maps and Introduction. Geological Society, 12: 1-21. doi: 10.1144/GSL.MEM.1990.012.01.01
    Sperlinga, E. A., Friederb, C. A., Ramanc, A. V., et al., 2013a. Oxygen, Ecology, and the Cambrian Radiation of Animals. Proceedings of National Academy of Sciences of the United States of America, 110 (33): 13446-13451. doi: 10.1073/pnas.1312778110
    Sperling, E. A., Halverson G. P., Knoll A. H., et al., 2013b. A Basin Redox Transect at the Dawn of Animal Life. Earth and Planetary Science Letters, 371-372: 143-155. doi: 10.1016/j.epsl.2013.04.003
    Steiner, M., Li, G., Qian, Y., et al., 2007. Neoproterozoic to Early Cambrian Small Shelly Fossil Assemblages and a Revised Biostratigraphic Correlation of the Yangtze Platform (China). Palaeogeography, Palaeoclimatology, Palaeoecology, 254: 67-99. doi: 10.1016/j.palaeo.2007.03.046
    Ten Haven, H. L., de Leeuw, J. W., Peakman, T. M., et al., 1986. Anomalies in Steroid and Hopanoid Maturity Indices. Geochimica et Cosmochimica Acta, 50: 853-855. doi: 10.1016/0016-7037(86)90361-3
    Tissot, B. P., Welte, D. H., 1984. Petroleum Formation and Occurrence: Second Revised and Enlarged Edition. Springer-Verlag, Berlin. 699 doi: 10.1007/978-3-642-87813-8_8
    Volkman, J. K., 1986. A review of Sterol Markers for Marine and Terrigenous Organic Matter. Organic Geochemistry, 9: 83-99. doi: 10.1016/0146-6380(86)90089-6
    Volkman, J. K., Barrett, S. M., Dunstan, G. A., et al., 1994. Sterol Biomarkers for Microalgae from the Green Algal Class Prasinophyceae. Organic Geochemistry, 21: 1211-1218. doi: 10.1016/0146-6380(94)90164-3
    Wang, H., Li, C., Hu, C., et al., 2015. Spurious Thermoluminescence Characteristics of the Ediacaran Doushantuo Formation (Ca. 635-551 Ma) and Its Implications for Marine Dissolved Organic Carbon Reservoir. Journal of Earth Science, 26(6): 883-892 doi: 10.1007/s12583-015-0650-3
    Wang, X., Shi, X., Jiang, G., et al., 2012. New U-Pb Age from the Basal Niutitang Formation in South China: Implications for Diachronous Development and Condensation of Stratigraphic Units across the Yangtze Platform at the Ediacaran-Cambrian Transition. Journal of Asia Earth Science, 48: 1-18. doi: 10.1016/j.jseaes.2011.12.023
    Xu, G., Hu, W., 1997. SY/T 5116-1997, The Determination of Total Organic Carbon in Sedimentary Rock. China National Petroleum Corporation (in Chinese)
    Xu, L., Lehmann, B., Mao, J., et al., 2011. Re-Os Age of Polymetallic Ni-Mo-PGE-Au Mineralization in Early Cambrian Black Shales of South China-A Reassessment. Economic Geology, 106: 511-522. DOI: 0361-0128/11/3957/511-12
    Yang, Q., Qi, J., 2003. Method of Delaminated Decompaction Correction. Petroleum Geology & Experiment, 25(2): 206-210. doi: 10.3969/j.issn.1001-6112.2003.02.019(in Chinese with English Abstract)
    Yang, P., Wang, Z. J., Xie, Y., et al., 2012. The Biomarker Characteristics and Sedimentary Environment of Lower Cambrian Niutitang Formation Source Rock in Northern Guizhou. Geological Bulletin of China, 31(11): 1910-1921. doi: 10.3969/j.issn.1671-2552.2012.11.016(in Chinese with English Abstract)
    Zhang, C., Jiang, W., Pan, H., 2009. Application and Principles of Sonic Logging. Petroleum Industry Press, Beijing. 189 (in Chinese)
    Zhang, C., Zhang, W., Guo, Y., 2012. Sedimentary Environment and its Effect on Hydrocarbon Source Rocks of Longmaxi Formation in Southeast Sichuan and Northern Guizhou. Earth Science Frontiers, 19(1): 136-145. (in Chinese with English Abstract) http://www.cqvip.com/QK/98600X/201201/40825990.html
    Zhang, H., Peng, P., Liu, D., et al., 2008. Weight Loss of Organic Matter, Organic Carbon, Hydrogen and Nitrogen in an Open System: Kinetic Approaches. Acta Geologica Sinica, 82(5): 710-720. doi: 10.3321/j.issn:0001-5717.2008.05.016(in Chinese with English Abstract)
    Zhou, M., Luo, T., Li, Z., et al., 2008. SHRIMP U-Pb Zircon Age of Tuff at the Bottom of the Lower Cambrian Niutitang Formation, Zunyi, South China. Chinese Science Bulletin, 53(4): 576-583. doi: 10.1007/s11434-008-0084-0
    Zhou, M., Luo, T., Liu, S., et al., 2013. SHRIMP Zircon Age for a K-Bentonite in the Top of the Laobao Formation at the Pingyin Section, Guizhou, South China. Science China: Earth Sciences, 56: 1677-1687. doi: 10.1007/s11430-013-4604-7
    Zhu, M., Zhang, J., Steiner, M., et al., 2003. Sinian-Cambrian Stratigraphic Framework for Shallow- to Deep-Water Environments of the Yangtze Platform: An Integrated Approach. Progress in Natural Science, 13(12): 951-960. doi: 10.1080/10020070312331344710
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views(468) PDF downloads(241) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return