Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 27 Issue 2
Mar 2016
Turn off MathJax
Article Contents
Yang Peng, Yongbo Peng, Xianguo Lang, Haoran Ma, Kangjun Huang, Fangbing Li, Bing Shen. Marine Carbon-Sulfur Biogeochemical Cycles during the Steptoean Positive Carbon Isotope Excursion (SPICE) in the Jiangnan Basin, South China. Journal of Earth Science, 2016, 27(2): 242-254. doi: 10.1007/s12583-016-0694-4
Citation: Yang Peng, Yongbo Peng, Xianguo Lang, Haoran Ma, Kangjun Huang, Fangbing Li, Bing Shen. Marine Carbon-Sulfur Biogeochemical Cycles during the Steptoean Positive Carbon Isotope Excursion (SPICE) in the Jiangnan Basin, South China. Journal of Earth Science, 2016, 27(2): 242-254. doi: 10.1007/s12583-016-0694-4

Marine Carbon-Sulfur Biogeochemical Cycles during the Steptoean Positive Carbon Isotope Excursion (SPICE) in the Jiangnan Basin, South China

doi: 10.1007/s12583-016-0694-4
More Information
  • Corresponding author: Bing Shen, bingshen@pku.edu.cn
  • Received Date: 05 Jan 2015
  • Accepted Date: 12 Jun 2015
  • Publish Date: 01 Apr 2016
  • Global occurrences of Steptoean Positive Carbon Isotope Excursion (SPICE) during Late Cambrian recorded a significant perturbation in marine carbon cycle, and might have had profound impacts on the biological evolution. In previous studies, SPICE has been reported from the Jiangnan slope belt in South China. To evaluate the bathymetric extent of SPICE, we investigate the limestone samples from the upper Qingxi Formation in the Shaijiang Section in the Jiangnan Basin. Our results show the positive excursions for both carbonate carbon (δ13C) and organic carbon (δ13Corg) isotopes, as well as the concurrent positive shifts in sulfur isotopes of carbonate associated sulfate (CAS, δ34SCAS) and pyrite (δ34Spyrite), unequivocally indicating the presence of SPICE in the Jiangnan Basin. A 4‰ increase in δ13Ccarb of the Qingxi limestone implies the increase of the relative flux of organic carbon burial by a factor of two. Concurrent positive excursions in δ34SCAS and δ34Spyrite have been attributed to the enhanced pyrite burial in oceans with extremely low concentration and spatially heterogeneous isotopic composition of seawater sulfate. Here, we propose that the seawater sulfur isotopic heterogeneity can be generated by volatile organic sulfur compound (VOSC, such as methanethiol and dimethyl sulfide) formation in sulfidic continental margins that were widespread during SPICE. Emission of 32S-enriched VOSC in atmosphere, followed by lateral transportation and aerobic oxidation in atmosphere, and precipitation in open oceans result in a net flux of 32S from continental margins to open oceans, elevating δ34S of seawater sulfate in continental margins. A simple box model indicates that about 35% to 75% of seawater sulfate in continental margins needs to be transported to open oceans via VOSC formation.

     

  • loading
  • Beerling, D. J., Lake, J. A., Berner, R. A., et al., 2002. Carbon Isotope Evidence Implying High O2/CO2 Ratios in the Permo-Carboniferous Atmosphere. Geochimica et Cosmochimica Acta, 66(21): 3757-3767 doi: 10.1016/S0016-7037(02)00901-8
    Berner, R. A., Petsch, S. T., Lake, J. A., et al., 2000. Isotope Fractionation and Atmospheric Oxygen: Implications for Phanerozoic O2 Evolution. Science, 287: 1630-1633 doi: 10.1126/science.287.5458.1630
    Berner, R. A., 2001. Modeling Atmospheric O2 over Phanerozoic Time. Geochimica et Cosmochimica Acta, 65(5): 685-694 doi: 10.1016/S0016-7037(00)00572-X
    Berner, R. A., 2006. GEOCARBSULF: A Combined Model for Phanerozoic Atmospheric O2 And CO2. Geochimica et Cosmochimica Acta, 70(23): 5653-5664 doi: 10.1016/j.gca.2005.11.032
    Brasier, M. D., Corfield, R. M., Derry, L. A., et al., 1994. Multiple d13C Excursions Spanning the Cambrian Explosion to the Botomian Crisis in Siberia. Geology, 22: 455-458 doi: 10.1130/0091-7613(1994)022<0455:MCESTC>2.3.CO;2
    Canfield, D. E., Farquhar, J., 2009. Animal Evolution, Bioturbation, and the Sulfate Concentration of the Oceans. Proceedings of the National Academy of Sciences, 106(20): 8123-8127 doi: 10.1073/pnas.0902037106
    Chang, H. J., Chu, X. L., Feng, L. J., et al., 2012. Progressive Oxidation of Anoxic and Ferruginous Deep-Water during Deposition of the Terminal Ediacaran Laobao Formation In South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 321-322(0): 80-87 http://www.sciencedirect.com/science/article/pii/S0031018212000338
    Chen, D., Zhou, X., Fu, Y., et al., 2015. New U-Pb Zircon Ages of the Ediacaran-Cambrian Boundary Strata in South China. Terra Nova, 27(1): 62-68 doi: 10.1111/ter.12134
    Cui, H., Kaufman, A. J., Xiao, S., et al., 2015. Redox Architecture of an Ediacaran Ocean Margin: Integrated Chemostratigraphic (Δ13C-Δ34S-87Sr/86Sr-Ce/Ce*) Correlation of the Doushantuo Formation, South China. Chemical Geology, 405(0): 48-62 http://smartsearch.nstl.gov.cn/paper_detail.html?id=90e9927df75b09b27533970d854319ce
    Derry, L. A., 2010. On The Significance of Δ13C Correlations in Ancient Sediments. Earth and Planetary Science Letters, 296(3-4): 497-501 doi: 10.1016/j.epsl.2010.05.035
    Droser, M. L., Bottjer, D. J., 1988. Trends in Depth and Extent of Bioturbation in Cambrian Carbonate Marine Environments, Western United States. Geology, 16(3): 233-236 doi: 10.1130/0091-7613(1988)016<0233:TIDAEO>2.3.CO;2
    Droser, M. L., Bottjer, D. J., 1989. Ordovician Increase in Extent and Depth of Bioturbation: Implications for Understanding Early Paleozoic Ecospace Utilization. Geology, 17(9): 850-852 doi: 10.1130/0091-7613(1989)017<0850:OIIEAD>2.3.CO;2
    Fan, H., Zhu, X., Wen, H., et al., 2014. Oxygenation of Ediacaran Ocean Recorded by Iron Isotopes. Geochimica et Cosmochimica Acta, 140(0): 80-94 http://www.sciencedirect.com/science/article/pii/S0016703714003585
    Feng, L., Li, C., Huang, J., et al., 2014. A Sulfate Control on Marine Mid-Depth Euxinia on the Early Cambrian (Ca. 529-521 Ma) Yangtze Platform, South China. Precambrian Research, 246(0): 123-133 http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201501009004.htm
    Gill, B. C., Lyons, T. W., Young, S. A., et al., 2011. Geochemical Evidence for Widespread Euxinia in the Later Cambrian Ocean. Nature, 469(7328): 80-83 doi: 10.1038/nature09700
    Gould, S. J., 1989. Wonderful Life: The Burgess Shale and the Nature of History. Norton, New York. 347
    Harper, D. A. T., 2006. The Ordovician Biodiversification: Setting an Agenda for Marine Life. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2-4): 148-166 doi: 10.1016/j.palaeo.2005.07.010
    Jacobsen, S. B., Kaufman, A. J., 1999. The Sr, C and O Isotopic Evolution of Neoproterozoic Seawater. Chemical Geology, 161: 37-57 doi: 10.1016/S0009-2541(99)00080-7
    Jiang, S. Y., Zhao, H. X., Chen, Y. Q., et al., 2007. Trace and rare Earth Element Geochemistry of Phosphate Nodules from the Lower Cambrian Black Shale Sequence in the Mufu Mountain of Nanjing, Jiangsu Province, China. Chemical Geology, 244(3-4): 584-604 doi: 10.1016/j.chemgeo.2007.07.010
    Jin, C., Li, C., Peng, X., et al., 2014. Spatiotemporal Variability of Ocean Chemistry in the Early Cambrian, South China. Science China Earth Sciences, 57(4): 579-591 doi: 10.1007/s11430-013-4779-y
    Kampschulte, A., Bruckschen, P., Strauss, H., 2001. The Sulphur Isotopic Composition of Trace Sulphates in Carboniferous Brachiopods: Implications for Coeval Seawater, Correlation with Other Geochemical Cycles and Isotope Stratigraphy. Chemical Geology, 205: 149-173 http://www.ingentaconnect.com/content/el/00092541/2001/00000175/00000001/art00009
    Kampschulte, A., Strauss, H., 2004. The Sulfur Isotopic Evolution of Phanerozoic Seawater Based on the Analysis of Structurally Substituted Sulfate in Carbonates. Chemical Geology, 204: 255-286 doi: 10.1016/j.chemgeo.2003.11.013
    Kaufman, A. J., Knoll, A. H., 1995. Neoproterozoic Variations in the C-Isotope Composition Of Sea Water: Stratigraphic and Biogeochemical Implications. Precambrian Research, 73(3-4): 27-49 http://www.sciencedirect.com/science/article/pii/0301926894000708
    Kiene, R. P., Linn, L. J., 2000. The Fate of Dissolved Dimethylsulfoniopropionate (DMSP) in Seawater: Tracer Studies Using 35S-DMSP. Geochimica et Cosmochimica Acta, 64(16): 2797-2810 doi: 10.1016/S0016-7037(00)00399-9
    Knauth, L. P., Kennedy, M. J., 2009. The Late Precambrian Greening of the Earth. Nature, 460(7256): 728-732 doi: 10.1038/nature08213
    Kouchinsky, A., Bengtson, S., Gallet, Y., et al., 2008. The SPICE Carbon Isotope Excursion in Siberia: A Combined Study of the Upper Middle Cambrian-Lowermost Ordovician Kulyumbe River Section, Northwestern Siberian Platform. Geological Magazine, 145(05) http://www.ingentaconnect.com/content/cupr/00167568/2008/00000145/00000005/art00001
    Lewis, B. L., Andreae, M. O., Froelich, P. N., 1989. Sources and Sinks of Methylgermanium in Natural Waters. Marine Chemistry, 27(3-4): 179-200 doi: 10.1016/0304-4203(89)90047-9
    Li, C., Love, G. D., Lyons, T. W., et al., 2010. A Stratified Redox Model for the Ediacaran Ocean. Science, 328(5974): 80-83 doi: 10.1126/science.1182369
    Lomans, B. P., Smolders, A., Intven, L. M., et al., 1997. Formation of Dimethyl Sulfide and Methanethiol in Anoxic Freshwater Sediments. Applied and Environmental Microbiology, 63(12): 4741-4747 doi: 10.1128/aem.63.12.4741-4747.1997
    Loyd, S. J., Marenco, P. J., Hagadorn, J. W., et al., 2012. Sustained Low Marine Sulfate Concentrations from the Neoproterozoic to the Cambrian: Insights from Carbonates of Northwestern Mexico and Eastern California. Earth and Planetary Science Letters, 339-340(0): 79-94 http://www.sciencedirect.com/science/article/pii/S0012821X12002610
    Magalhães, C., Salgado, P., Kiene, R. P., et al., 2012. Influence of Salinity on Dimethyl Sulfide and Methanethiol Formation in Estuarine Sediments and Its Side Effect on Nitrous Oxide Emissions. Biogeochemistry, 110(1-3): 75-86 doi: 10.1007/s10533-011-9690-z
    Marenco, P. J., Corsetti, F. A., Hammond, D. E., et al., 2008. Oxidation of Pyrite during Extraction of Carbonate Associated Sulfate. Chemical Geology, 247: 124-132 doi: 10.1016/j.chemgeo.2007.10.006
    Meyer, K. M., Kump, L. R., 2008. Oceanic Euxinia in Earth History: Causes and Consequences. Annual Review of Earth and Planetary Sciences, 36(1): 251-288 doi: 10.1146/annurev.earth.36.031207.124256
    Meyer, K. M., Kump, L. R., Ridgwell, A., 2008. Biogeochemical Controls on Photic-Zone Euxinia during the End-Permian Mass Extinction. Geology, 36(9): 747-750 doi: 10.1130/G24618A.1
    Ng, T. W., Yuan, J. L., Lin, J. P., 2014. The North China Steptoean Positive Carbon Isotope Excursion and Its Global Correlation with the Base of the Paibian Stage (Early Furongian Series), Cambrian. Lethaia, 47(2): 153-164 doi: 10.1111/let.12027
    Ng, T. W., Yuan, J. L., Lin, J. P., 2014. The North China Steptoean Positive Carbon Isotope Event: New insights towards Understanding a Global Phenomenon. Geobios, 47(6): 371-387 doi: 10.1016/j.geobios.2014.09.003
    Oduro, H., Kamyshny Jr, A., Guo, W., et al., 2011. Multiple Sulfur Isotope Analysis of Volatile Organic Sulfur Compounds and Their Sulfonium Precursors in Coastal Marine Environments. Marine Chemistry, 124(1-4): 78-89 doi: 10.1016/j.marchem.2010.12.004
    Oduro, H., Van Alstyne, K. L., Farquhar, J., 2012. Sulfur Isotope Variability of Oceanic DMSP Generation and Its Contributions to Marine Biogenic Sulfur Emissions. Proceedings of the National Academy of Sciences, 109(23): 9012-9016 doi: 10.1073/pnas.1117691109
    Palmer, A. R., 1965. Biomere: A New Kind of Biostratigraphic Unit. Journal of Paleontology, 39(1): 149-153
    Palmer, A. R., 1965. Trilobite of the Late Cambrian Pterocephaliid Biomere in the Great Basin, United States. United States Government Printing Office, Washington http://agris.fao.org/agris-search/search.do?recordID=US201300306191
    Palmer, A. R., 1982. Biomere Boundaries: A Possible Test for Extraterrestrial Perturbation of the Biosphere. Geological Society of America Special Papers, 190: 469-476 http://www.researchgate.net/publication/296061582_Biomere_boundaries_A_possible_test_for_extraterrestrial_perturbation_of_the_biosphere
    Palmer, A. R., 1984. The Biomere Problem: Evolution of an Idea. Journal of Paleontology, 58(3): 599-611
    Peng, S., Babcock, L. E., 2001. Cambrian of the Hunan-Guizhou Region, South China. In: Peng, S., Babcock, L. E., Zhu, M., eds. Cambrian System of South China (Palaeoworld No. 13), University of Science and Technology of China Press: Hefei. 3-51
    Peng, S., Babcock, L., Robison, R., et al., 2004. Global Standard Stratotype-section and Point (GSSP) of the Furongian Series and Paibian Stage (Cambrian). Lethaia, 37(4): 365-379 doi: 10.1080/00241160410002081
    Peng, Y., Bao, H., Pratt, L. M., et al., 2014. Widespread Contamination of Carbonate-Associated Sulfate by Present-Day Secondary Atmospheric Sulfate: Evidence from Triple Oxygen Isotopes. Geology, 42(9): 815-818 doi: 10.1130/G35852.1
    Pingitore, N. E., Jr., Meitzner, G., Love, K. M., 1995. Identification of Sulfate in Natural Carbonates by X-Ray Absorption Spectroscopy. Geochimica et Cosmochimica Acta, 59: 2477-2483 doi: 10.1016/0016-7037(95)00142-5
    Saltzman, M. R., Ripperdan, R. L., Brasier, M. D., et al., 2000. A Global Carbon Isotope Excursion (SPICE) during the Late Cambrian: Relation to Trilobite Extinctions, Organic-Matter Burial and Sea Level. Palaeogeography, Palaeoclimatology, Palaeoecology, 162(3-4): 211-223 doi: 10.1016/S0031-0182(00)00128-0
    Saltzman, M. R., Young, S. A., Kump, L. R., et al., 2011. Pulse of Atmospheric Oxygen during the Late Cambrian. Proceedings of the National Academy of Sciences, 108(10): 3876-3881 doi: 10.1073/pnas.1011836108
    Sepkoski, J. J., Jr., 1981. A Factor Analytic Description of the Phanerozoic Marine Fossil Record. Paleobiology, 7(1): 36-53 doi: 10.1017/S0094837300003778
    Servais, T., Harper, D. A. T., Li, J., et al., 2009. Understanding the Great Ordovician Biodiversification Event (GOBE): Influences of Paleogeography, Paleoclimate, or Paleoecology? GAS Today, 19: doi: 10.1130/GSATG1137A.1131
    Servais, T., Owen, A. W., Harper, D. A. T., et al., 2010. The Great Ordovician Biodiversification Event (GOBE): The Palaeoecological Dimension. Palaeogeography, Palaeoclimatology, Palaeoecology, 294(3-4): 99-119 doi: 10.1016/j.palaeo.2010.05.031
    Shen, B., Xiao, S., Bao, H., et al., 2008. Stratification and mixing of the Post-Glacial Neoproterozoic Ocean: Evidence from Carbon and Sulfur Isotopes in a Cap Dolostone from Northwest China. Earth and Planetary Science Letters, 265: 209-228 doi: 10.1016/j.epsl.2007.10.005
    Sial, A. N., Peralta, S., Ferreira, V. P., et al., 2008. Upper Cambrian carbonate Sequences Of The Argentine Precordillera and the Steptoean C-Isotope Positive Excursion (SPICE). Gondwana Research, 13(4): 437-452 doi: 10.1016/j.gr.2007.05.001
    Stitt, J. H., 1971. Repeating Evolutionary Pattern in Late Cambrian Trilobite Biomeres. Journal of Paleontology, 45(2): 178-181
    Tang, L., Chen, X., Yang, J., et al., 2013. A Restudy of the Ordovician to Earliest Silurian Graptolite Sequence from Xing'an, North Guangxi, China. Journal of Stratigraphy, 37(1): 1-7 http://www.cnki.com.cn/Article/CJFDTotal-DCXZ201301002.htm
    Tarhan, L. G., Droser, M. L., 2014. Widespread Delayed Mixing in Early to Middle Cambrian Marine Shelfal Settings. Palaeogeography, Palaeoclimatology, Palaeoecology, 399(0): 310-322 http://www.sciencedirect.com/science/article/pii/S0031018214000340
    Visscher, P. T., Baumgartner, L. K., Buckley, D. H., et al., 2003. Dimethyl Sulphide and Methanethiol Formation in Microbial Mats: Potential Pathways for Biogenic Signatures. Environmental Microbiology, 5(4): 296-308 doi: 10.1046/j.1462-2920.2003.00418.x
    Wang, H., Li, C., Hu, C., et al., 2015. Spurious Thermoluminescence Characteristics of the Ediacaran Doushantuo Formation (Ca. 635-551 Ma) and Its Implications for Marine Dissolved Organic Carbon Reservoir. Journal of Earth Science, 26(6): 883-892 doi: 10.1007/s12583-015-0650-3
    Wang, Y., Huang, Z., Chen, H., et al., 2012. Stratigraphical Correlation of the Liuchapo Formation with the Dengying Formation in South China. Journal of Jilin University (Earth Science Edition), 42: 328-335 doi: 10.1007/978-3-642-27708-5_66
    Wen, H., Carignan, J., Chu, X., et al., 2014. Selenium Isotopes Trace Anoxic and Ferruginous Seawater Conditions in the Early Cambrian. Chemical Geology, 390(0): 164-172
    Woods, M. A., Wilby, P. R., Leng, M. J., et al., 2011. The Furongian (Late Cambrian) Steptoean Positive Carbon Isotope Excursion (SPICE) in Avalonia. Journal of the Geological Society, 168(4): 851-862 doi: 10.1144/0016-76492010-111
    Wotte, T., Shields-Zhou, G. A., Strauss, H., 2012. Carbonate-Associated Sulfate: Experimental Comparisons of Common Extraction Methods and Recommendations toward a Standard Analytical Protocol. Chemical Geology, 326-327(0): 132-144 http://www.sciencedirect.com/science/article/pii/S0009254112003269
    Yoch, D. C., 2002. Dimethylsulfoniopropionate: Its Sources, Role in the Marine Food Web, and Biological Degradation to Dimethylsulfide. Applied and Environmental Microbiology, 68(12): 5804-5815 doi: 10.1128/AEM.68.12.5804-5815.2002
    Zhu, M. Y., Zhang, J. M., Li, G. X., et al., 2004. Evolution of C Isotopes in the Cambrian of China: Implications for Cambrian Subdivision and Trilobite Mass Extinctions. Geobios, 37(2): 287-301 doi: 10.1016/j.geobios.2003.06.001
    Zhuravlev, A. Y., Wood, R. A., 1996. Anoxia as the Cause of the Mid-Early Cambrian (Botomian) Extinction Event. Geology, 24(4): 311-314 doi: 10.1130/0091-7613(1996)024<0311:AATCOT>2.3.CO;2
    Ziveri, P., Stoll, H., Probert, I., et al., 2003. Stable Isotope 'Vital Effects' in Coccolith Calcite. Earth and Planetary Science Letters, 210(1-2): 137-149 doi: 10.1016/S0012-821X(03)00101-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views(903) PDF downloads(236) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return