Beerling, D. J., Lake, J. A., Berner, R. A., et al., 2002. Carbon Isotope Evidence Implying High O2/CO2 Ratios in the Permo-Carboniferous Atmosphere. Geochimica et Cosmochimica Acta, 66(21): 3757-3767 doi: 10.1016/S0016-7037(02)00901-8 |
Berner, R. A., Petsch, S. T., Lake, J. A., et al., 2000. Isotope Fractionation and Atmospheric Oxygen: Implications for Phanerozoic O2 Evolution. Science, 287: 1630-1633 doi: 10.1126/science.287.5458.1630 |
Berner, R. A., 2001. Modeling Atmospheric O2 over Phanerozoic Time. Geochimica et Cosmochimica Acta, 65(5): 685-694 doi: 10.1016/S0016-7037(00)00572-X |
Berner, R. A., 2006. GEOCARBSULF: A Combined Model for Phanerozoic Atmospheric O2 And CO2. Geochimica et Cosmochimica Acta, 70(23): 5653-5664 doi: 10.1016/j.gca.2005.11.032 |
Brasier, M. D., Corfield, R. M., Derry, L. A., et al., 1994. Multiple d13C Excursions Spanning the Cambrian Explosion to the Botomian Crisis in Siberia. Geology, 22: 455-458 doi: 10.1130/0091-7613(1994)022<0455:MCESTC>2.3.CO;2 |
Canfield, D. E., Farquhar, J., 2009. Animal Evolution, Bioturbation, and the Sulfate Concentration of the Oceans. Proceedings of the National Academy of Sciences, 106(20): 8123-8127 doi: 10.1073/pnas.0902037106 |
Chang, H. J., Chu, X. L., Feng, L. J., et al., 2012. Progressive Oxidation of Anoxic and Ferruginous Deep-Water during Deposition of the Terminal Ediacaran Laobao Formation In South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 321-322(0): 80-87 http://www.sciencedirect.com/science/article/pii/S0031018212000338 |
Chen, D., Zhou, X., Fu, Y., et al., 2015. New U-Pb Zircon Ages of the Ediacaran-Cambrian Boundary Strata in South China. Terra Nova, 27(1): 62-68 doi: 10.1111/ter.12134 |
Cui, H., Kaufman, A. J., Xiao, S., et al., 2015. Redox Architecture of an Ediacaran Ocean Margin: Integrated Chemostratigraphic (Δ13C-Δ34S-87Sr/86Sr-Ce/Ce*) Correlation of the Doushantuo Formation, South China. Chemical Geology, 405(0): 48-62 http://smartsearch.nstl.gov.cn/paper_detail.html?id=90e9927df75b09b27533970d854319ce |
Derry, L. A., 2010. On The Significance of Δ13C Correlations in Ancient Sediments. Earth and Planetary Science Letters, 296(3-4): 497-501 doi: 10.1016/j.epsl.2010.05.035 |
Droser, M. L., Bottjer, D. J., 1988. Trends in Depth and Extent of Bioturbation in Cambrian Carbonate Marine Environments, Western United States. Geology, 16(3): 233-236 doi: 10.1130/0091-7613(1988)016<0233:TIDAEO>2.3.CO;2 |
Droser, M. L., Bottjer, D. J., 1989. Ordovician Increase in Extent and Depth of Bioturbation: Implications for Understanding Early Paleozoic Ecospace Utilization. Geology, 17(9): 850-852 doi: 10.1130/0091-7613(1989)017<0850:OIIEAD>2.3.CO;2 |
Fan, H., Zhu, X., Wen, H., et al., 2014. Oxygenation of Ediacaran Ocean Recorded by Iron Isotopes. Geochimica et Cosmochimica Acta, 140(0): 80-94 http://www.sciencedirect.com/science/article/pii/S0016703714003585 |
Feng, L., Li, C., Huang, J., et al., 2014. A Sulfate Control on Marine Mid-Depth Euxinia on the Early Cambrian (Ca. 529-521 Ma) Yangtze Platform, South China. Precambrian Research, 246(0): 123-133 http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201501009004.htm |
Gill, B. C., Lyons, T. W., Young, S. A., et al., 2011. Geochemical Evidence for Widespread Euxinia in the Later Cambrian Ocean. Nature, 469(7328): 80-83 doi: 10.1038/nature09700 |
Gould, S. J., 1989. Wonderful Life: The Burgess Shale and the Nature of History. Norton, New York. 347 |
Harper, D. A. T., 2006. The Ordovician Biodiversification: Setting an Agenda for Marine Life. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2-4): 148-166 doi: 10.1016/j.palaeo.2005.07.010 |
Jacobsen, S. B., Kaufman, A. J., 1999. The Sr, C and O Isotopic Evolution of Neoproterozoic Seawater. Chemical Geology, 161: 37-57 doi: 10.1016/S0009-2541(99)00080-7 |
Jiang, S. Y., Zhao, H. X., Chen, Y. Q., et al., 2007. Trace and rare Earth Element Geochemistry of Phosphate Nodules from the Lower Cambrian Black Shale Sequence in the Mufu Mountain of Nanjing, Jiangsu Province, China. Chemical Geology, 244(3-4): 584-604 doi: 10.1016/j.chemgeo.2007.07.010 |
Jin, C., Li, C., Peng, X., et al., 2014. Spatiotemporal Variability of Ocean Chemistry in the Early Cambrian, South China. Science China Earth Sciences, 57(4): 579-591 doi: 10.1007/s11430-013-4779-y |
Kampschulte, A., Bruckschen, P., Strauss, H., 2001. The Sulphur Isotopic Composition of Trace Sulphates in Carboniferous Brachiopods: Implications for Coeval Seawater, Correlation with Other Geochemical Cycles and Isotope Stratigraphy. Chemical Geology, 205: 149-173 http://www.ingentaconnect.com/content/el/00092541/2001/00000175/00000001/art00009 |
Kampschulte, A., Strauss, H., 2004. The Sulfur Isotopic Evolution of Phanerozoic Seawater Based on the Analysis of Structurally Substituted Sulfate in Carbonates. Chemical Geology, 204: 255-286 doi: 10.1016/j.chemgeo.2003.11.013 |
Kaufman, A. J., Knoll, A. H., 1995. Neoproterozoic Variations in the C-Isotope Composition Of Sea Water: Stratigraphic and Biogeochemical Implications. Precambrian Research, 73(3-4): 27-49 http://www.sciencedirect.com/science/article/pii/0301926894000708 |
Kiene, R. P., Linn, L. J., 2000. The Fate of Dissolved Dimethylsulfoniopropionate (DMSP) in Seawater: Tracer Studies Using 35S-DMSP. Geochimica et Cosmochimica Acta, 64(16): 2797-2810 doi: 10.1016/S0016-7037(00)00399-9 |
Knauth, L. P., Kennedy, M. J., 2009. The Late Precambrian Greening of the Earth. Nature, 460(7256): 728-732 doi: 10.1038/nature08213 |
Kouchinsky, A., Bengtson, S., Gallet, Y., et al., 2008. The SPICE Carbon Isotope Excursion in Siberia: A Combined Study of the Upper Middle Cambrian-Lowermost Ordovician Kulyumbe River Section, Northwestern Siberian Platform. Geological Magazine, 145(05) http://www.ingentaconnect.com/content/cupr/00167568/2008/00000145/00000005/art00001 |
Lewis, B. L., Andreae, M. O., Froelich, P. N., 1989. Sources and Sinks of Methylgermanium in Natural Waters. Marine Chemistry, 27(3-4): 179-200 doi: 10.1016/0304-4203(89)90047-9 |
Li, C., Love, G. D., Lyons, T. W., et al., 2010. A Stratified Redox Model for the Ediacaran Ocean. Science, 328(5974): 80-83 doi: 10.1126/science.1182369 |
Lomans, B. P., Smolders, A., Intven, L. M., et al., 1997. Formation of Dimethyl Sulfide and Methanethiol in Anoxic Freshwater Sediments. Applied and Environmental Microbiology, 63(12): 4741-4747 doi: 10.1128/aem.63.12.4741-4747.1997 |
Loyd, S. J., Marenco, P. J., Hagadorn, J. W., et al., 2012. Sustained Low Marine Sulfate Concentrations from the Neoproterozoic to the Cambrian: Insights from Carbonates of Northwestern Mexico and Eastern California. Earth and Planetary Science Letters, 339-340(0): 79-94 http://www.sciencedirect.com/science/article/pii/S0012821X12002610 |
Magalhães, C., Salgado, P., Kiene, R. P., et al., 2012. Influence of Salinity on Dimethyl Sulfide and Methanethiol Formation in Estuarine Sediments and Its Side Effect on Nitrous Oxide Emissions. Biogeochemistry, 110(1-3): 75-86 doi: 10.1007/s10533-011-9690-z |
Marenco, P. J., Corsetti, F. A., Hammond, D. E., et al., 2008. Oxidation of Pyrite during Extraction of Carbonate Associated Sulfate. Chemical Geology, 247: 124-132 doi: 10.1016/j.chemgeo.2007.10.006 |
Meyer, K. M., Kump, L. R., 2008. Oceanic Euxinia in Earth History: Causes and Consequences. Annual Review of Earth and Planetary Sciences, 36(1): 251-288 doi: 10.1146/annurev.earth.36.031207.124256 |
Meyer, K. M., Kump, L. R., Ridgwell, A., 2008. Biogeochemical Controls on Photic-Zone Euxinia during the End-Permian Mass Extinction. Geology, 36(9): 747-750 doi: 10.1130/G24618A.1 |
Ng, T. W., Yuan, J. L., Lin, J. P., 2014. The North China Steptoean Positive Carbon Isotope Excursion and Its Global Correlation with the Base of the Paibian Stage (Early Furongian Series), Cambrian. Lethaia, 47(2): 153-164 doi: 10.1111/let.12027 |
Ng, T. W., Yuan, J. L., Lin, J. P., 2014. The North China Steptoean Positive Carbon Isotope Event: New insights towards Understanding a Global Phenomenon. Geobios, 47(6): 371-387 doi: 10.1016/j.geobios.2014.09.003 |
Oduro, H., Kamyshny Jr, A., Guo, W., et al., 2011. Multiple Sulfur Isotope Analysis of Volatile Organic Sulfur Compounds and Their Sulfonium Precursors in Coastal Marine Environments. Marine Chemistry, 124(1-4): 78-89 doi: 10.1016/j.marchem.2010.12.004 |
Oduro, H., Van Alstyne, K. L., Farquhar, J., 2012. Sulfur Isotope Variability of Oceanic DMSP Generation and Its Contributions to Marine Biogenic Sulfur Emissions. Proceedings of the National Academy of Sciences, 109(23): 9012-9016 doi: 10.1073/pnas.1117691109 |
Palmer, A. R., 1965. Biomere: A New Kind of Biostratigraphic Unit. Journal of Paleontology, 39(1): 149-153 |
Palmer, A. R., 1965. Trilobite of the Late Cambrian Pterocephaliid Biomere in the Great Basin, United States. United States Government Printing Office, Washington http://agris.fao.org/agris-search/search.do?recordID=US201300306191 |
Palmer, A. R., 1982. Biomere Boundaries: A Possible Test for Extraterrestrial Perturbation of the Biosphere. Geological Society of America Special Papers, 190: 469-476 http://www.researchgate.net/publication/296061582_Biomere_boundaries_A_possible_test_for_extraterrestrial_perturbation_of_the_biosphere |
Palmer, A. R., 1984. The Biomere Problem: Evolution of an Idea. Journal of Paleontology, 58(3): 599-611 |
Peng, S., Babcock, L. E., 2001. Cambrian of the Hunan-Guizhou Region, South China. In: Peng, S., Babcock, L. E., Zhu, M., eds. Cambrian System of South China (Palaeoworld No. 13), University of Science and Technology of China Press: Hefei. 3-51 |
Peng, S., Babcock, L., Robison, R., et al., 2004. Global Standard Stratotype-section and Point (GSSP) of the Furongian Series and Paibian Stage (Cambrian). Lethaia, 37(4): 365-379 doi: 10.1080/00241160410002081 |
Peng, Y., Bao, H., Pratt, L. M., et al., 2014. Widespread Contamination of Carbonate-Associated Sulfate by Present-Day Secondary Atmospheric Sulfate: Evidence from Triple Oxygen Isotopes. Geology, 42(9): 815-818 doi: 10.1130/G35852.1 |
Pingitore, N. E., Jr., Meitzner, G., Love, K. M., 1995. Identification of Sulfate in Natural Carbonates by X-Ray Absorption Spectroscopy. Geochimica et Cosmochimica Acta, 59: 2477-2483 doi: 10.1016/0016-7037(95)00142-5 |
Saltzman, M. R., Ripperdan, R. L., Brasier, M. D., et al., 2000. A Global Carbon Isotope Excursion (SPICE) during the Late Cambrian: Relation to Trilobite Extinctions, Organic-Matter Burial and Sea Level. Palaeogeography, Palaeoclimatology, Palaeoecology, 162(3-4): 211-223 doi: 10.1016/S0031-0182(00)00128-0 |
Saltzman, M. R., Young, S. A., Kump, L. R., et al., 2011. Pulse of Atmospheric Oxygen during the Late Cambrian. Proceedings of the National Academy of Sciences, 108(10): 3876-3881 doi: 10.1073/pnas.1011836108 |
Sepkoski, J. J., Jr., 1981. A Factor Analytic Description of the Phanerozoic Marine Fossil Record. Paleobiology, 7(1): 36-53 doi: 10.1017/S0094837300003778 |
Servais, T., Harper, D. A. T., Li, J., et al., 2009. Understanding the Great Ordovician Biodiversification Event (GOBE): Influences of Paleogeography, Paleoclimate, or Paleoecology? GAS Today, 19: doi: 10.1130/GSATG1137A.1131 |
Servais, T., Owen, A. W., Harper, D. A. T., et al., 2010. The Great Ordovician Biodiversification Event (GOBE): The Palaeoecological Dimension. Palaeogeography, Palaeoclimatology, Palaeoecology, 294(3-4): 99-119 doi: 10.1016/j.palaeo.2010.05.031 |
Shen, B., Xiao, S., Bao, H., et al., 2008. Stratification and mixing of the Post-Glacial Neoproterozoic Ocean: Evidence from Carbon and Sulfur Isotopes in a Cap Dolostone from Northwest China. Earth and Planetary Science Letters, 265: 209-228 doi: 10.1016/j.epsl.2007.10.005 |
Sial, A. N., Peralta, S., Ferreira, V. P., et al., 2008. Upper Cambrian carbonate Sequences Of The Argentine Precordillera and the Steptoean C-Isotope Positive Excursion (SPICE). Gondwana Research, 13(4): 437-452 doi: 10.1016/j.gr.2007.05.001 |
Stitt, J. H., 1971. Repeating Evolutionary Pattern in Late Cambrian Trilobite Biomeres. Journal of Paleontology, 45(2): 178-181 |
Tang, L., Chen, X., Yang, J., et al., 2013. A Restudy of the Ordovician to Earliest Silurian Graptolite Sequence from Xing'an, North Guangxi, China. Journal of Stratigraphy, 37(1): 1-7 http://www.cnki.com.cn/Article/CJFDTotal-DCXZ201301002.htm |
Tarhan, L. G., Droser, M. L., 2014. Widespread Delayed Mixing in Early to Middle Cambrian Marine Shelfal Settings. Palaeogeography, Palaeoclimatology, Palaeoecology, 399(0): 310-322 http://www.sciencedirect.com/science/article/pii/S0031018214000340 |
Visscher, P. T., Baumgartner, L. K., Buckley, D. H., et al., 2003. Dimethyl Sulphide and Methanethiol Formation in Microbial Mats: Potential Pathways for Biogenic Signatures. Environmental Microbiology, 5(4): 296-308 doi: 10.1046/j.1462-2920.2003.00418.x |
Wang, H., Li, C., Hu, C., et al., 2015. Spurious Thermoluminescence Characteristics of the Ediacaran Doushantuo Formation (Ca. 635-551 Ma) and Its Implications for Marine Dissolved Organic Carbon Reservoir. Journal of Earth Science, 26(6): 883-892 doi: 10.1007/s12583-015-0650-3 |
Wang, Y., Huang, Z., Chen, H., et al., 2012. Stratigraphical Correlation of the Liuchapo Formation with the Dengying Formation in South China. Journal of Jilin University (Earth Science Edition), 42: 328-335 doi: 10.1007/978-3-642-27708-5_66 |
Wen, H., Carignan, J., Chu, X., et al., 2014. Selenium Isotopes Trace Anoxic and Ferruginous Seawater Conditions in the Early Cambrian. Chemical Geology, 390(0): 164-172 |
Woods, M. A., Wilby, P. R., Leng, M. J., et al., 2011. The Furongian (Late Cambrian) Steptoean Positive Carbon Isotope Excursion (SPICE) in Avalonia. Journal of the Geological Society, 168(4): 851-862 doi: 10.1144/0016-76492010-111 |
Wotte, T., Shields-Zhou, G. A., Strauss, H., 2012. Carbonate-Associated Sulfate: Experimental Comparisons of Common Extraction Methods and Recommendations toward a Standard Analytical Protocol. Chemical Geology, 326-327(0): 132-144 http://www.sciencedirect.com/science/article/pii/S0009254112003269 |
Yoch, D. C., 2002. Dimethylsulfoniopropionate: Its Sources, Role in the Marine Food Web, and Biological Degradation to Dimethylsulfide. Applied and Environmental Microbiology, 68(12): 5804-5815 doi: 10.1128/AEM.68.12.5804-5815.2002 |
Zhu, M. Y., Zhang, J. M., Li, G. X., et al., 2004. Evolution of C Isotopes in the Cambrian of China: Implications for Cambrian Subdivision and Trilobite Mass Extinctions. Geobios, 37(2): 287-301 doi: 10.1016/j.geobios.2003.06.001 |
Zhuravlev, A. Y., Wood, R. A., 1996. Anoxia as the Cause of the Mid-Early Cambrian (Botomian) Extinction Event. Geology, 24(4): 311-314 doi: 10.1130/0091-7613(1996)024<0311:AATCOT>2.3.CO;2 |
Ziveri, P., Stoll, H., Probert, I., et al., 2003. Stable Isotope 'Vital Effects' in Coccolith Calcite. Earth and Planetary Science Letters, 210(1-2): 137-149 doi: 10.1016/S0012-821X(03)00101-8 |