Algeo, T. J., Lyons, T. W., 2006. Mo-Total Organic Carbon Covariation in Modern Anoxic Marine Environments: Implications for Analysis of Paleoredox and Paleohydrographic Conditions. Paleoceanography, 21: 1-23. doi: 10.1029/2004PA001112 |
Algeo, T. J., Tribovillard, N., 2009. Environmental Analysis of Paleoceanographic Systems Based on Molybdenum-Uranium Covariation. Chemical Geology, 268: 211-225. doi: 10.1016/j.chemgeo.2009.09.001 |
Algeo, T. J., Henderson, C. M., Tong, J. N., et al., 2013. Plankton and Productivity during the Permian-Triassic Boundary Crisis: an Analysis of Organic Carbon Fluxes. Global and Planetary Change, 105: 52-67. doi: 10.1016/j.gloplacha.2012.02.008 |
Anbar, A. D., Knoll, A. H., 2002. Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge. Science, 297: 1137-1142. doi: 10.1126/science.1069651 |
Berner, R. A., Raiswell, R., 1984. C/S Method for Distinguishing Fresh Water from Marine Sedimentary Rocks. Geology, 12: 365-368. doi: 10.1130/0091-7613(1984)12<365:CMFDFF>2.0.CO;2 |
Berner, R. A., 2009. Phanerozoic Atmospheric Oxygen: New Results Using the Geocarbsulf Model. American Journal of Science, 309: 603-606. doi: 10.2475/07.2009.03 |
Cai, C. F., Xiang, L., Yuan, Y. Y., et al., 2012. Spatial Variability in Ocean Redox Conditions during Early Cambrian. Goldschmidt 2012 Conference Abstracts. Mineralogical Magazine, 76: 1537 |
Cai, C. F., Xiang, L., Yuan, Y. Y., et al., 2015. Marine C, S and N Biogeochemical Processes in the Redox-Stratified Early Cambrian Yangtze Ocean. Journal of the Geological Society (London). 172 (3): 390-406. doi: 10.1144/jgs2014-054 |
Canfield, D. E., Raiswell, R., Westrich, J. T., et al., 1986. The Use of Chromium Reduction in the Analysis of Reduced Inorganic Sulfur in Sediments and Shales. Chemical Geology, 54: 149-155. doi: 10.1016/0009-2541(86)90078-1 |
Canfield, D. E., Teske, A., 1996. Late Proterozoic Rise in Atmospheric Oxygen Concentration Inferred from Phylogenetic and Sulphur Isotope Studies. Nature, 382: 127-132. doi: 10.1038/382127a0 |
Canfield, D. E., Poulton, S. W., Knoll, A. H., et al., 2008. Ferruginous Conditions Dominated Later Neoproterozoic Deep Water Chemistry. Science, 321: 949-952. doi: 10.1126/science.1154499 |
Cao, C. Q., Love, G. D., Hays, L. E., et al., 2009. Biogeochemical Evidence for Euxinic Oceans and Ecological Disturbance Presaging the End-Permian Mass Extinction Event. Earth and Planetary Science Letters, 281: 188-201. doi: 10.1016/j.epsl.2009.02.012 |
Chang, H. J., Chu, X. L., Feng, L. J., et al., 2009a. Terminal Ediacaran Anoxia in Deep Ocean: Trace Element Evidence from Cherts of the Liuchapo Formation, South China. Science in China (Series D: Earth Sciences), 52: 807-822. (in Chinese with English Abstract). doi: 10.1007/s11430-009-0070-7 |
Chang, H. J., Chu, X. L., Feng, L. J., et al., 2009b. Framboidal Pyrites in Cherts of the Laobao Formation, South China: Evidence for Anoxic Deep Ocean in the Terminal Ediacaran. Acta Petrologica Sinica, 25: 1001-1007 |
Chang, H. J., Chu, X. L., Feng, L. J., et al., 2010. Iron Speciation in Cherts from the Laobao Formation. Chinese Science Bulletin, 55: 3189-3196. doi: 10.1007/s11434-010-4006-6 |
Chang, H. J., Chu, X. L., Feng, L. J., et al., 2012. Progressive Oxidation of Anoxic and Ferruginous Deep Water during Deposition of the Terminal Ediacaran Laobao Formation in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 321: 80-87. doi: 10.1016/j.palaeo.2012.01.019 |
Chen, D. Z., Wang, J. G., Qing, H. R., et al., 2009. Hydrothermal Venting Activities in the Early Cambrian, South China: Petrological, Geochronological and Stable Isotopic Constraints. Chemical Geology, 258: 168-181. doi: 10.1016/j.chemgeo.2008.10.016 |
Cremonese, L., Shields-Zhou, G. A., Struck, U., et al., 2013. Marine Biogeochemical Cycling during the Early Cambrian Constrained by a Nitrogen and Organic Carbon Isotope Study of the Xiaotan Section, South China. Precambrian Research, 225: 148-165. doi: 10.1016/j.precamres.2011.12.004 |
Feng, L. J., Li, C., Huang, J., et al., 2014. A Sulfate Control on Marine Mid-Depth Euxinia on the Early Cambrian (ca. 529-521 Ma) Yangtze Block, South China. Precambrian Research, 246: 123-133. doi. 10.1016/ j. precamres. 2014.03.002 doi: 10.1016/j.precamres.2014.03.002 |
Grice, K., Cao, C. Q., Love, G. D., et al., 2005. Photic Zone Euxinia during the Permian-Triassic Superanoxic Event. Science, 307: 706-709. doi: 10.1126/science.1104323 |
Galimov, E. M., 2004. The Pattern of δ13Corg versus HI/OI Relation in Recent Sediments as an Indicator of Geochemical Regime in Marine Basins: Comparison of the Black Sea, Kara Sea, and Cariaco Trench. Chemical Geology, 204: 287-301. doi: 10.1016/j.chemgeo.2003.11.014 |
Goldberg, T., Strauss, H., Guo, Q. J., et al., 2007. Reconstructing Marine Redox Conditions for the Early Cambrian Yangtze Platform: Evidence from Biogenic Sulphur and Organic Carbon Isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 254: 175-193. doi: 10.1016/j.palaeo.2007.03.015 |
Gong, C., Hollander, D. J, 1997. Differential Contribution of Bacteria to Sedimentary Organic Matter in Oxic and Anoxic Environments, Santa Monica Basin, California. Organic Geochemistry, 26: 545-563. doi: 10.1016/S0146-6380(97)00018-1 |
Guo, Q. J., Shields, G. A., Liu, C. Q., et al., 2007a. Trace Element Chemostratigraphy of Two Ediacaran-Cambrian Successions in South China: Implications for Organosedimentary Metal Enrichment and Silicification in the Early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 254: 194-216. doi: 10.1016/j.palaeo.2007.03.016 |
Guo, Q. J., Strauss, H., Liu, C. Q., et al., 2007b. Carbon Isotopic Evolution of the Terminal Neoproterozoic and Early Cambrian: Evidence from the Yangtze Platform, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 254: 140-157. doi: 10.1016/j.palaeo.2007.03.014 |
Guo, Q. J., Strauss, H., Zhu, M. Y., et al., 2013. High Resolution Organic Carbon Isotope Stratigraphy from a Slope to Basinal Setting on the Yangtze Platform, South China: Implications for the Ediacaran-Cambrian Transition. Precambrian Research, 225: 209-217. doi: 10.1016/j.precamres.2011.10.003 |
Ishikawa, T., Ueno, Y., Komiya, T., et al., 2008. Carbon Isotope Chemostratigraphy of a Precambrian/Cambrian Boundary Section in the Three Gorge Area, South China: Prominent Global Scale Isotope Excursions just before the Cambrian Explosion. Gondwana Research, 14: 193-208. doi: 10.1016/j.gr.2007.10.008 |
Jiang, G. Q., Wang, X. Q., Shi, X. Y., et al., 2012. The Origin of Decoupled Carbonate and Organic Carbon Isotope Signatures in the Early Cambrian (ca. 542-520 Ma) Yangtze Platform. Earth and Planetary Science Letters, 317-318: 96-110. doi: 10.1016/j.epsl.2011.11.018 |
Jiang, S. Y., Pi, D. H., Heubeck, C., et al., 2009. Early Cambrian Ocean Anoxia in South China. Nature, 459: E5-E6. doi: 10.1038/nature08048 |
Johnston, D. T., Poulton, S. W., Dehler, C., et al., 2010. An Emerging Picture of Neoproterozoic Ocean Chemistry, Insights from the Chuar Group, Grand Canyon, USA. Earth and Planetary Science Letters, 290: 64-73. doi: 10.1016/j.epsl.2009.11.059 |
Kouchinsky, A., Bengtson, S., Runnegar, B., et al., 2012. Chronology of Early Cambrian Biomineralization. Geological Magazine, 149: 221-251. doi: 10.1017/S0016756811000720 |
Kimura, H., Watanabe, Y., 2001. Oceanic Anoxia at the Precambrian-Cambrian Boundary. Geology, 29: 995-998. doi: 10.1130/0091-7613(2001)029<;0995:OAATPC>2.0.CO;2 |
Kump, L. R., Junium, C., Arthur, M. A., et al., 2011. Isotopic Evidence for Massive Oxidation of Organic Matter Following the Great Oxidation Event. Science, 334: 1694-1696. doi: 10.1126/science.1213999 |
Lehmann, M. F., Bernasconi, S. M., Barbieri, A., et al., 2002. Preservation of Organic Matter and Alteration of Its Carbon and Nitrogen Isotope Composition during Simulated and in SituEarly Sedimentary Diagenesis. Geochimica et Cosmochimica Acta, 66: 3573-3584. doi: 10.1016/S0016-7037(02)00968-7 |
Li, C., Love, G. D., Lyons, T. W., et al., 2010. A Stratified Redox Model for the Ediacaran Ocean. Science, 328: 80-83. doi: 10.1126/science.1182369 |
Li, D., Ling, H. F., Jiang, S. Y., et al., 2009. New Carbon Isotope Stratigraphy of the Ediacaran-Cambrian Boundary Interval from SW China: Implications for Global Correlation. Geological Magazine, 146: 465-484. doi: 10.1017/S0016756809006268 |
Li, D., Ling, H. F., Shields-Zhou, G. A., et al., 2013. Carbon and Strontium Isotope Evolution of Seawater across the Ediacaran-Cambrian Transition: Evidence from the Xiaotan Section, NE Yunnan, South China. Precambrian Research, 225: 128-147. doi: 10.1016/j.precamres.2012.01.002 |
Li, G. X., Steiner, M., Zhu, X., et al., 2007. Early Cambrian Metazoan Fossil Record of South China: Generic Diversity and Radiation Patterns. Palaeogeography, Palaeoclimatology, Palaeoecology, 254: 229-249. doi: 10.1016/j.palaco.2007.03.017 |
Luo, H. L., Jiang, Z. W., Wu. X. C., et al., 1984. Sinian-Cambrian Boundary Stratotype Section at Meishucun, Jinning, Yunnan, China. Yunnan People's Publishing House, Kunming: 1-154 |
März, C., Poulton, S. W., Beckmann, B., et al., 2008. Redox Sensitivity of P Cycling during Marine Black Shale Formation: Dynamics of Sulfidic and Anoxic, non-Sulfidic Bottom Waters. Geochimica et Cosmochimica Acta, 72: 3703-3717. doi: 10.1016/j.gca.2008.04.025 |
Marshall, C. R., 2006. Explaining the Cambrian "Explosion" of Animals. Annual Review of Earth and Planetary Sciences, 34: 355-384. doi: 10.1146/annurev.earth.33.031504.103001 |
Morford, J. L., Martin, W. R., Carney, C. M., 2012. Rhenium Geochemical Cycling: Insights from Continental Margins. Chemical Geology, 324: 73-86. doi: 10.1016/j.chemgeo.2011.12.014 |
Muńoz, P., Dezileau, L., Lange, C., et al., 2012. Evaluation of Sediment Trace Metal Records as Paleoproductivity and Paleoxygenation Proxies in the Upwelling Center off Concepcion, Chile (36° S). Progress in Oceanography, 92-95: 66-80. doi: 10.1016/j.pocean.2011.07.010 |
Och, L., Shields-Zhou, G. A., Poulton, S. W., et al., 2013. Redox Changes in Early Cambrian Black Shales at Xiaotan Section, Yunnan Province, South China. Precambrian Research, 225: 166-189. doi: 10.1016/j.precamres.2011.10.005 |
Pang, W. H., Ding, X. Z., Gao, L. Z., et al. 2011. Characteristics of Sequence Stratigraphy and Plaeoenvironmental Evolution of Lower Cambrian Strata in Hunan Province. Geology in China, 38: 560-576. (in Chinese with English Abstract) http://www.researchgate.net/publication/289077887_Characteristics_of_Sequence_Stratigraphy_and_Plaeoenvironmental_Evolution_of_Lower_Cambrian_strata_in_Hunan_Province |
Peng, S. C., Babcock, L. E., 2011. Continuing Progress on Chronostratigraphic Subdivision of the Cambrian System. Bulletin Geoscience, 86: 391-396. doi: 10.3140/bull.geosci.1273 |
Pi, D. H., Liu, C. Q., Shields-Zhou, G. A., et al., 2013. Trace and Rare Earth Element Geochemistry of Black Shale and Kerogen in the Early Cambrian Niutitang Formation in Guizhou Province, South China, Constraints for Redox Environments and Origin of Metal Enrichments. Precambrian Research, 225: 218-229. doi: 10.1016/j.precamres.2011.07.004 |
Piper, D. Z., Calvert, S. E., 2009. A Marine Biogeochemical Perspective on Black Shale Deposition. Earth Science Reviews, 95: 63-96. doi: 10.1016/j.earscirev.2009.03.001 |
Planavsky, N. J., Rouxel, O. J., Bekker, A. L., et al., 2010. The Evolution of the Marine Phosphate Reservoir. Nature, 467: 1088-1090. doi: 10.1038/nature09485 |
Planavsky, N. J., McGoldrick, P., Scott, C. T., et al., 2011. Widespread Iron-Rich Conditions in the Mid-Proterozoic Ocean. Nature, 477: 448-451. doi: 10.1038/nature10327 |
Qian, Y., Yin, G., 1984. Small Shelly Fossils from the Lowest Cambrian in Guizhou. Professional Papers of Stratigraphy and Palaeontology, 13: 91-124. (in Chinese) http://www.researchgate.net/publication/285895395_Small_shelly_fossils_from_the_lowest_Cambrian_in_Guizhou |
Raiswell, R., Berner, R. A., 1985. Pyrite Formation in Euxinic and Semi-Euxinic Sediments. American Journal of Science, 285: 710-724 doi: 10.2475/ajs.285.8.710 |
Riquier, L., Tribovillard, N., Averbuch, O., et al., 2006. The Late FrasnianKellwasser Horizons of the Harz Mountains (Germany): Two Oxygen Deficient Periods Resulting from Different Mechanisms. Chemical Geology, 233: 137-155. doi: 10.1016/j.chemgeo.2006.02.021 |
Ross, D. J. K., Bustin, R. M., 2009. Investigating the Use of Sedimentary Geochemical Proxies for Paleoenvironment Interpretation of Thermally Mature Organic-rich Strata: Examples from the Devonian-Mississippian Shales, Western Canadian Sedimentary Basin. Chemical Geology, 260: 1-19. doi: 10.1016/j.chemgeo.2008.10.027 |
Sepúlveda, J., Wendler, J. E., Summons, R. E., et al., 2009. Rapid Resurgence of Marine Productivity after the Cretaceous-Paleogene Mass Extinction. Science, 326: 129-132. doi: 10.1126/science.1176233 |
Shen, Y'an, Schidlowski, M., 2000. New C Isotope Stratigraphy from Southwest China, Implications for the Placement of the Precambrian-Cambrian Boundary on the Yangtze Platform and Global Correlations. Geology, 28: 623-626. doi: 10.1130/0091-7613(2000)28<623:NCISFS>2.0.CO;2 |
Shen, S. Z., Crowley, J. L., Wang, Y., et al., 2011. Calibrating the End-Permian Mass Extinction. Science, 334: 1367-1372. doi: 10.1126/science.1213454 |
Shu, D. G., 2009a. Cambrian Explosion: Formation of Tree of Animals. Journal of Earth Sciences and Environment, 31: 111-134. (in Chinese with English abstract) |
Shu, D. G., Zhang, X. L., Han, J., 2009b. Restudy Of Cambrian Explosion and Formation of Animal Tree. Acta Palaeontologica Sinica, 48: 414-427. (in Chinese with English Abstract) http://www.researchgate.net/publication/292288445_Restudy_of_Cambrian_explosion_and_formation_of_animal_tree |
Sperling, E. A., Frieder, C. A., Raman, A. V., 2013. Oxygen, Ecology, and the Cambrian Radiation of Animals. Proceedings of the National Academy of Sciences of the United States of America, 110: 13446-13451. doi: 10.1073/pnas.1312778110 |
Steiner, M., Li, G. X., Qian, Y., et al., 2007. Neoproterozoic to Early Cambrian Small Shelly Fossil Assemblages and a Revised Biostratigraphic Correlation of the Yangtze Platform (China). Palaeogeography, Palaeoclimatology, Palaeoecology, 254: 67-99. doi: 10.1016/j.palaeo.2007.03.046 |
Strauss, H., 1997. The Isotopic Composition of Sedimentary Sulfur through Time. Palaeogeography Palaeoclimatology Palaeoecology, 132: 97-118. doi: 10.1016/S0031-0182(97)00067-9 |
Strauss, H., 1999. Geological Evolution from Isotope Proxy Signals-Sulfur. Chemical Geology, 161: 89-101. doi: 10.1016/S0009-2541(99)00082-0 |
Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Malden, Mass http://doc63.dhjkbooks.com/the-continental-crust-its-composition-and-evolution-_P_1503m.pdf |
Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232: 12-32. doi: 10.1016/j.chemgeo.2006.02.012 |
Wang, J., Li, Z. X., 2003. History of NeoproterozoicRift basins in South China: Implications for RodiniaBreak-up. Precambrian Research, 122: 141-158. doi: 10.1016/s0301-9268(02)00209-7 |
Wang, J. G., Chen, D. Z., Yan, D. T., et al., 2012a. Evolution from an Anoxic to Oxic Deep Ocean during the Ediacaran-Cambrian Transition and Implications for Bioradiation. Chemical Geology, 306: 129-138. doi: 10.1016/j.chemgeo.2012.03.005 |
Wang, X. Q., Shi, X. Y., Jiang, G. Q., et al., 2012b. New U-Pb Age from the Basal Niutitang Formation in South China: Implications for Diachronous Development and Condensation of Stratigraphic Units across the Yangtze Platform at the Ediacaran-Cambrian Transition. Journal of Asian Earth Sciences, 48: 1-8. doi: 10.1016/j.jseaes.2011.12.023 |
Wen, H. J., Carignan, J., Zhang, Y., et al., 2011. Molybdenum Isotopic Records across the Precambrian-Cambrian Boundary. Geology, 39: 775-778. doi: 10.1130/G32055.1 |
Wille, M., Nagler, T. F., Lehmann, B., et al., 2008. Hydrogen Sulphide Release to Surface Waters at the Precambrian/Cambrian Boundary. Nature, 453: 767-769. doi: 10.1038/nature07072 |
Xiang, L., Cai, C. F., He, X. Y., et al., 2012. The Mechanisms for the Enrichment of Trace Elements in the Lower Cambrian Black Chert Successions from Zhalagou Section, Guizhou Province. Acta Petrologica Sinica, 28(3): 971-980. (in Chinese with English Abstract) http://www.oalib.com/paper/1474863 |
Xiang, L. W., Zhu, Z. L., 1999. Stratigrphy of China: Cambrian. Geological Publishing House, Beijing. (in Chinese) |
Xiong, Z. F., Li, T. G., Algeo, T., et al., 2012. Paleoproductivity and Paleoredox Conditions during Late Pleistocene Accumulation of Laminated Diatom Mats in the Tropical West Pacific. Chemical Geology, 334: 77-91. doi: 10.1016/j.chemgeo.2012.09.044 |
Yin, G. Z., 1996. Division and Correlation of Cambrian in Guizhou. Guizhou Geology, 13: 115-128. (in Chinese with English Abstract) http://www.researchgate.net/publication/307155898_Division_and_correlation_of_Cambrian_in_Guizhou |
Yuan, Y. Y., Cai, C. F., Wang, T. K., et al., 2014. Deep-Water Basin Redox Conditions during Ediacaran-Cambrian Transition Period in the Lower Yangtze, South China: Case Study of Iron Speciation and δ13Corg In Diben Section, Zhejiang Province. Chinese Science Bulletin, 72: 1-139. doi: 10.1007/s11434-014-0483-3 |
Zachos, J. C., Rohl, U., Schellenberg, S. A., et al., 2005. Rapid Acidification of the Ocean during the Paleocene-Eocene Thermal Maximum. Science, 308: 1611-1615. doi: 10.1126/science.1109004 |
Zhang, T. G., Trela, W., Jiang, S. Y., et al., 2011. Major Oceanic Redox Condition Change Correlated with the Rebound of Marine Animal Diversity during the Late Ordovician. Geology, 39: 675-678. doi: 10.1130/G32020.1 |
Zhang, X. L., Shu, D. G., Han, J., et al., 2014. Triggers for the Cambrian explosion: Hypotheses and Problems. Gondwana Research, 25: 896-909. doi: 10.1016/j.gr.2013.06.001 |
Zhou, C. M., Zhang, J. M., Li, G. X., et al., 1997. Carbon and Oxygen Isotopic Record of the Early Cambrian from the Xiaotan Section, Yunnan, South China. Chinese Journal of Geology, 32: 201-211. (in Chinese with English abstract) http://www.researchgate.net/publication/308344843_Carbon_and_Oxygen_Isotopic_Record_of_the_Early_Cambrian_from_the_Xiaotan_Section_Yunnan_South_China |
Zhu, M. Y., Zhang, J., Steiner, M., et al., 2003. Sinian and Early Cambrian Stratigraphic Frameworks from Shallow to Deep Water Facies of the Yangtze Platform, an Integrated Approach. Progress in Natural Science, 13(12): 951-960. doi: 10.1080/10020070312331344710 |
Zhu, M. Y., 2010. The Origin and Cambrian Explosion of Animals: Fossil Evidences from China. Acta Palaeontologica Sinica, 49: 269-287. (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSWX201003000.htm |