Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 27 Issue 2
Mar 2016
Turn off MathJax
Article Contents
Lei Xiang, Chunfang Cai, Xunyun He, Lei Jiang, Yuyang Yuan, Tiankai Wang, Lianqi Jia, Lei Yu. The Ocean Redox State Evolution and Its Controls during the Cambrian Series 1–2: Evidence from Lijiatuo Section, South China. Journal of Earth Science, 2016, 27(2): 255-270. doi: 10.1007/s12583-016-0695-3
Citation: Lei Xiang, Chunfang Cai, Xunyun He, Lei Jiang, Yuyang Yuan, Tiankai Wang, Lianqi Jia, Lei Yu. The Ocean Redox State Evolution and Its Controls during the Cambrian Series 1–2: Evidence from Lijiatuo Section, South China. Journal of Earth Science, 2016, 27(2): 255-270. doi: 10.1007/s12583-016-0695-3

The Ocean Redox State Evolution and Its Controls during the Cambrian Series 1–2: Evidence from Lijiatuo Section, South China

doi: 10.1007/s12583-016-0695-3
More Information
  • Corresponding author: Lei Xiang, 649900940@qq.com
  • Received Date: 17 Mar 2015
  • Accepted Date: 12 Jun 2015
  • Publish Date: 01 Apr 2016
  • Well-exposed Lijiatuo Section was chosen to explore the temporal evolution and controls of the oceanic redox state, primary productivity and seawater sulfate levels during the Cambrian Series 1-2, South China. This section consists of Xiaoyanxi Formation (Fm.) mudstones and Liuchapo Fm. cherts that deposited in the slope and basin environment. Five oxic-anoxic cycles were identified based on V/Sc, Th/U and the enrichment factors of Mo, U, V, Ni and Cu. The Middle-Upper Liuchapo Fm. and the Middle Xiaoyanxi Fm. were deposited under oxic-suboxic conditions, and the rest of the strata were under anoxic conditions. The Re/Mo ratio demonstrated that the oxic-suboxic conditions in the Middle Xiaoyanxi Fm. were accompanied by transient sulfidic conditions, and the rest of the section was underanoxic and non-sulfidic conditions. All the TOC and the enrichment factors of Ba, Ni, Cu, Zn and Cd demonstrated that both the sinking and burial flux of organic matter (OM) in Liuchapo Fm. were lower than that in the overlying Xiaoyanxi Fm. The highest sinking and burial flux of OM in the Xiaoyanxi Fm. appeared at its lower parts; however, the lowest sinking and burial flux of OM in the Xiaoyanxi Fm. appeared in its middle parts. TOC/TS, TS and the vertical trend of δ34Spy demonstrated that the seawater was dominated by low oceanic sulfate levels, which resulted in the absence of free H2S. The rise of the atmospheric oxygen content may be the principal driver for the associated, transient suboxic-oxic and nearly sulfidic environment in the middle Xiaoyanxi Fm.

     

  • loading
  • Algeo, T. J., Lyons, T. W., 2006. Mo-Total Organic Carbon Covariation in Modern Anoxic Marine Environments: Implications for Analysis of Paleoredox and Paleohydrographic Conditions. Paleoceanography, 21: 1-23. doi: 10.1029/2004PA001112
    Algeo, T. J., Tribovillard, N., 2009. Environmental Analysis of Paleoceanographic Systems Based on Molybdenum-Uranium Covariation. Chemical Geology, 268: 211-225. doi: 10.1016/j.chemgeo.2009.09.001
    Algeo, T. J., Henderson, C. M., Tong, J. N., et al., 2013. Plankton and Productivity during the Permian-Triassic Boundary Crisis: an Analysis of Organic Carbon Fluxes. Global and Planetary Change, 105: 52-67. doi: 10.1016/j.gloplacha.2012.02.008
    Anbar, A. D., Knoll, A. H., 2002. Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge. Science, 297: 1137-1142. doi: 10.1126/science.1069651
    Berner, R. A., Raiswell, R., 1984. C/S Method for Distinguishing Fresh Water from Marine Sedimentary Rocks. Geology, 12: 365-368. doi: 10.1130/0091-7613(1984)12<365:CMFDFF>2.0.CO;2
    Berner, R. A., 2009. Phanerozoic Atmospheric Oxygen: New Results Using the Geocarbsulf Model. American Journal of Science, 309: 603-606. doi: 10.2475/07.2009.03
    Cai, C. F., Xiang, L., Yuan, Y. Y., et al., 2012. Spatial Variability in Ocean Redox Conditions during Early Cambrian. Goldschmidt 2012 Conference Abstracts. Mineralogical Magazine, 76: 1537
    Cai, C. F., Xiang, L., Yuan, Y. Y., et al., 2015. Marine C, S and N Biogeochemical Processes in the Redox-Stratified Early Cambrian Yangtze Ocean. Journal of the Geological Society (London). 172 (3): 390-406. doi: 10.1144/jgs2014-054
    Canfield, D. E., Raiswell, R., Westrich, J. T., et al., 1986. The Use of Chromium Reduction in the Analysis of Reduced Inorganic Sulfur in Sediments and Shales. Chemical Geology, 54: 149-155. doi: 10.1016/0009-2541(86)90078-1
    Canfield, D. E., Teske, A., 1996. Late Proterozoic Rise in Atmospheric Oxygen Concentration Inferred from Phylogenetic and Sulphur Isotope Studies. Nature, 382: 127-132. doi: 10.1038/382127a0
    Canfield, D. E., Poulton, S. W., Knoll, A. H., et al., 2008. Ferruginous Conditions Dominated Later Neoproterozoic Deep Water Chemistry. Science, 321: 949-952. doi: 10.1126/science.1154499
    Cao, C. Q., Love, G. D., Hays, L. E., et al., 2009. Biogeochemical Evidence for Euxinic Oceans and Ecological Disturbance Presaging the End-Permian Mass Extinction Event. Earth and Planetary Science Letters, 281: 188-201. doi: 10.1016/j.epsl.2009.02.012
    Chang, H. J., Chu, X. L., Feng, L. J., et al., 2009a. Terminal Ediacaran Anoxia in Deep Ocean: Trace Element Evidence from Cherts of the Liuchapo Formation, South China. Science in China (Series D: Earth Sciences), 52: 807-822. (in Chinese with English Abstract). doi: 10.1007/s11430-009-0070-7
    Chang, H. J., Chu, X. L., Feng, L. J., et al., 2009b. Framboidal Pyrites in Cherts of the Laobao Formation, South China: Evidence for Anoxic Deep Ocean in the Terminal Ediacaran. Acta Petrologica Sinica, 25: 1001-1007
    Chang, H. J., Chu, X. L., Feng, L. J., et al., 2010. Iron Speciation in Cherts from the Laobao Formation. Chinese Science Bulletin, 55: 3189-3196. doi: 10.1007/s11434-010-4006-6
    Chang, H. J., Chu, X. L., Feng, L. J., et al., 2012. Progressive Oxidation of Anoxic and Ferruginous Deep Water during Deposition of the Terminal Ediacaran Laobao Formation in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 321: 80-87. doi: 10.1016/j.palaeo.2012.01.019
    Chen, D. Z., Wang, J. G., Qing, H. R., et al., 2009. Hydrothermal Venting Activities in the Early Cambrian, South China: Petrological, Geochronological and Stable Isotopic Constraints. Chemical Geology, 258: 168-181. doi: 10.1016/j.chemgeo.2008.10.016
    Cremonese, L., Shields-Zhou, G. A., Struck, U., et al., 2013. Marine Biogeochemical Cycling during the Early Cambrian Constrained by a Nitrogen and Organic Carbon Isotope Study of the Xiaotan Section, South China. Precambrian Research, 225: 148-165. doi: 10.1016/j.precamres.2011.12.004
    Feng, L. J., Li, C., Huang, J., et al., 2014. A Sulfate Control on Marine Mid-Depth Euxinia on the Early Cambrian (ca. 529-521 Ma) Yangtze Block, South China. Precambrian Research, 246: 123-133. doi. 10.1016/ j. precamres. 2014.03.002 doi: 10.1016/j.precamres.2014.03.002
    Grice, K., Cao, C. Q., Love, G. D., et al., 2005. Photic Zone Euxinia during the Permian-Triassic Superanoxic Event. Science, 307: 706-709. doi: 10.1126/science.1104323
    Galimov, E. M., 2004. The Pattern of δ13Corg versus HI/OI Relation in Recent Sediments as an Indicator of Geochemical Regime in Marine Basins: Comparison of the Black Sea, Kara Sea, and Cariaco Trench. Chemical Geology, 204: 287-301. doi: 10.1016/j.chemgeo.2003.11.014
    Goldberg, T., Strauss, H., Guo, Q. J., et al., 2007. Reconstructing Marine Redox Conditions for the Early Cambrian Yangtze Platform: Evidence from Biogenic Sulphur and Organic Carbon Isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 254: 175-193. doi: 10.1016/j.palaeo.2007.03.015
    Gong, C., Hollander, D. J, 1997. Differential Contribution of Bacteria to Sedimentary Organic Matter in Oxic and Anoxic Environments, Santa Monica Basin, California. Organic Geochemistry, 26: 545-563. doi: 10.1016/S0146-6380(97)00018-1
    Guo, Q. J., Shields, G. A., Liu, C. Q., et al., 2007a. Trace Element Chemostratigraphy of Two Ediacaran-Cambrian Successions in South China: Implications for Organosedimentary Metal Enrichment and Silicification in the Early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 254: 194-216. doi: 10.1016/j.palaeo.2007.03.016
    Guo, Q. J., Strauss, H., Liu, C. Q., et al., 2007b. Carbon Isotopic Evolution of the Terminal Neoproterozoic and Early Cambrian: Evidence from the Yangtze Platform, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 254: 140-157. doi: 10.1016/j.palaeo.2007.03.014
    Guo, Q. J., Strauss, H., Zhu, M. Y., et al., 2013. High Resolution Organic Carbon Isotope Stratigraphy from a Slope to Basinal Setting on the Yangtze Platform, South China: Implications for the Ediacaran-Cambrian Transition. Precambrian Research, 225: 209-217. doi: 10.1016/j.precamres.2011.10.003
    Ishikawa, T., Ueno, Y., Komiya, T., et al., 2008. Carbon Isotope Chemostratigraphy of a Precambrian/Cambrian Boundary Section in the Three Gorge Area, South China: Prominent Global Scale Isotope Excursions just before the Cambrian Explosion. Gondwana Research, 14: 193-208. doi: 10.1016/j.gr.2007.10.008
    Jiang, G. Q., Wang, X. Q., Shi, X. Y., et al., 2012. The Origin of Decoupled Carbonate and Organic Carbon Isotope Signatures in the Early Cambrian (ca. 542-520 Ma) Yangtze Platform. Earth and Planetary Science Letters, 317-318: 96-110. doi: 10.1016/j.epsl.2011.11.018
    Jiang, S. Y., Pi, D. H., Heubeck, C., et al., 2009. Early Cambrian Ocean Anoxia in South China. Nature, 459: E5-E6. doi: 10.1038/nature08048
    Johnston, D. T., Poulton, S. W., Dehler, C., et al., 2010. An Emerging Picture of Neoproterozoic Ocean Chemistry, Insights from the Chuar Group, Grand Canyon, USA. Earth and Planetary Science Letters, 290: 64-73. doi: 10.1016/j.epsl.2009.11.059
    Kouchinsky, A., Bengtson, S., Runnegar, B., et al., 2012. Chronology of Early Cambrian Biomineralization. Geological Magazine, 149: 221-251. doi: 10.1017/S0016756811000720
    Kimura, H., Watanabe, Y., 2001. Oceanic Anoxia at the Precambrian-Cambrian Boundary. Geology, 29: 995-998. doi: 10.1130/0091-7613(2001)029<;0995:OAATPC>2.0.CO;2
    Kump, L. R., Junium, C., Arthur, M. A., et al., 2011. Isotopic Evidence for Massive Oxidation of Organic Matter Following the Great Oxidation Event. Science, 334: 1694-1696. doi: 10.1126/science.1213999
    Lehmann, M. F., Bernasconi, S. M., Barbieri, A., et al., 2002. Preservation of Organic Matter and Alteration of Its Carbon and Nitrogen Isotope Composition during Simulated and in SituEarly Sedimentary Diagenesis. Geochimica et Cosmochimica Acta, 66: 3573-3584. doi: 10.1016/S0016-7037(02)00968-7
    Li, C., Love, G. D., Lyons, T. W., et al., 2010. A Stratified Redox Model for the Ediacaran Ocean. Science, 328: 80-83. doi: 10.1126/science.1182369
    Li, D., Ling, H. F., Jiang, S. Y., et al., 2009. New Carbon Isotope Stratigraphy of the Ediacaran-Cambrian Boundary Interval from SW China: Implications for Global Correlation. Geological Magazine, 146: 465-484. doi: 10.1017/S0016756809006268
    Li, D., Ling, H. F., Shields-Zhou, G. A., et al., 2013. Carbon and Strontium Isotope Evolution of Seawater across the Ediacaran-Cambrian Transition: Evidence from the Xiaotan Section, NE Yunnan, South China. Precambrian Research, 225: 128-147. doi: 10.1016/j.precamres.2012.01.002
    Li, G. X., Steiner, M., Zhu, X., et al., 2007. Early Cambrian Metazoan Fossil Record of South China: Generic Diversity and Radiation Patterns. Palaeogeography, Palaeoclimatology, Palaeoecology, 254: 229-249. doi: 10.1016/j.palaco.2007.03.017
    Luo, H. L., Jiang, Z. W., Wu. X. C., et al., 1984. Sinian-Cambrian Boundary Stratotype Section at Meishucun, Jinning, Yunnan, China. Yunnan People's Publishing House, Kunming: 1-154
    März, C., Poulton, S. W., Beckmann, B., et al., 2008. Redox Sensitivity of P Cycling during Marine Black Shale Formation: Dynamics of Sulfidic and Anoxic, non-Sulfidic Bottom Waters. Geochimica et Cosmochimica Acta, 72: 3703-3717. doi: 10.1016/j.gca.2008.04.025
    Marshall, C. R., 2006. Explaining the Cambrian "Explosion" of Animals. Annual Review of Earth and Planetary Sciences, 34: 355-384. doi: 10.1146/annurev.earth.33.031504.103001
    Morford, J. L., Martin, W. R., Carney, C. M., 2012. Rhenium Geochemical Cycling: Insights from Continental Margins. Chemical Geology, 324: 73-86. doi: 10.1016/j.chemgeo.2011.12.014
    Muńoz, P., Dezileau, L., Lange, C., et al., 2012. Evaluation of Sediment Trace Metal Records as Paleoproductivity and Paleoxygenation Proxies in the Upwelling Center off Concepcion, Chile (36° S). Progress in Oceanography, 92-95: 66-80. doi: 10.1016/j.pocean.2011.07.010
    Och, L., Shields-Zhou, G. A., Poulton, S. W., et al., 2013. Redox Changes in Early Cambrian Black Shales at Xiaotan Section, Yunnan Province, South China. Precambrian Research, 225: 166-189. doi: 10.1016/j.precamres.2011.10.005
    Pang, W. H., Ding, X. Z., Gao, L. Z., et al. 2011. Characteristics of Sequence Stratigraphy and Plaeoenvironmental Evolution of Lower Cambrian Strata in Hunan Province. Geology in China, 38: 560-576. (in Chinese with English Abstract) http://www.researchgate.net/publication/289077887_Characteristics_of_Sequence_Stratigraphy_and_Plaeoenvironmental_Evolution_of_Lower_Cambrian_strata_in_Hunan_Province
    Peng, S. C., Babcock, L. E., 2011. Continuing Progress on Chronostratigraphic Subdivision of the Cambrian System. Bulletin Geoscience, 86: 391-396. doi: 10.3140/bull.geosci.1273
    Pi, D. H., Liu, C. Q., Shields-Zhou, G. A., et al., 2013. Trace and Rare Earth Element Geochemistry of Black Shale and Kerogen in the Early Cambrian Niutitang Formation in Guizhou Province, South China, Constraints for Redox Environments and Origin of Metal Enrichments. Precambrian Research, 225: 218-229. doi: 10.1016/j.precamres.2011.07.004
    Piper, D. Z., Calvert, S. E., 2009. A Marine Biogeochemical Perspective on Black Shale Deposition. Earth Science Reviews, 95: 63-96. doi: 10.1016/j.earscirev.2009.03.001
    Planavsky, N. J., Rouxel, O. J., Bekker, A. L., et al., 2010. The Evolution of the Marine Phosphate Reservoir. Nature, 467: 1088-1090. doi: 10.1038/nature09485
    Planavsky, N. J., McGoldrick, P., Scott, C. T., et al., 2011. Widespread Iron-Rich Conditions in the Mid-Proterozoic Ocean. Nature, 477: 448-451. doi: 10.1038/nature10327
    Qian, Y., Yin, G., 1984. Small Shelly Fossils from the Lowest Cambrian in Guizhou. Professional Papers of Stratigraphy and Palaeontology, 13: 91-124. (in Chinese) http://www.researchgate.net/publication/285895395_Small_shelly_fossils_from_the_lowest_Cambrian_in_Guizhou
    Raiswell, R., Berner, R. A., 1985. Pyrite Formation in Euxinic and Semi-Euxinic Sediments. American Journal of Science, 285: 710-724 doi: 10.2475/ajs.285.8.710
    Riquier, L., Tribovillard, N., Averbuch, O., et al., 2006. The Late FrasnianKellwasser Horizons of the Harz Mountains (Germany): Two Oxygen Deficient Periods Resulting from Different Mechanisms. Chemical Geology, 233: 137-155. doi: 10.1016/j.chemgeo.2006.02.021
    Ross, D. J. K., Bustin, R. M., 2009. Investigating the Use of Sedimentary Geochemical Proxies for Paleoenvironment Interpretation of Thermally Mature Organic-rich Strata: Examples from the Devonian-Mississippian Shales, Western Canadian Sedimentary Basin. Chemical Geology, 260: 1-19. doi: 10.1016/j.chemgeo.2008.10.027
    Sepúlveda, J., Wendler, J. E., Summons, R. E., et al., 2009. Rapid Resurgence of Marine Productivity after the Cretaceous-Paleogene Mass Extinction. Science, 326: 129-132. doi: 10.1126/science.1176233
    Shen, Y'an, Schidlowski, M., 2000. New C Isotope Stratigraphy from Southwest China, Implications for the Placement of the Precambrian-Cambrian Boundary on the Yangtze Platform and Global Correlations. Geology, 28: 623-626. doi: 10.1130/0091-7613(2000)28<623:NCISFS>2.0.CO;2
    Shen, S. Z., Crowley, J. L., Wang, Y., et al., 2011. Calibrating the End-Permian Mass Extinction. Science, 334: 1367-1372. doi: 10.1126/science.1213454
    Shu, D. G., 2009a. Cambrian Explosion: Formation of Tree of Animals. Journal of Earth Sciences and Environment, 31: 111-134. (in Chinese with English abstract)
    Shu, D. G., Zhang, X. L., Han, J., 2009b. Restudy Of Cambrian Explosion and Formation of Animal Tree. Acta Palaeontologica Sinica, 48: 414-427. (in Chinese with English Abstract) http://www.researchgate.net/publication/292288445_Restudy_of_Cambrian_explosion_and_formation_of_animal_tree
    Sperling, E. A., Frieder, C. A., Raman, A. V., 2013. Oxygen, Ecology, and the Cambrian Radiation of Animals. Proceedings of the National Academy of Sciences of the United States of America, 110: 13446-13451. doi: 10.1073/pnas.1312778110
    Steiner, M., Li, G. X., Qian, Y., et al., 2007. Neoproterozoic to Early Cambrian Small Shelly Fossil Assemblages and a Revised Biostratigraphic Correlation of the Yangtze Platform (China). Palaeogeography, Palaeoclimatology, Palaeoecology, 254: 67-99. doi: 10.1016/j.palaeo.2007.03.046
    Strauss, H., 1997. The Isotopic Composition of Sedimentary Sulfur through Time. Palaeogeography Palaeoclimatology Palaeoecology, 132: 97-118. doi: 10.1016/S0031-0182(97)00067-9
    Strauss, H., 1999. Geological Evolution from Isotope Proxy Signals-Sulfur. Chemical Geology, 161: 89-101. doi: 10.1016/S0009-2541(99)00082-0
    Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Malden, Mass http://doc63.dhjkbooks.com/the-continental-crust-its-composition-and-evolution-_P_1503m.pdf
    Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232: 12-32. doi: 10.1016/j.chemgeo.2006.02.012
    Wang, J., Li, Z. X., 2003. History of NeoproterozoicRift basins in South China: Implications for RodiniaBreak-up. Precambrian Research, 122: 141-158. doi: 10.1016/s0301-9268(02)00209-7
    Wang, J. G., Chen, D. Z., Yan, D. T., et al., 2012a. Evolution from an Anoxic to Oxic Deep Ocean during the Ediacaran-Cambrian Transition and Implications for Bioradiation. Chemical Geology, 306: 129-138. doi: 10.1016/j.chemgeo.2012.03.005
    Wang, X. Q., Shi, X. Y., Jiang, G. Q., et al., 2012b. New U-Pb Age from the Basal Niutitang Formation in South China: Implications for Diachronous Development and Condensation of Stratigraphic Units across the Yangtze Platform at the Ediacaran-Cambrian Transition. Journal of Asian Earth Sciences, 48: 1-8. doi: 10.1016/j.jseaes.2011.12.023
    Wen, H. J., Carignan, J., Zhang, Y., et al., 2011. Molybdenum Isotopic Records across the Precambrian-Cambrian Boundary. Geology, 39: 775-778. doi: 10.1130/G32055.1
    Wille, M., Nagler, T. F., Lehmann, B., et al., 2008. Hydrogen Sulphide Release to Surface Waters at the Precambrian/Cambrian Boundary. Nature, 453: 767-769. doi: 10.1038/nature07072
    Xiang, L., Cai, C. F., He, X. Y., et al., 2012. The Mechanisms for the Enrichment of Trace Elements in the Lower Cambrian Black Chert Successions from Zhalagou Section, Guizhou Province. Acta Petrologica Sinica, 28(3): 971-980. (in Chinese with English Abstract) http://www.oalib.com/paper/1474863
    Xiang, L. W., Zhu, Z. L., 1999. Stratigrphy of China: Cambrian. Geological Publishing House, Beijing. (in Chinese)
    Xiong, Z. F., Li, T. G., Algeo, T., et al., 2012. Paleoproductivity and Paleoredox Conditions during Late Pleistocene Accumulation of Laminated Diatom Mats in the Tropical West Pacific. Chemical Geology, 334: 77-91. doi: 10.1016/j.chemgeo.2012.09.044
    Yin, G. Z., 1996. Division and Correlation of Cambrian in Guizhou. Guizhou Geology, 13: 115-128. (in Chinese with English Abstract) http://www.researchgate.net/publication/307155898_Division_and_correlation_of_Cambrian_in_Guizhou
    Yuan, Y. Y., Cai, C. F., Wang, T. K., et al., 2014. Deep-Water Basin Redox Conditions during Ediacaran-Cambrian Transition Period in the Lower Yangtze, South China: Case Study of Iron Speciation and δ13Corg In Diben Section, Zhejiang Province. Chinese Science Bulletin, 72: 1-139. doi: 10.1007/s11434-014-0483-3
    Zachos, J. C., Rohl, U., Schellenberg, S. A., et al., 2005. Rapid Acidification of the Ocean during the Paleocene-Eocene Thermal Maximum. Science, 308: 1611-1615. doi: 10.1126/science.1109004
    Zhang, T. G., Trela, W., Jiang, S. Y., et al., 2011. Major Oceanic Redox Condition Change Correlated with the Rebound of Marine Animal Diversity during the Late Ordovician. Geology, 39: 675-678. doi: 10.1130/G32020.1
    Zhang, X. L., Shu, D. G., Han, J., et al., 2014. Triggers for the Cambrian explosion: Hypotheses and Problems. Gondwana Research, 25: 896-909. doi: 10.1016/j.gr.2013.06.001
    Zhou, C. M., Zhang, J. M., Li, G. X., et al., 1997. Carbon and Oxygen Isotopic Record of the Early Cambrian from the Xiaotan Section, Yunnan, South China. Chinese Journal of Geology, 32: 201-211. (in Chinese with English abstract) http://www.researchgate.net/publication/308344843_Carbon_and_Oxygen_Isotopic_Record_of_the_Early_Cambrian_from_the_Xiaotan_Section_Yunnan_South_China
    Zhu, M. Y., Zhang, J., Steiner, M., et al., 2003. Sinian and Early Cambrian Stratigraphic Frameworks from Shallow to Deep Water Facies of the Yangtze Platform, an Integrated Approach. Progress in Natural Science, 13(12): 951-960. doi: 10.1080/10020070312331344710
    Zhu, M. Y., 2010. The Origin and Cambrian Explosion of Animals: Fossil Evidences from China. Acta Palaeontologica Sinica, 49: 269-287. (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSWX201003000.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views(757) PDF downloads(151) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return