Anbar, A. D., Knoll, A. H., 2002. Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge. Science, 297: 1137-1142 doi: 10.1126/science.1069651 |
Canfield, D. E., 1998. A New Model for Proterozoic Ocean Chemistry. Nature, 396: 450-453 doi: 10.1038/24839 |
Canfield, D. E., Poulton, S. W., Knoll, A. H., et al., 2008. Ferruginous Conditions Dominated Later Neoproterozoic Deep-Water Chemistry. Science, 321: 949-952 doi: 10.1126/science.1154499 |
Chen, X., Ling, H. F., Vance, D., et al., 2015. Rise to Modern Levels of Ocean Oxygenation Coincided with the Cambrian Radiation of Animals. Nature Communications, 6, Article number: 7142 http://europepmc.org/articles/PMC4479002 |
Gill, B. C., Lyons, T. W., Young, S. A., et al., 2011. Geochemical Evidence for Widespread Euxinia in the Later Cambrian Ocean. Nature, 469(7328): 80-83 doi: 10.1038/nature09700 |
Guilbaud, R., Poulton, S. W., Butterfield, N. J., et al., 2015. A Global Transition to Ferruginous Conditions in the Early Neoproterozoic Oceans. Nature Geoscience, 8(6): 466-470 doi: 10.1038/ngeo2434 |
Holland, H. D., 1984. The Chemical Evolution of the Atmosphere and Oceans. Princeton, NJ: Princeton University Press. 582 |
Holland, H. D., 2006. The oxygenation of the Atmosphere and Oceans. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1470): 903-915 doi: 10.1098/rstb.2006.1838 |
Jin, C., Li, C., Algeo, T. J., et al., 2016. A Highly Redox-Heterogeneous Ocean in South China during the Early Cambrian (~529-514 Ma): Implications for Biota-Environment Co-Evolution. Earth and Planetary Science Letters, 441: 38-51 doi: 10.1016/j.epsl.2016.02.019 |
Li, C., Love, G. D., Lyons, T. W., et al., 2010. A Stratified Redox Model for the Ediacaran Ocean. Science, 328(5974): 80-83 doi: 10.1126/science.1182369 |
Li, C., Planavsky, N. J., Shi, W., et al., 2015. Ediacaran Marine Redox Heterogeneity and Early Animal Ecosystems. Scientific Reports, 5, Article number: 17097 http://europepmc.org/articles/PMC4656985/ |
Lyons, T. W., Reinhard, C. T., Planavsky, N. J., 2014. The Rise of Oxygen in Earth's Early Ocean and atmosphere. Nature, 506(7488): 307-315 doi: 10.1038/nature13068 |
Planavsky, N. J., Reinhard, C. T., Wang, X., et al., 2014. Low Mid-Proterozoic Atmospheric Oxygen Levels and the Delayed Rise of Animals. Science, 346(6209): 635-638 doi: 10.1126/science.1258410 |
Poulton, S. W., Canfield, D. E., 2011. Ferruginous Conditions: A Dominant Feature of the Ocean through Earth's History. Elements, 7(2): 107-112 doi: 10.2113/gselements.7.2.107 |
Poulton, S. W., Fralick, P. W., Canfield, D. E., 2010. Spatial Variability in Oceanic Redox Structure 1.8 Billion Years Ago. Nature Geoscience, 3(7): 486-490 doi: 10.1038/ngeo889 |
Sperling, E. A., Wolock, C. J., Morgan, A. S., et al., 2015. Statistical Analysis of Iron Geochemical Data Suggests Limited Late Proterozoic Oxygenation. Nature, 523: 451-454 doi: 10.1038/nature14589 |
Wang, H., Li, C., Hu, C., et al., 2015. Spurious Thermoluminescence Characteristics of the Ediacaran Doushantuo Formation (Ca. 635-551 Ma) and Its Implications for Marine Dissolved Organic Carbon Reservoir. Journal of Earth Science, 26(6): 883-892 doi: 10.1007/s12583-015-0650-3 |
Zhang, S., Wang, X., Wang, H., et al., 2016. Sufficient Oxygen for Animal Respiration 1, 400 Million Years Ago. Proceedings of the National Academy of Sciences of USA. 113(7): 1731-1736 doi: 10.1073/pnas.1523449113 |