Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 27 Issue 5
Sep 2016
Turn off MathJax
Article Contents
Pengpeng Huangfu, Yuejun Wang, Zhonghai Li, Weiming Fan, Yan Zhang. Effects of crustal eclogitization on plate subduction/collision dynamics: Implications for India-Asia collision. Journal of Earth Science, 2016, 27(5): 727-739. doi: 10.1007/s12583-016-0701-9
Citation: Pengpeng Huangfu, Yuejun Wang, Zhonghai Li, Weiming Fan, Yan Zhang. Effects of crustal eclogitization on plate subduction/collision dynamics: Implications for India-Asia collision. Journal of Earth Science, 2016, 27(5): 727-739. doi: 10.1007/s12583-016-0701-9

Effects of crustal eclogitization on plate subduction/collision dynamics: Implications for India-Asia collision

doi: 10.1007/s12583-016-0701-9
More Information
  • Corresponding author: Yan Zhang, shanshizhang@sohu.com
  • Received Date: 28 Jul 2015
  • Accepted Date: 26 Apr 2016
  • Publish Date: 01 Oct 2016
  • 2D thermo-mechanical models are constructed to investigate the effects of oceanic and continental crustal eclogitization on plate dynamics at three successive stages of oceanic subduction, slab breakoff, and continental subduction. Crustal eclogitization directly increases the average slab density and accordingly the slab pull force, which makes the slab subduct deeply and steeply. Numerical results demonstrate that the duration time from initial continental collision to slab breakoff largely depends on the slab pull force. Specifically, eclogitization of subducted crust can greatly decrease the duration time, but increase the breakoff depth. The detachment of oceanic slab from the pro-continental lithosphere is accompanied with obvious exhumation of the subducted continental crust and a sharp uplift of the collision zone in response to the disappearance of downward drag force and the induced asthenospheric upwelling, especially under the condition of no or incomplete crustal eclogitization. During continental subduction, the slab dip angle is strongly correlated with eclogitization of subducted continental lower crust, which regulates the slab buoyancy nature. Our model results can provide several important implications for the Himalayan-Tibetan collision zone. For example, it is possible that the lateral variations in the degree of eclogitization of the subducted Indian crust might to some extent contribute to the lateral variations of subduction angle along the Himalayan orogenic belt. Moreover, the accumulation of highly radiogenic sediments and upper continental crustal materials at the active margin in combination with the strong shear heating due to continuous continental subduction together cause rising of isotherms in the accretionary wedge, which facilitate the development of crustal partial melting and metamorphism.

     

  • loading
  • Allegre, C. J., Courtillot, V., Tapponnier, P., et al., 1984. Structure and Evolution of the Himalaya-Tibet Orogenic Belt. Nature, 307(5946): 17–22 doi: 10.1038/307017a0
    Bittner, D., Schmeling, H., 1995. Numerical Modeling of Melting Processes and Induced Diapirism in the Lower Crust. Geophysical Journal International, 123(1): 59–70 doi: 10.1111/j.1365-246X.1995.tb06661.x
    Chemenda, A. I., Burg, J. P., Mattauer, M., 2000. Evolutionary Model of the Himalaya-Tibet System: Geopoem Based on New Modelling, Geological and Geophysical Data. Earth and Planetary Science Letters, 174(3–4): 397–409 doi: 10.1016/S0012-821X(99)00277-0
    Chen, L., Gerya, T. V., Zhang, Z. J., et al., 2013. Formation Mechanism of Steep Convergent Intracontinental Margins: Insights from Numerical Modeling. Geophysical Research Letters, 40(10): 2000–2005 doi: 10.1002/grl.50446
    Chen, Y., Li, W., Yuan, X., et al., 2015. Tearing of the Indian Lithospheric Slab beneath Southern Tibet Revealed by SKS-Wave Splitting Measurements. Earth and Planetary Science Letters, 413: 13–24 doi: 10.1016/j.epsl.2014.12.041
    Chung, S. L., Liu, D. Y., Ji, J. Q., et al., 2003. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust Beneath Southern Tibet. Geology, 31(11): 1021–1024 doi: 10.1130/G19796.1
    Chung, S. L., Chu, M. F., Ji, J., et al., 2009. The Nature and Timing of Crustal Thickening in Southern Tibet: Geochemical and Zircon Hf Isotopic Constraints from Postcollisional Adakites. Tectonophysics, 477(1): 36–48 http://www.sciencedirect.com/science/article/pii/S0040195109004259?_fmt=full&md5=7bcf780d0ad55e08c858017474822c86
    Chung, S. L., Chu, M. F., Zhang, Y., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-collisional Magmatism. Earth Science Reviews, 68(3): 173–196 http://www.sciencedirect.com/science/article/pii/S001282520400042X
    Clauser, C., Huenges, E., 1995. Thermal Conductivity of Rocks and Minerals. AGU Reference Shelf, 3: 105–126 doi: 10.1029/RF003p0105
    DeCelles, P. G., Robinson, D. M., Zandt, G., 2002. Implications of Shortening in the Himalayan Fold-Thrust Belt for Uplift of the Tibetan Plateau. Tectonics, 21(6): TC1062 doi: 10.1029/2001TC001322
    Ding, L., Kapp, P., Zhong, D. L., et al., 2003. Cenozoic Volcanism in Tibet: Evidence for a Transition from Oceanic to Continental Subduction. Journal of Petrology, 44(10): 1833–1865 doi: 10.1093/petrology/egg061
    Duesterhoeft, E., Quinteros, J., Oberhansli, R., et al., 2014. Relative Impact of Mantle Densification and Eclogitization of Slabs on Subduction Dynamics: A Numerical Thermodynamic/Thermokinematic Investigation of Metamorphic Density Evolution. Tectonophysics, 637: 20–29 doi: 10.1016/j.tecto.2014.09.009
    England, P., Houseman, G., 1986. Finite Strain Calculations of Continental Deformation. 2. Comparison with the India- Asia Collision Zone. Journal of Geophysical Research: Solid Earth and Planets, 91(B3): 3664–3676 doi: 10.1029/JB091iB03p03664
    Forsyth, D., Uyeda, S, 1975. On the Relative Importance of the Driving Forces of Plate Motion. Geophysical Journal International, 43(1): 163–200. doi: 10.1111/j.1365-246X.1975.tb00631.x
    Gerya, T. V., 2010, Introduction to Numerical Geodynamic Modelling. Cambridge University Press, New York. 345
    Gerya, T. V., Yuen, D. A., 2003. Characteristics-Based Marker-in-Cell Method with Conservative Finite-differences Schemes for Modeling Geological Flows with Strongly Variable Transport Properties. Physics of the Earth and Planetary Interiors, 140(4): 293–318 doi: 10.1016/j.pepi.2003.09.006
    Giunchi, C., Ricard, Y., 1999. High-Pressure/ Low-Temperature Metamorphism and the Dynamics of an Accretionary Wedge. Geophysical Journal International, 136(3): 620–628 doi: 10.1046/j.1365-246x.1999.00759.x
    Haines, S. S., Klemperer, S. L., Brown, L., et al., 2003. INDEPTH Ⅲ Seismic Data: From Surface Observations to Deep Crustal Processes in Tibet. Tectonics, 22(1): 1001. doi: 10.1029/2001TC001305
    Hodges, K. V., 2000. Tectonics of the Himalaya and Southern Tibet from Two Perspectives. Geological Society of America Bulletin, 112(3): 324–350 doi: 10.1130/0016-7606(2000)112<324:TOTHAS>2.0.CO;2
    Houseman, G. A., Mckenzie, D. P., Molnar, P., 1981. Convective Instability of a Thickened Boundary-Layer and Its Relevance for the Thermal Evolution of Continental Convergent Belts. Journal of Geophysical Research, 86(Nb7): 6115–6132 doi: 10.1029/JB086iB07p06115
    Jischke, M. C., 1975. Dynamics of Descending Lithospheric Plates and Slip Zones. Journal of Geophysical Research, 80(35): 4809–4813 doi: 10.1029/JB080i035p04809
    Klootwijk, C. T., Conaghan, P. J., Powell, C. M., 1985. The Himalayan Arc-Large-Scale Continental Subduction, Oroclinal Bending and Back-Arc Spreading. Earth and Planetary Science Letters, 75: 167–183 doi: 10.1016/0012-821X(85)90099-8
    Leech, M. L., 2001. Arrested Orogenic Development: Eclogitization, Delamination, and Tectonic Collapse. Earth and Planetary Science Letters, 185(1–2): 149–159 doi: 10.1016/S0012-821X(00)00374-5
    Li, C., van der Hilst, R. D., Meltzer, A. S., et al., 2008. Subduction of the Indian Lithosphere Beneath the Tibetan Plateau and Burma. Earth and Planetary Science Letters, 274: 157–168 doi: 10.1016/j.epsl.2008.07.016
    Li, Z. H., Xu, Z. Q., Gerya, T. V., 2011. Flat Versus Steep Subduction: Contrasting Modes for the Formation and Exhumation of High- to Ultrahigh-Pressure Rocks in Continental Collision Zones. Earth and Planetary Science Letters, 301: 65–77 doi: 10.1016/j.epsl.2010.10.014
    Li, Z. H., 2014. A Review on the Numerical Geodynamic Modeling of Continental Subduction, Collision and Exhumation. Science China: Earth Sciences, 57: 47–69 doi: 10.1007/s11430-013-4696-0
    Li, Z. H., Xu, Z. Q., Gerya, T. V., et al., 2013. Collision of Continental Corner from 3-D Numerical Modeling. Earth and Planetary Science Letters, 380: 98–111 doi: 10.1016/j.epsl.2013.08.034
    Liang, X., Sandvol, E., Chen, Y. J., et al., 2012. A Complex Tibetan Upper Mantle: A Fragmented Indian Slab and no South-Verging Subduction of Eurasian Lithosphere. Earth and Planetary Science Letters, 333: 101–111 http://www.sciencedirect.com/science/article/pii/S0012821X12001665
    Lithgow-Bertelloni, C., Richards, M. A., 1995. Cenozoic Plate Driving Forces. Geophysical Research Letters, 22(11): 1317–1320 doi: 10.1029/95GL01325
    Lustrino, M., 2005. How the Delamination and Detachment of Lower Crust can Influence Basaltic Magmatism. Earth-Science Reviews, 72: 21–38 doi: 10.1016/j.earscirev.2005.03.004
    Manea, V., Manea, M., Kostoglodov, V., et al., 2006. Intraslab Seismicity and Thermal Stress in the Subducted Cocos Plate Beneath Central Mexico. Tectonophysics, 420: 389–408 doi: 10.1016/j.tecto.2006.03.029
    Molnar, P., England, P., Martinod, J., 1993. Mantle Dynamics, Uplift of the Tibetan Plateau, and the Indian Monsoon. Reviews of Geophysics, 31(4): 357–396 doi: 10.1029/93RG02030
    Owens, T. J., Zandt, G., 1997. Implications of Crustal Property Variations for Models of Tibetan Plateau Evolution. Nature, 387(6628): 37–43 doi: 10.1038/387037a0
    Paul, J., Burgmann, R., Gaur, V. K., et al., 2001. The Motion and Active Deformation of India. Geophysical Research Letters, 28: 647–650 doi: 10.1029/2000GL011832
    Platt, J. P., England, P. C., 1994. Convective Removal of Lithosphere beneath Mountain Belts-Thermal and Mechanical Consequences. American Journal of Science, 294(3): 307–336 doi: 10.2475/ajs.294.3.307
    Powell, C. M., 1986. Continental Underplating Model for the Rise of the Tibetan Plateau. Earth and Planetary Science Letters, 81: 79–94 doi: 10.1016/0012-821X(86)90102-0
    Ranalli, G., 1995. Rheology of the Earth. Springer, Netherlands. 414 http://webpac.lib.tongji.edu.cn/opac/item.php?marc_no=0000752013
    Riedell, M. R., Karato, S., 1996. Microstructural Development during Nucleation and Growth. Geophysical Journal International, 125(2): 397–414 doi: 10.1111/j.1365-246X.1996.tb00007.x
    Roger, F., Tapponnier, P., Arnaud, N., et al., 2000. An Eocene Magmatic Belt across Central Tibet: Mantle Subduction Triggered by the Indian Collision? Terra Nova, 12: 102–108 doi: 10.1046/j.1365-3121.2000.123282.x
    Schellart, W. P., 2004. Quantifying the Net Slab Pull Force as a Driving Mechanism for Plate Tectonics. Geophysical Research Letters, 31(7): L07611. doi: 10.1029/2004GL019528
    Searle, M. P., Elliott, J., Phillips, R., et al., 2011. Crustal–Lithospheric Structure and Continental Extrusion of Tibet. Journal of the Geological Society, 168: 633–672 doi: 10.1144/0016-76492010-139
    Stevenson, D. J., Turner, J. S., 1977. Angle of Subduction. Nature, 270: 334–336 doi: 10.1038/270334a0
    Tapponnier, P., Peltzer, G., Ledain, A. Y., et al., 1982. Propagating Extrusion Tectonics in Asia-New Insights from Simple Experiments with Plasticine. Geology, 10(12): 611–616 doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
    Tapponnier, P., Xu, Z. Q., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671–1677 doi: 10.1126/science.105978
    Turcotte, D. L., Schubert, G., 2002. Geodynamics. Cambridge University Press, Cambridge. 636
    van Hinsbergen, D. J. J., Steinberger, B., Doubrovine, P. V., et al., 2011. Acceleration and Deceleration of India-Asia Convergence since the Cretaceous: Roles of Mantle Plumes and Continental Collision. Journal of Geophysical Research: Solid Earth, 116: B06101
    van Hunen, J., van den Berg, A. P., Vlaar, N. J., 2001. Latent Heat Effects of the Major Mantle Phase Transitions on Low-Angle Subduction. Earth and Planetary Science Letters, 190: 125–135 doi: 10.1016/S0012-821X(01)00383-1
    van Hunen, J., van den Berg, A. P., Vlaar, N. J., 2004. Various Mechanisms to Induce Present-day Shallow Flat Subduction and Implications for the Younger Earth: A Numerical Parameter Study. Physics of the Earth and Planetary Interiors, 146: 179–194 doi: 10.1016/j.pepi.2003.07.027
    Vigny, C., Ricard, Y., Froidevaux, C., 1991. The Driving Mechanism of Plate Tectonics. Tectonophysics, 187(4): 345–360 doi: 10.1016/0040-1951(91)90474-7
    Wang, R., Richards, J. P., Zhou, L. M., et al., 2015. The Role of Indian and Tibetan Lithosphere in Spatial Distribution of Cenozoic Magmatism and Porphyry Cu-Mo Deposits in the Gangdese Belt, Southern Tibet. Earth Science Reviews, 150: 68–94 doi: 10.1016/j.earscirev.2015.07.003
    Wang, Y., Li, S., Ma, L., et al., 2015. Geochronological and Geochemical Constraints on the Petrogenesis of Early Eocene Metagabbroic Rocks in Nabang (SW Yunnan) and Its Implications on the Neotethyan Slab Subduction. Gondwana Research, 27(4): 1474–1486 doi: 10.1016/j.gr.2014.01.007
    Wang, Y., Zhang, L., Cawood, P. A., et al., 2014. Eocene Supra-Subduction Zone Mafic Magmatism in the Sibumasu Block of SW Yunnan: Implications for Neotethyan Subduction and India-Asia Collision. Lithos, 206: 384–399 http://www.irgrid.ac.cn/handle/1471x/965857?mode=full&submit_simple=Show+full+item+record
    Willett, S. D., Beaumont, C., 1994. Subduction of Asian Lithospheric Mantle beneath Tibet Inferred from Models of Continental Collision. Nature, 369(6482): 642–645 doi: 10.1038/369642a0
    Yao, T. D., Masson-Delmotte, V., Gao, J., et al., 2013. A Review of Climatic Controls on δ18O in Precipitation over the Tibetan Plateau: Observations and Simulations. Reviews of Geophysics, 51(4): 525–548 doi: 10.1002/rog.20023
    Yang, J. Z., Liu, X. C., Wu, Y. B., et al., 2015. Zircon Record of Ocean-Continent Subduction Transition Process of Dulan UHPM Belt, North Qaidam. Journal of Earth Science, 26(5): 617–625. doi:10.1007/s12583-015- 0585-0
    Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211–280 doi: 10.1146/annurev.earth.28.1.211
    Yin, A., 2006. Cenozoic Tectonic Evolution of the Himalayan Orogen as Constrained by Along-Strike Variation of Structural Geometry, Exhumation History, and Foreland Sedimentation. Earth Science Reviews, 76: 1–131 doi: 10.1016/j.earscirev.2005.05.004
    Zhang, Z. M., Dong, X., Santosh, M., et al., 2014. Metamorphism and Tectonic Evolution of the Lhasa Terrane, Central Tibet. Gondwana Research, 25: 170–189 doi: 10.1016/j.gr.2012.08.024
    Zhao, J., Yuan, X., Liu, H., et al., 2010. The Boundary between the Indian and Asian Tectonic Plates below Tibet. Proceedings of the National Academy of Sciences, 107: 11229–11233 doi: 10.1073/pnas.1001921107
    Zhao, W. L., Morgan, W. J., 1985. Uplift of Tibetan Plateau. Tectonics, 4(4): 359–369 doi: 10.1029/TC004i004p00359
    Zhao, W., Kumar, P., Mechie, J., et al., 2011. Tibetan Plate Overriding the Asian Plate in Central and Northern Tibet. Nature Geoscience, 4: 870–873 doi: 10.1038/ngeo1309
    Zheng, Y. F., Zhao, Z. F., Chen, Y. X., 2013. Continental Subduction Channel Processes: Plate Interface Interaction during Continental Collision. Chinese Science Bulletin, 58(35): 4371–4377 doi: 10.1007/s11434-013-6066-x
    Zhu, D. C., Zhao, Z. D., Niu, Y., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23: 1429–1454 doi: 10.1016/j.gr.2012.02.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views(769) PDF downloads(249) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return