Allegre, C. J., Courtillot, V., Tapponnier, P., et al., 1984. Structure and Evolution of the Himalaya-Tibet Orogenic Belt. Nature, 307(5946): 17–22 doi: 10.1038/307017a0 |
Bittner, D., Schmeling, H., 1995. Numerical Modeling of Melting Processes and Induced Diapirism in the Lower Crust. Geophysical Journal International, 123(1): 59–70 doi: 10.1111/j.1365-246X.1995.tb06661.x |
Chemenda, A. I., Burg, J. P., Mattauer, M., 2000. Evolutionary Model of the Himalaya-Tibet System: Geopoem Based on New Modelling, Geological and Geophysical Data. Earth and Planetary Science Letters, 174(3–4): 397–409 doi: 10.1016/S0012-821X(99)00277-0 |
Chen, L., Gerya, T. V., Zhang, Z. J., et al., 2013. Formation Mechanism of Steep Convergent Intracontinental Margins: Insights from Numerical Modeling. Geophysical Research Letters, 40(10): 2000–2005 doi: 10.1002/grl.50446 |
Chen, Y., Li, W., Yuan, X., et al., 2015. Tearing of the Indian Lithospheric Slab beneath Southern Tibet Revealed by SKS-Wave Splitting Measurements. Earth and Planetary Science Letters, 413: 13–24 doi: 10.1016/j.epsl.2014.12.041 |
Chung, S. L., Liu, D. Y., Ji, J. Q., et al., 2003. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust Beneath Southern Tibet. Geology, 31(11): 1021–1024 doi: 10.1130/G19796.1 |
Chung, S. L., Chu, M. F., Ji, J., et al., 2009. The Nature and Timing of Crustal Thickening in Southern Tibet: Geochemical and Zircon Hf Isotopic Constraints from Postcollisional Adakites. Tectonophysics, 477(1): 36–48 http://www.sciencedirect.com/science/article/pii/S0040195109004259?_fmt=full&md5=7bcf780d0ad55e08c858017474822c86 |
Chung, S. L., Chu, M. F., Zhang, Y., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-collisional Magmatism. Earth Science Reviews, 68(3): 173–196 http://www.sciencedirect.com/science/article/pii/S001282520400042X |
Clauser, C., Huenges, E., 1995. Thermal Conductivity of Rocks and Minerals. AGU Reference Shelf, 3: 105–126 doi: 10.1029/RF003p0105 |
DeCelles, P. G., Robinson, D. M., Zandt, G., 2002. Implications of Shortening in the Himalayan Fold-Thrust Belt for Uplift of the Tibetan Plateau. Tectonics, 21(6): TC1062 doi: 10.1029/2001TC001322 |
Ding, L., Kapp, P., Zhong, D. L., et al., 2003. Cenozoic Volcanism in Tibet: Evidence for a Transition from Oceanic to Continental Subduction. Journal of Petrology, 44(10): 1833–1865 doi: 10.1093/petrology/egg061 |
Duesterhoeft, E., Quinteros, J., Oberhansli, R., et al., 2014. Relative Impact of Mantle Densification and Eclogitization of Slabs on Subduction Dynamics: A Numerical Thermodynamic/Thermokinematic Investigation of Metamorphic Density Evolution. Tectonophysics, 637: 20–29 doi: 10.1016/j.tecto.2014.09.009 |
England, P., Houseman, G., 1986. Finite Strain Calculations of Continental Deformation. 2. Comparison with the India- Asia Collision Zone. Journal of Geophysical Research: Solid Earth and Planets, 91(B3): 3664–3676 doi: 10.1029/JB091iB03p03664 |
Forsyth, D., Uyeda, S, 1975. On the Relative Importance of the Driving Forces of Plate Motion. Geophysical Journal International, 43(1): 163–200. doi: 10.1111/j.1365-246X.1975.tb00631.x |
Gerya, T. V., 2010, Introduction to Numerical Geodynamic Modelling. Cambridge University Press, New York. 345 |
Gerya, T. V., Yuen, D. A., 2003. Characteristics-Based Marker-in-Cell Method with Conservative Finite-differences Schemes for Modeling Geological Flows with Strongly Variable Transport Properties. Physics of the Earth and Planetary Interiors, 140(4): 293–318 doi: 10.1016/j.pepi.2003.09.006 |
Giunchi, C., Ricard, Y., 1999. High-Pressure/ Low-Temperature Metamorphism and the Dynamics of an Accretionary Wedge. Geophysical Journal International, 136(3): 620–628 doi: 10.1046/j.1365-246x.1999.00759.x |
Haines, S. S., Klemperer, S. L., Brown, L., et al., 2003. INDEPTH Ⅲ Seismic Data: From Surface Observations to Deep Crustal Processes in Tibet. Tectonics, 22(1): 1001. doi: 10.1029/2001TC001305 |
Hodges, K. V., 2000. Tectonics of the Himalaya and Southern Tibet from Two Perspectives. Geological Society of America Bulletin, 112(3): 324–350 doi: 10.1130/0016-7606(2000)112<324:TOTHAS>2.0.CO;2 |
Houseman, G. A., Mckenzie, D. P., Molnar, P., 1981. Convective Instability of a Thickened Boundary-Layer and Its Relevance for the Thermal Evolution of Continental Convergent Belts. Journal of Geophysical Research, 86(Nb7): 6115–6132 doi: 10.1029/JB086iB07p06115 |
Jischke, M. C., 1975. Dynamics of Descending Lithospheric Plates and Slip Zones. Journal of Geophysical Research, 80(35): 4809–4813 doi: 10.1029/JB080i035p04809 |
Klootwijk, C. T., Conaghan, P. J., Powell, C. M., 1985. The Himalayan Arc-Large-Scale Continental Subduction, Oroclinal Bending and Back-Arc Spreading. Earth and Planetary Science Letters, 75: 167–183 doi: 10.1016/0012-821X(85)90099-8 |
Leech, M. L., 2001. Arrested Orogenic Development: Eclogitization, Delamination, and Tectonic Collapse. Earth and Planetary Science Letters, 185(1–2): 149–159 doi: 10.1016/S0012-821X(00)00374-5 |
Li, C., van der Hilst, R. D., Meltzer, A. S., et al., 2008. Subduction of the Indian Lithosphere Beneath the Tibetan Plateau and Burma. Earth and Planetary Science Letters, 274: 157–168 doi: 10.1016/j.epsl.2008.07.016 |
Li, Z. H., Xu, Z. Q., Gerya, T. V., 2011. Flat Versus Steep Subduction: Contrasting Modes for the Formation and Exhumation of High- to Ultrahigh-Pressure Rocks in Continental Collision Zones. Earth and Planetary Science Letters, 301: 65–77 doi: 10.1016/j.epsl.2010.10.014 |
Li, Z. H., 2014. A Review on the Numerical Geodynamic Modeling of Continental Subduction, Collision and Exhumation. Science China: Earth Sciences, 57: 47–69 doi: 10.1007/s11430-013-4696-0 |
Li, Z. H., Xu, Z. Q., Gerya, T. V., et al., 2013. Collision of Continental Corner from 3-D Numerical Modeling. Earth and Planetary Science Letters, 380: 98–111 doi: 10.1016/j.epsl.2013.08.034 |
Liang, X., Sandvol, E., Chen, Y. J., et al., 2012. A Complex Tibetan Upper Mantle: A Fragmented Indian Slab and no South-Verging Subduction of Eurasian Lithosphere. Earth and Planetary Science Letters, 333: 101–111 http://www.sciencedirect.com/science/article/pii/S0012821X12001665 |
Lithgow-Bertelloni, C., Richards, M. A., 1995. Cenozoic Plate Driving Forces. Geophysical Research Letters, 22(11): 1317–1320 doi: 10.1029/95GL01325 |
Lustrino, M., 2005. How the Delamination and Detachment of Lower Crust can Influence Basaltic Magmatism. Earth-Science Reviews, 72: 21–38 doi: 10.1016/j.earscirev.2005.03.004 |
Manea, V., Manea, M., Kostoglodov, V., et al., 2006. Intraslab Seismicity and Thermal Stress in the Subducted Cocos Plate Beneath Central Mexico. Tectonophysics, 420: 389–408 doi: 10.1016/j.tecto.2006.03.029 |
Molnar, P., England, P., Martinod, J., 1993. Mantle Dynamics, Uplift of the Tibetan Plateau, and the Indian Monsoon. Reviews of Geophysics, 31(4): 357–396 doi: 10.1029/93RG02030 |
Owens, T. J., Zandt, G., 1997. Implications of Crustal Property Variations for Models of Tibetan Plateau Evolution. Nature, 387(6628): 37–43 doi: 10.1038/387037a0 |
Paul, J., Burgmann, R., Gaur, V. K., et al., 2001. The Motion and Active Deformation of India. Geophysical Research Letters, 28: 647–650 doi: 10.1029/2000GL011832 |
Platt, J. P., England, P. C., 1994. Convective Removal of Lithosphere beneath Mountain Belts-Thermal and Mechanical Consequences. American Journal of Science, 294(3): 307–336 doi: 10.2475/ajs.294.3.307 |
Powell, C. M., 1986. Continental Underplating Model for the Rise of the Tibetan Plateau. Earth and Planetary Science Letters, 81: 79–94 doi: 10.1016/0012-821X(86)90102-0 |
Ranalli, G., 1995. Rheology of the Earth. Springer, Netherlands. 414 http://webpac.lib.tongji.edu.cn/opac/item.php?marc_no=0000752013 |
Riedell, M. R., Karato, S., 1996. Microstructural Development during Nucleation and Growth. Geophysical Journal International, 125(2): 397–414 doi: 10.1111/j.1365-246X.1996.tb00007.x |
Roger, F., Tapponnier, P., Arnaud, N., et al., 2000. An Eocene Magmatic Belt across Central Tibet: Mantle Subduction Triggered by the Indian Collision? Terra Nova, 12: 102–108 doi: 10.1046/j.1365-3121.2000.123282.x |
Schellart, W. P., 2004. Quantifying the Net Slab Pull Force as a Driving Mechanism for Plate Tectonics. Geophysical Research Letters, 31(7): L07611. doi: 10.1029/2004GL019528 |
Searle, M. P., Elliott, J., Phillips, R., et al., 2011. Crustal–Lithospheric Structure and Continental Extrusion of Tibet. Journal of the Geological Society, 168: 633–672 doi: 10.1144/0016-76492010-139 |
Stevenson, D. J., Turner, J. S., 1977. Angle of Subduction. Nature, 270: 334–336 doi: 10.1038/270334a0 |
Tapponnier, P., Peltzer, G., Ledain, A. Y., et al., 1982. Propagating Extrusion Tectonics in Asia-New Insights from Simple Experiments with Plasticine. Geology, 10(12): 611–616 doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2 |
Tapponnier, P., Xu, Z. Q., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671–1677 doi: 10.1126/science.105978 |
Turcotte, D. L., Schubert, G., 2002. Geodynamics. Cambridge University Press, Cambridge. 636 |
van Hinsbergen, D. J. J., Steinberger, B., Doubrovine, P. V., et al., 2011. Acceleration and Deceleration of India-Asia Convergence since the Cretaceous: Roles of Mantle Plumes and Continental Collision. Journal of Geophysical Research: Solid Earth, 116: B06101 |
van Hunen, J., van den Berg, A. P., Vlaar, N. J., 2001. Latent Heat Effects of the Major Mantle Phase Transitions on Low-Angle Subduction. Earth and Planetary Science Letters, 190: 125–135 doi: 10.1016/S0012-821X(01)00383-1 |
van Hunen, J., van den Berg, A. P., Vlaar, N. J., 2004. Various Mechanisms to Induce Present-day Shallow Flat Subduction and Implications for the Younger Earth: A Numerical Parameter Study. Physics of the Earth and Planetary Interiors, 146: 179–194 doi: 10.1016/j.pepi.2003.07.027 |
Vigny, C., Ricard, Y., Froidevaux, C., 1991. The Driving Mechanism of Plate Tectonics. Tectonophysics, 187(4): 345–360 doi: 10.1016/0040-1951(91)90474-7 |
Wang, R., Richards, J. P., Zhou, L. M., et al., 2015. The Role of Indian and Tibetan Lithosphere in Spatial Distribution of Cenozoic Magmatism and Porphyry Cu-Mo Deposits in the Gangdese Belt, Southern Tibet. Earth Science Reviews, 150: 68–94 doi: 10.1016/j.earscirev.2015.07.003 |
Wang, Y., Li, S., Ma, L., et al., 2015. Geochronological and Geochemical Constraints on the Petrogenesis of Early Eocene Metagabbroic Rocks in Nabang (SW Yunnan) and Its Implications on the Neotethyan Slab Subduction. Gondwana Research, 27(4): 1474–1486 doi: 10.1016/j.gr.2014.01.007 |
Wang, Y., Zhang, L., Cawood, P. A., et al., 2014. Eocene Supra-Subduction Zone Mafic Magmatism in the Sibumasu Block of SW Yunnan: Implications for Neotethyan Subduction and India-Asia Collision. Lithos, 206: 384–399 http://www.irgrid.ac.cn/handle/1471x/965857?mode=full&submit_simple=Show+full+item+record |
Willett, S. D., Beaumont, C., 1994. Subduction of Asian Lithospheric Mantle beneath Tibet Inferred from Models of Continental Collision. Nature, 369(6482): 642–645 doi: 10.1038/369642a0 |
Yao, T. D., Masson-Delmotte, V., Gao, J., et al., 2013. A Review of Climatic Controls on δ18O in Precipitation over the Tibetan Plateau: Observations and Simulations. Reviews of Geophysics, 51(4): 525–548 doi: 10.1002/rog.20023 |
Yang, J. Z., Liu, X. C., Wu, Y. B., et al., 2015. Zircon Record of Ocean-Continent Subduction Transition Process of Dulan UHPM Belt, North Qaidam. Journal of Earth Science, 26(5): 617–625. doi:10.1007/s12583-015- 0585-0 |
Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211–280 doi: 10.1146/annurev.earth.28.1.211 |
Yin, A., 2006. Cenozoic Tectonic Evolution of the Himalayan Orogen as Constrained by Along-Strike Variation of Structural Geometry, Exhumation History, and Foreland Sedimentation. Earth Science Reviews, 76: 1–131 doi: 10.1016/j.earscirev.2005.05.004 |
Zhang, Z. M., Dong, X., Santosh, M., et al., 2014. Metamorphism and Tectonic Evolution of the Lhasa Terrane, Central Tibet. Gondwana Research, 25: 170–189 doi: 10.1016/j.gr.2012.08.024 |
Zhao, J., Yuan, X., Liu, H., et al., 2010. The Boundary between the Indian and Asian Tectonic Plates below Tibet. Proceedings of the National Academy of Sciences, 107: 11229–11233 doi: 10.1073/pnas.1001921107 |
Zhao, W. L., Morgan, W. J., 1985. Uplift of Tibetan Plateau. Tectonics, 4(4): 359–369 doi: 10.1029/TC004i004p00359 |
Zhao, W., Kumar, P., Mechie, J., et al., 2011. Tibetan Plate Overriding the Asian Plate in Central and Northern Tibet. Nature Geoscience, 4: 870–873 doi: 10.1038/ngeo1309 |
Zheng, Y. F., Zhao, Z. F., Chen, Y. X., 2013. Continental Subduction Channel Processes: Plate Interface Interaction during Continental Collision. Chinese Science Bulletin, 58(35): 4371–4377 doi: 10.1007/s11434-013-6066-x |
Zhu, D. C., Zhao, Z. D., Niu, Y., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23: 1429–1454 doi: 10.1016/j.gr.2012.02.002 |