Amyotte, P. R., Pegg, M. J., 1993. Explosion Hazards in Underground Coal Mines. Toxicological & Environmental Chemistry, 40(1): 189-199 doi: 10.1080/02772249309357943 |
Baran, P., Broś, M., Nodzeński, A., 2010. Studies on CO2 Sorption on Hard Coal in the Near-Critical Area with Regard to the Aspect of Sequestration. Archives of Mining Sciences, 55(1): 59-68 http://archiwum.img-pan.krakow.pl/index.php/AMS/article/view/371 |
Beamish, B. B., Arisoy, A., 2008. Effect of Mineral Matter on Coal Self-Heating Rate. Fuel, 87(1): 125-130. doi: 10.1016/j.fuel.2007.03.049 |
Bustin, R. M., Clarkson, C. R., 1998. Geological Controls on Coalbed Methane Reservoir Capacity and Gas Content. International Journal of Coal Geology, 38: 3-26 doi: 10.1016/S0166-5162(98)00030-5 |
Chaback, J. J., Morgan, W. D., Yee, D., 1996. Sorption of Nitrogen, Methane, Carbon Dioxide and Their Mixtures on Bituminous Coals at In-Situ Conditions. Fluid Phase Equilibria, 117(1/2): 289-296. doi: 10.1016/0378-3812(95)02965-6 |
Cygankiewicz, J., Dudzińska, A., Żyła, M., 2006. The Effect of Particle Size of Comminuted Bituminous Coal on Low-Temperature Sorption of Nitrogen and Room Temperature Sorption of Carbon Dioxide.Przemysł Chemiczny, 85: 1505-1509 https://www.researchgate.net/publication/292061452_The_effect_of_particle_size_of_comminuted_bituminous_coal_on_low-temperature_sorption_of_nitrogen_and_room-temperature_sorption_of_carbon_dioxide |
Cygankiewicz, J., Dudzińska, A., Żyła, M., 2007. Sorption and Desorption of Carbon Monoxide in Several Samples of Polish Hard Coal. Archives of Mining Sciences, 52: 573-585 http://archiwum.img-pan.krakow.pl/index.php/AMS/article/view/512 |
Cygankiewicz, J., Dudzińska, A., Żyła, M., 2009. The Relation between the Size of Bituminous Coal Particles and the Sorption of Carbon Monoxide. Mineral Resources Management, 25: 85-100 https://www.researchgate.net/publication/279596805_The_relation_between_the_size_of_bituminous_coal_particles_and_the_sorption_of_carbon_monoxide |
Cygankiewicz, J., Żyła, M., Dudzińska, A., 2012a. Influence of Metamorphism Degree of Hard Coals on Sorption and Desorption of Ethane. Karbo, 3: 134-144 |
Cygankiewicz, J., Dudzińska, A., Żyła, M., 2012b. Examination of Sorption and Desorption of Hydrogen on Several Samples of Polish Hard Coals. Adsorption, 18: 189-198 doi: 10.1007/s10450-012-9393-3 |
Czapliński A., 1994. Węgiel Kamienny. Wydawnictwa AGH, Kraków |
Dai, G. L., 2007. Study on the Gaseous Products in Coal Oxidation at Low Temperature. Coal Mine Safety, 1: 1-4 |
Dudzińska, A., Żyła, M., Cygankiewicz, J., 2013. Influence of the Metamorphism Grade and Porosity of Hard Coal on Sorption and Desorption of Propane. Archives of Mining Sciences, 58: 859-871 https://www.researchgate.net/publication/275992473_Influence_of_The_Metamorphism_Grade_and_Porosity_of_Hard_Coal_on_Sorption_and_Desorption_of_Propane_Wplyw_Stopnia_Metamorfizmu_I_Porowatosci_Wegli_Kamiennych_Na_Sorpcje_I_Desorpcje_Propanu |
Faiz, M. M., Aziz, N. I., Hutton, A. C., et al., 1992. Porosity and Gas Sorption Capacity of Some Eastern Australian Coals. In: Beamish, B., Gamson, P., eds., Proceedings of the Symposium on Coalbed Methane Research and Development in Australia, James Cook University of North Queensland, Townsville, Queensland, Australia. 4: 9-20 |
Faiz, M., Saghafi, A., Sherwood, N., et al., 2007. The Influence of Petrological Properties and Burial History on Coal Seam Methane Reservoir Characterisation, Sydney Basin, Australia. International Journal of Coal Geology, 70(1-3): 193-208. doi: 10.1016/j.coal.2006.02.012 |
Gregg, S. J., Sing, K. S. W., 1982. Adsorption, Surface Area and Porosity. Academic Press, New York |
Gürdal, G., Yalçn, M. N., 2001. Pore Volume and Surface Area of the Carboniferous Coals from the Zonguldak Basin (NW Turkey) and Their Variations with Rank and Maceral Composition. International Journal of Coal Geology, 48(1/2): 133-144. doi: 10.1016/s0166-5162(01)00051-9 |
Hemza, P., Sivek, M., Jirásek, J., 2009. Factors Influencing the Methane Content of Coal Beds of the Czech Part of the Upper Silesian Coal Basin, Czech Republic. International Journal of Coal Geology, 79(1/2): 29-39. doi: 10.1016/j.coal.2009.04.003 |
Krooss, B. M., van Bergen, F. V., Gensterblum, Y., et al., 2002. High-Pressure Methane and Carbon Dioxide Adsorption on Dry and Moisture-Equilibrated Pennsylvanian Coals. International Journal of Coal Geology, 51(2): 69-92. doi: 10.1016/s0166-5162(02)00078-2 |
Larsen, J. W., Kovac, J., 1978. Polymer Structure of Bituminous Coals in Organic Chemistry of Coal. American Chemical Society Symposium Series, 71: 36-43 doi: 10.1021/symposium |
Lasoń, M., Czuhajowski, L., Żyła, M., 1960. A Note on the Sorption of Metanol and Water Vapours on Vitrains. Fuel, 39: 366-368 |
Li, M., Jiang, B., Lin, S. F., et al., 2013. Structural Controls on Coalbed Methane Reservoirs in Faer Coal Mine, Southwest China. Journal of Earth Science, 24(3): 437-448. doi: 10.1007/s12583-013-0340-3 |
Lu, P., Liao, G. X., Sun, J. H., et al., 2004. Experimental Research on Index Gas of the Coal Spontaneous at Low-Temperature Stage. Journal of Loss Prevention in the Process İndustries, 17: 243-247 doi: 10.1016/j.jlp.2004.03.002 |
Mastalerz, M., Gluskoter, H., Rupp, J., 2004. Carbon Dioxide and Methane Sorption in High Volatile Bituminous Coals from Indiana, USA. International Journal of Coal Geology, 60(1): 43-55. doi: 10.1016/j.coal.2004.04.001 |
Ottiger, S., Pini, R., Storti, G., et al., 2008. Competitive Adsorption Equilibria of CO2 and CH4 on a Dry Coal. Adsorption, 14(4/5): 539-556. doi: 10.1007/s10450-008-9114-0 |
Saghafi, A., Faiz, M., Roberts, D., 2007. CO2 Storage and Gas Diffusivity Properties of Coals from Sydney Basin, Australia. International Journal of Coal Geology, 70(1-3): 240-254. doi: 10.1016/j.coal.2006.03.006 |
Shi, J. Q., Durucan, S., 2003. A Bidisperse Pore Diffusion Model for Methane Displacement Desorption in Coal by CO2 Injection. Fuel, 82: 1219-1229 doi: 10.1016/S0016-2361(03)00010-3 |
van Heek, K. H., Hodek, W., 1994. Structure and Pyrolysis Behavior or Different Coals Relevant Model Substances. Fuel, 73: 886-896 doi: 10.1016/0016-2361(94)90283-6 |
van Krevelen, D. W., 1965. Chemical Structure and Properties of Coal ⅩⅩⅧ-Coal Constitution and Solvent Extraction. Fuel, 44: 229-241 |
Xiao, Y., Wang, Z. P., Ma, L., et al., 2008. Research on Correspondence Relationship between Coal Spontaneous Combustion Index Gas and Feature Temperature. Coal Science and Technology, 36: 47-51 http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTKJ200806015.htm |
Zarębska, K., Baran, P., Cygankiewicz, J., et al., 2012. Sorption of Carbon Dioxide on Polish Coals in Low and Elevated Pressure. Fresenius Environmental Biulletin, 21: 4003-4008 https://www.researchgate.net/publication/259895195_Sorption_of_carbon_dioxide_on_polish_coals_in_low_and_elevated_pressure |
Zarębska, K., Dudzińska, A., 2008. The Possibility of CO2 Storage in Coal Beds-Verification of Experimental Data. Mineral Resources Management, 24: 347-355 |
Żyła, M., Kreiner, K., 1993. The Effect of Hard Coal Comminution on the Sorption of Vapours of Polar and Apolar Substances. Archives of Mining Sciences, 38: 41-50 |
Żyła, M., Dudzińska, A., Cygankiewicz, J., 2009. The Relation Between Ambient Temperature and Sorption of Carbon Monoxide on Bituminous Coals. Mineral Resources Management, 254: 33-49 http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BPZ1-0058-0003 |
Żyła, M., Dudzińska, A., Cygankiewicz, J., 2013. The Influence of Disintegration of Hard Coal Varieties of Different Metamorphism Grade on the Amount of Absorbed Ethane. Archives of Mining Sciences, 58: 449-463 https://www.researchgate.net/publication/260727794_The_Influence_of_Disintegration_of_Hard_Coal_Varieties_of_Different_Metamorphism_Grade_on_the_Amount_of_Sorbed_Ethane_Wplyw_rozdrobnienia_odmian_wegla_kamiennego_o_roznym_stopniu_metamorfizmu_na_ilosc |