Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 28 Issue 1
Feb 2017
Turn off MathJax
Article Contents
Agnieszka Dudzińska. Sorption Properties of Hard Coals with Regard to Gases Present in the Mine Atmosphere. Journal of Earth Science, 2017, 28(1): 124-130. doi: 10.1007/s12583-016-0716-2
Citation: Agnieszka Dudzińska. Sorption Properties of Hard Coals with Regard to Gases Present in the Mine Atmosphere. Journal of Earth Science, 2017, 28(1): 124-130. doi: 10.1007/s12583-016-0716-2

Sorption Properties of Hard Coals with Regard to Gases Present in the Mine Atmosphere

doi: 10.1007/s12583-016-0716-2
More Information
  • In this study, the sorption capacities of hard coals with reference to gases present in the mine atmosphere: carbon dioxide, methane, ethane, ethene, propane, propene, carbon monoxide and hydrogen were examined. For laboratory tests, 4 samples of hard coals collected from exploitable coal seams were selected. Among considered gases the mostly sorbed is carbon dioxide, in slightly smaller amounts are sorbed unsaturated hydrocarbons: ethene and propene. Their large sorption results from i.a. interactions of p electrons in the double bond between carbon atoms in the ethene or propene molecules with energetic centers of the coal surface. The amounts of the sorbed saturated hydrocarbons: ethane and propane are small, which is probably related to the adsorption mechanism of their sorption by coals. In the smallest amounts are sorbed hydrogen and carbon monoxide, the values of their sorption being maximum 5% of hard coals sorption capacity in relation to carbon dioxide. Based on the experiments it was found that the largest amounts of gases are sorbed by low-rank, highly porous coals with high oxygen content. The process of sorption of unsaturated hydrocarbons: ethene and propene can lead to a reduction in concentration of those gases in the mine atmosphere and thus may affect correctness of the self-heating phenomenon assessment.


  • loading
  • Amyotte, P. R., Pegg, M. J., 1993. Explosion Hazards in Underground Coal Mines. Toxicological & Environmental Chemistry, 40(1): 189-199 doi: 10.1080/02772249309357943
    Baran, P., Broś, M., Nodzeński, A., 2010. Studies on CO2 Sorption on Hard Coal in the Near-Critical Area with Regard to the Aspect of Sequestration. Archives of Mining Sciences, 55(1): 59-68
    Beamish, B. B., Arisoy, A., 2008. Effect of Mineral Matter on Coal Self-Heating Rate. Fuel, 87(1): 125-130. doi: 10.1016/j.fuel.2007.03.049
    Bustin, R. M., Clarkson, C. R., 1998. Geological Controls on Coalbed Methane Reservoir Capacity and Gas Content. International Journal of Coal Geology, 38: 3-26 doi: 10.1016/S0166-5162(98)00030-5
    Chaback, J. J., Morgan, W. D., Yee, D., 1996. Sorption of Nitrogen, Methane, Carbon Dioxide and Their Mixtures on Bituminous Coals at In-Situ Conditions. Fluid Phase Equilibria, 117(1/2): 289-296. doi: 10.1016/0378-3812(95)02965-6
    Cygankiewicz, J., Dudzińska, A., Żyła, M., 2006. The Effect of Particle Size of Comminuted Bituminous Coal on Low-Temperature Sorption of Nitrogen and Room Temperature Sorption of Carbon Dioxide.Przemysł Chemiczny, 85: 1505-1509
    Cygankiewicz, J., Dudzińska, A., Żyła, M., 2007. Sorption and Desorption of Carbon Monoxide in Several Samples of Polish Hard Coal. Archives of Mining Sciences, 52: 573-585
    Cygankiewicz, J., Dudzińska, A., Żyła, M., 2009. The Relation between the Size of Bituminous Coal Particles and the Sorption of Carbon Monoxide. Mineral Resources Management, 25: 85-100
    Cygankiewicz, J., Żyła, M., Dudzińska, A., 2012a. Influence of Metamorphism Degree of Hard Coals on Sorption and Desorption of Ethane. Karbo, 3: 134-144
    Cygankiewicz, J., Dudzińska, A., Żyła, M., 2012b. Examination of Sorption and Desorption of Hydrogen on Several Samples of Polish Hard Coals. Adsorption, 18: 189-198 doi: 10.1007/s10450-012-9393-3
    Czapliński A., 1994. Węgiel Kamienny. Wydawnictwa AGH, Kraków
    Dai, G. L., 2007. Study on the Gaseous Products in Coal Oxidation at Low Temperature. Coal Mine Safety, 1: 1-4
    Dudzińska, A., Żyła, M., Cygankiewicz, J., 2013. Influence of the Metamorphism Grade and Porosity of Hard Coal on Sorption and Desorption of Propane. Archives of Mining Sciences, 58: 859-871
    Faiz, M. M., Aziz, N. I., Hutton, A. C., et al., 1992. Porosity and Gas Sorption Capacity of Some Eastern Australian Coals. In: Beamish, B., Gamson, P., eds., Proceedings of the Symposium on Coalbed Methane Research and Development in Australia, James Cook University of North Queensland, Townsville, Queensland, Australia. 4: 9-20
    Faiz, M., Saghafi, A., Sherwood, N., et al., 2007. The Influence of Petrological Properties and Burial History on Coal Seam Methane Reservoir Characterisation, Sydney Basin, Australia. International Journal of Coal Geology, 70(1-3): 193-208. doi: 10.1016/j.coal.2006.02.012
    Gregg, S. J., Sing, K. S. W., 1982. Adsorption, Surface Area and Porosity. Academic Press, New York
    Gürdal, G., Yalçn, M. N., 2001. Pore Volume and Surface Area of the Carboniferous Coals from the Zonguldak Basin (NW Turkey) and Their Variations with Rank and Maceral Composition. International Journal of Coal Geology, 48(1/2): 133-144. doi: 10.1016/s0166-5162(01)00051-9
    Hemza, P., Sivek, M., Jirásek, J., 2009. Factors Influencing the Methane Content of Coal Beds of the Czech Part of the Upper Silesian Coal Basin, Czech Republic. International Journal of Coal Geology, 79(1/2): 29-39. doi: 10.1016/j.coal.2009.04.003
    Krooss, B. M., van Bergen, F. V., Gensterblum, Y., et al., 2002. High-Pressure Methane and Carbon Dioxide Adsorption on Dry and Moisture-Equilibrated Pennsylvanian Coals. International Journal of Coal Geology, 51(2): 69-92. doi: 10.1016/s0166-5162(02)00078-2
    Larsen, J. W., Kovac, J., 1978. Polymer Structure of Bituminous Coals in Organic Chemistry of Coal. American Chemical Society Symposium Series, 71: 36-43 doi: 10.1021/symposium
    Lasoń, M., Czuhajowski, L., Żyła, M., 1960. A Note on the Sorption of Metanol and Water Vapours on Vitrains. Fuel, 39: 366-368
    Li, M., Jiang, B., Lin, S. F., et al., 2013. Structural Controls on Coalbed Methane Reservoirs in Faer Coal Mine, Southwest China. Journal of Earth Science, 24(3): 437-448. doi: 10.1007/s12583-013-0340-3
    Lu, P., Liao, G. X., Sun, J. H., et al., 2004. Experimental Research on Index Gas of the Coal Spontaneous at Low-Temperature Stage. Journal of Loss Prevention in the Process İndustries, 17: 243-247 doi: 10.1016/j.jlp.2004.03.002
    Mastalerz, M., Gluskoter, H., Rupp, J., 2004. Carbon Dioxide and Methane Sorption in High Volatile Bituminous Coals from Indiana, USA. International Journal of Coal Geology, 60(1): 43-55. doi: 10.1016/j.coal.2004.04.001
    Ottiger, S., Pini, R., Storti, G., et al., 2008. Competitive Adsorption Equilibria of CO2 and CH4 on a Dry Coal. Adsorption, 14(4/5): 539-556. doi: 10.1007/s10450-008-9114-0
    Saghafi, A., Faiz, M., Roberts, D., 2007. CO2 Storage and Gas Diffusivity Properties of Coals from Sydney Basin, Australia. International Journal of Coal Geology, 70(1-3): 240-254. doi: 10.1016/j.coal.2006.03.006
    Shi, J. Q., Durucan, S., 2003. A Bidisperse Pore Diffusion Model for Methane Displacement Desorption in Coal by CO2 Injection. Fuel, 82: 1219-1229 doi: 10.1016/S0016-2361(03)00010-3
    van Heek, K. H., Hodek, W., 1994. Structure and Pyrolysis Behavior or Different Coals Relevant Model Substances. Fuel, 73: 886-896 doi: 10.1016/0016-2361(94)90283-6
    van Krevelen, D. W., 1965. Chemical Structure and Properties of Coal ⅩⅩⅧ-Coal Constitution and Solvent Extraction. Fuel, 44: 229-241
    Xiao, Y., Wang, Z. P., Ma, L., et al., 2008. Research on Correspondence Relationship between Coal Spontaneous Combustion Index Gas and Feature Temperature. Coal Science and Technology, 36: 47-51
    Zarębska, K., Baran, P., Cygankiewicz, J., et al., 2012. Sorption of Carbon Dioxide on Polish Coals in Low and Elevated Pressure. Fresenius Environmental Biulletin, 21: 4003-4008
    Zarębska, K., Dudzińska, A., 2008. The Possibility of CO2 Storage in Coal Beds-Verification of Experimental Data. Mineral Resources Management, 24: 347-355
    Żyła, M., Kreiner, K., 1993. The Effect of Hard Coal Comminution on the Sorption of Vapours of Polar and Apolar Substances. Archives of Mining Sciences, 38: 41-50
    Żyła, M., Dudzińska, A., Cygankiewicz, J., 2009. The Relation Between Ambient Temperature and Sorption of Carbon Monoxide on Bituminous Coals. Mineral Resources Management, 254: 33-49
    Żyła, M., Dudzińska, A., Cygankiewicz, J., 2013. The Influence of Disintegration of Hard Coal Varieties of Different Metamorphism Grade on the Amount of Absorbed Ethane. Archives of Mining Sciences, 58: 449-463
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(3)

    Article Metrics

    Article views(756) PDF downloads(333) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint