Ando, M., Tadano, M., Yamamoto, S., et al., 2001. Health Effects of Fluoride Pollution Caused by Coal Burning. Science of the Total Environment, 271(1–3): 107–116 http://europepmc.org/abstract/MED/11346033 |
Ao, W., Huang, W., Chen, J., et al., 2008. The Concentration of Fluorine in Coals and Spoil of China. Journal of Coal Science and Engineering, 14(1): 92–96 doi: 10.1007/s12404-008-0019-z |
Cernuschi, S., Giugliano, M., 1987. Trace Elements Emission Factors from Coal Combustion. Science of the Total Environment, 65: 95–107 doi: 10.1016/0048-9697(87)90164-1 |
Chung, F. H., 1974. Quantitative Interpretation of X-Ray Diffraction Patterns of Mixtures: Ⅰ. Matrix Flushing Method for Quantitative Multicomponent Analysis. Journal of Applied Crystallography, 7: 519–525 doi: 10.1107/S0021889874010375 |
Cosca, M. A., Essene, E. J., Geissman, J. W., et al., 1989. Pyrometamorphic Rocks Associated with Naturally Burned Coal Seams, Powder River Basin, Wyoming. American Mineral, 74: 85–100 http://www.researchgate.net/publication/260075964_Pyrometamorphic_rocks_associated_with_naturally_burned_coal_beds_Powder_River_Basin_Wyoming |
Denimal, S., Barbecot, F., Dever, L., et al., 2001. Chemical and Isotopic Tracing of Underground Water in Relation with Leaching of Mine Spoils, Nord-Pas-de-Calais Coal Basin (France). Bulletin De La Societe Geologique De France 172(1): 111–120 |
Donovan, J. J., Ziemkiewicz, P. F., 2013. Selenium Adsorption onto Iron Oxide Layers beneath Coal-Mine Overburden Spoil. Journal of Environmental Quality, 42(5): 1402–1411 doi: 10.2134/jeq2012.0500 |
Finkelman, R. B., 2004. Potential Health Impacts of Burning Coal Beds and Waste Banks. International Journal of Coal Geology, 51: 19–24 http://www.sciencedirect.com/science/article/pii/S0166516204000114 |
Gao, X. B., Wang, Y. X., Hu, Q. H., et al., 2011. Effects of Anion Competitive Adsorption on Arsenic Enrichment in Groundwater. Journal of Environmental Science and Health Part A, 46: 1–9 doi: 10.1080/10934529.2011.526065 |
Gao, X. B., Su, C. L., Hu, Q. H., et al., 2013. Mobility of Arsenic in Aquifer Sediments at Datong Basin, Northern China: Effect of Bicarbonate and Phosphate. Journal of Geochemical Exploration, 135: 93–103 doi: 10.1016/j.gexplo.2012.09.001 |
Germani, M. S., Zoller, W. H., 1988. Vapor-Phase Concentrations of Arsenic, Selenium, Bromine, Iodine, and Mercury in the Stack of a Coal-Fired Power Plant. Environmental Science and Technology, 22: 1079–1085 doi: 10.1021/es00174a013 |
Gluskoter, H. J., Ruch, R. R., Miller, W. G., et al., 1977. Trace Elements in Coal: Occurrence and Distribution. Illinois State Geological Survey Circular 499, Urbana IL. 154 http://www.ideals.illinois.edu/handle/2142/44924 |
Godbeer, W. G., Swaine, D. J., Goodarzi, F., 1994. Fluorine in Canadian Coals. Fuel, 73(8): 1291–1293 doi: 10.1016/0016-2361(94)90304-2 |
Huang, W. Z., 2004. Study on Spontaneous Combustion Mechanism and Prevention Technology of Coal Spoil. [Dissertation] Chongqing University, Chongqing. 136 (in Chinese with English Abstract) |
Li, T., 1984. Elemental Abundance in Oceanic and Continental Crust. Geotectonicaet Metallogenia, 1: 7–9 |
Luo, K. L., Ren, D. Y., Xu, L. R., et al., 2004. Fluorine Content and Distribution Pattern in Chinese Coals. International Journal of Coal Geology, 57: 143–149 doi: 10.1016/j.coal.2003.10.003 |
Park, J. H., Li, X. F., Edraki, M., et al., 2013. Geochemical Assessments and Classification of Coal Mine Spoils for Better Understanding of Potential Salinity Issues at Closure. Environmental Science-Processes and Impacts, 15(6): 1235–1244 doi: 10.1039/c3em30672k |
Pone, J. D. N., Hein, K. A. A., Stracher, G. B., et al., 2007. The Spontaneous Combustion of Coal and Its By-Products in the Witbank and Sasolburg Coalfields of South Africa. International Journal of Coal Geology, 72: 124–140 doi: 10.1016/j.coal.2007.01.001 |
Querol, X., Izquierdo, M., Monfort, E., et al., 2008. Environmental Characterizations of Burnt Coal Spoil Banks at Yangquan, Shanxi Province, China. International Journal of Coal Geology, 75(2): 93–104 doi: 10.1016/j.coal.2008.04.003 |
Shigeo, I., Takahisa, Y., Kazuo, A., 2006. Emissions of Mercury and Other Trace Elements from Coal-Fired Power Plants in Japan. Science of the Total Environment, 368: 397–402 doi: 10.1016/j.scitotenv.2005.09.044 |
Stracher, G. B., Taylor, T. P., 2004. Coal Fires Burning Out of Control around the World: Thermodynamic Recipe for Environmental Catastrophe. International Journal of Coal Geology, 59: 7–17 doi: 10.1016/j.coal.2003.03.002 |
Swaine, D. J., 1990). Trace Elements in Coal. Butterworth, London. 278 http://www.sciencedirect.com/science/article/pii/B9780408033091500149 |
Taylor, R. K., 1974. Colliery Spoils Heap Materials-Time Dependent Changes. Ground Engineering, 7: 24 |
The Ministry of Land and Resources P.R.C., 2008). Annual Report of Coal Industry in China, 2007–2008 (in Chinese) |
Villalba, G., Ayres, R. U., Schroder, H., 2007. Accounting for Fluorine-Production, Use, and Loss. Journal of Industrial Ecology, 11(1): 85–101 http://www.researchgate.net/publication/229918070_Accounting_for_Fluorine_Production_Use_and_Loss |
Wiggering, H., 1993. Sulfide Oxidation—An Environmental Problem within Colliery Spoil Dumps. Environmental Geology, 22: 99–105 doi: 10.1007/BF00789321 |
Wu, D. S., Zheng, B. S., Wang, A. M., et al., 2004. Fluoride Exposure from Burning Coal-Clay in Guizhou Province, China. Fluoride, 37(1): 20–27 http://www.researchgate.net/publication/265037447_Fluoride_exposure_from_burning_coal-clay_in_Guizhou_Province_China |
Zhao, Y., Zhang, J., Chou, C. L., et al., 2008. Trace Element Emissions from Spontaneous Combustion of Gob Piles in Coal Mines, Shanxi, China. International Journal of Coal Geology, 73: 52–62 doi: 10.1016/j.coal.2007.07.007 |
Ziemkiewicz, P. F., O'Neal, M., Lovett, R. J., 2011. Selenium Leaching Kinetics and in Situ Control. Mine Water and the Environment, 30(2): 141–150 doi: 10.1007/s10230-011-0154-4 |