Abu-Jaber, N., Ismail, M., 2014. Hydrogeochemical Modeling of the Shallow Groundwater in the Northern Jordan Valley. Environmental Geology, 44(4):391-399. https://doi.org/10.1007/s00254-003-0770-9 |
Appelo, C. A. J., Parkhurst, D. L., Post, V. E. A., 2014. Equations for Calculating Hydrogeochemical Reactions of Minerals and Gases such as CO2 at High Pressures and Temperatures. Geochimica et Cosmochimica Acta, 125:49-67. https://doi.org/10.1016/j.gca.2013.10.003 |
Árnason, B., 1977. Hot Groundwater Systems in Iceland Traced by Deuterium. Hydrology Research, 8(2):93-102. https://doi.org/10.2166/nh.1977.0008 |
Ben Brahim, F., Makni, J., Bouri, S., et al., 2014. Evaluation of Temperature and Mixing Process of Water in Deep and Shallow Aquifers in the Southwestern Tunisia:Case of Djerid Region. Arabian Journal for Science and Engineering, 39(7):5677-5689. https://doi.org/10.1007/s13369-014-1138-z |
Bi, E. P., 1998. Geochemical Modeling of the Mixing of Geothermal Water and Reinjection Water:A Case Study of Laugalnd Low-Temperature Geothermal Field in Iceland. Earth Science-Journal of China Univer-sity of Geosciences, 23(6):631-634 (in Chinese with English Abstract) |
Bozau, E., van Berk, W., 2013. Hydrogeochemical Modeling of Deep Formation Water Applied to Geothermal Energy Production. Procedia Earth and Planetary Science, 7:97-100. https://doi.org/10.1016/j.proeps.2013.03.006 |
Chen, Z. Y., 1995. Advancements of Hydrogeochemical Modeling. Advance in Earth Sciences, 10(3):278-282 (in Chinese with English Abstract) |
Cidu, R., Bahaj, S., 2000. Geochemistry of Thermal Waters from Morocco. Geothermics, 29(3):407-430. https://doi.org/10.1016/s0375-6505(00)00007-9 |
Criss, R. E., 2015. Use of Geochemical and Geophysical Techniques to Characterize and Prospect for Geothermal Resources and Hydrothermal Ore Deposits. Journal of Earth Science, 26(1):73-77. https://doi.org/10.1007/s12583-015-0510-6 |
Cruz, J. V., França, Z., 2006. Hydrogeochemistry of Thermal and Mineral Water Springs of the Azores Archipelago (Portugal). Journal of Vol-canology and Geothermal Research, 151(4):382-398. https://doi.org/10.1016/j.jvolgeores.2005.09.001 |
Dor, J., 2003. The Basic Characteristics of the Yangbajing Geothermal Field-A Typical High Temperature Geothermal System. Engineering Science, 5(1):42-47 (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zggckx200301008 |
Edmunds, W. M., Carrillo-Rivera, J. J., Cardona, A., 2002 Geochemical Evolution of Groundwater beneath Mexico City. Journal of Hydrology, 258(1-4):1-24. https://doi.org/10.1016/S0022-1694(01)00461-9 |
El Mandour, A., El Yaouti, F., Fakir, Y., et al., 2008. Evolution of Groundwater Salinity in the Unconfined Aquifer of Bou-Areg, Northeastern Mediterranean Coast, Morocco. Environmental Geology, 54(3):491-503. https://doi.org/10.1007/s00254-007-0842-3 |
Feng, Z. J., Zhao, Y. S., Zhou, A. C., et al., 2012. Development Program of Hot Dry Rock Geothermal Resource in the Yangbajing Basin of China. Renewable Energy, 39(1):490-495. https://doi.org/10.1016/j.renene.2011.09.005 |
Fisher, R. S., Mullican, I. F., 1997. Hydrochemical Evolution of Sodium-Sulfate and Sodium-Chloride Groundwater beneath the Northern Chi-huahuan Desert, Trans-Pecos, Texas, USA. Hydrogeology Journal, 5(2):4-16. https://doi.org/10.1007/s100400050102 |
Fournier, R. O., 1979. Geochemical and Hydrologic Considerations and the Use of Enthalpy-Chloride Diagrams in the Prediction of Underground Conditions in Hot-Spring Systems. Journal of Volcanology & Geo-thermal Research, 5(1):1-16. https://doi.org/10.1016/0377-0273(79)90029-5 |
Fournier, R. O., Potter, R. W. Ⅱ, 1982. A Revised and Expanded Silica (Quartz) Geothermometer. Geothermal Resources Council Bulletin, 11:3-12 |
Fournier, R. O., Truesdell, A. H., 1973. An Empirical Na-K-Ca Geother-mometer for Natural Waters. Geochimica et Cosmochimica Acta, 37(5):1255-1275. https://doi.org/10.1016/0016-7037(73)90060-4 |
Fryar, A., Mullican, W., Macko, S., 2001. Groundwater Recharge and Chemical Evolution in the Southern High Plains of Texas, USA. Hydrogeology Journal, 9(6):522-542. https://doi.org/10.1007/s10040-001-0161-9 |
Giggenbach, W. F., 1988. Geothermal Solute Equilibria. Derivation of Na-K-Mg-Ca Geoindicators. Geochimica et Cosmochimica Acta, 52(12):2749-2765. https://doi.org/10.1016/0016-7037(88)90143-3 |
Giggenbach, W. F., 1991. Chemical Techniques in Geothermal Exploration. Applications of Geochemistry in Geothermal Reservoir Development, 11:9-114 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=S0016756802267114 |
Kaya, E., Zarrouk, S. J., O'Sullivan, M. J., 2011. Reinjection in Geothermal Fields:A Review of Worldwide Experience. Renewable and Sustainable Energy Reviews, 15(1):47-68. https://doi.org/10.1016/j.rser.2010.07.032 |
Li, X. L., Sun, Z. X., Liu, J. H., 2010. Hydrogeochemistry. Third Edition. Atomic Press, Nanchang. 37, 153-156 (in Chinese) |
Liang, T. L., Zhang, D. Q., Tan, Q. Y., et al., 1990. Geothermal Exploration Report of Yangyi Geothermal Field. Geothermal Geological Team of Tibet, Lhasa. 208 (in Chinese) |
Liu, M. L., Guo, Q. H., Zhang, X. B., et al., 2015. Characteristic Solutes in Geothermal Water from the Rehai Hydrothermal System, Southwestern China. Journal of Earth Science, 26(1):140-148. https://doi.org/10.1007/s12583-015-0600-5 |
Lord, D. L., Shah, S. N., Rein, R. G., et al., 1994. Study of Perforation Friction Pressure Employing a Large-Scale Fracturing Flow Simulator. SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, Louisiana. 449-458. https://doi.org/10.2118/28508-MS |
Lu, G. P., Liu, R. F., 2015. Aqueous Chemistry of Typical Geothermal Springs with Deep Faults in Xinyi and Fengshun in Guangdong Province, China. Journal of Earth Science, 26(1):60-72. https://doi.org/10.1007/s12583-015-0498-y |
Opondo, K. M., 2008. The Fluid Characteristics of Three Exploration Wells Drilled at Olkaria-Domes Field, Kenya. In: Thirty Third Workshop Geothermal Reservoir Engineering, Stanford Geothermal Workshop, Stanford. 368-372 |
Parkhurst, D. L., Appelo, C. A. J., 1999. User's Guide to PHREEQC (Version 2)-A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. United States Geological Survey, Denver |
Shen, J. N., 1998. Calculation of Well Head Temperature of Geothermal Water Well. Journal of Daqing Petroleum Institute, 22(4):83-86 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_3974388 |
Sun, H. L., Ma, F., Lin, W. J., et al., 2015. Geochemical Characteristics of High Temperature Geothermal Field and Geothermometer Application in Tibet. Geological Science and Technology Information, 34(3):171-177. https://doi.org/1000-7849(2015)03-0171-07 (in Chinese with English Abstract) |
Tempel, R. N., Sturmer, D. M., Schilling, J., 2011. Geochemical Modeling of the Near-Surface Hydrothermal System beneath the Southern Moat of Long Valley Caldera, California. Geothermics, 40(2):91-101. https://doi.org/10.1016/j.geothermics.2011.03.001 |
Thomas, J. M., Welch, A. H., Preissler, A. M., 1989. Geochemical Evolution of Ground Water in Smith Creek Valley-A Hydrologically Closed Basin in Central Nevada, U.S.A. Applied Geochemistry, 4(5):493-510. https://doi.org/10.1016/0883-2927(89)90007-3 |
Wei, M. H., Tian, T. S., Sun, Y. D, et al., 2012. A Study of the Scaling Trend of Thermal Groundwater in Kangding Kangaing County of Sichuan. Hydrogeology & Engineering Geology, 39(5):132-138. https://doi.org/1000-3665(2012)05-0132-07 (in Chinese with English Abstract) |
White, R. W., Powell, R., Phillips, G. N., 2003. A Mineral Equilibria Study of the Hydrothermal Alteration in Mafic Greenschist Facies Rocks at Kalgoorlie, Western Australia. Journal of Metamorphic Geology, 21(5):455-468. https://doi.org/10.1046/j.1525-1314.2003.00454.x |
Yao, J. M., Zhou, X., Zhou, H. Y., 2006. Hydrogeochemical Simulation for Ninghebei Ordovician Limestone Wellfield in Tianjin. Geoscience, 20(3):494-499. https://doi.org/1000 -8527(2006)03-0494-06 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz200603019 |
Zhang, X. B., Hu, Q. H., 2018. Development of Geothermal Resources in China:A Review. Journal of Earth Science, 29(2):452-467. https://doi.org/10.1007/s12583-018-0838-9 |
Zhang, X. G., 1998. Sulfur Mineralization of Modern Geothermal System in Yangbajing Basin of Tibet. Geology of Chemical Minerals, 20(1):1-10 (in Chinese with English Abstract) |
Zhao, P., Jin, J., Zhang, H. Z., et al., 1998. Chemical Composition of Thermal Water in the Yangbajing Geothermal Field, Tibet. Scientia Geologica Sinca, 33(1):61-67 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800069865 |
Zhao, P., Kennedy, M., Dor, J., et al., 2001. Noble Gases Constraints on the Origin and Evolution of Geothermal Fluids from the Yangbajing Geothermal Field, Tibet. Acta Petrologica Sinica, 17(3):497-503. https://doi.org/1000-0569/2001/017(03)-0497-03 (in Chinese with English Abstract) |
Zhou, H. Y., Zhou, X., Yao, J. H., 2007. Hydrogeochemical Modeling of the Conghua Hot Spring in Guangdong. Geoscience, 21(4):619-624. https://doi.org/1000-8527(2007)04-0619-05 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz200704005 |