Amin, S. M., Weiss, D. J., Blunt, M. J., 2014. Reactive Transport Modelling of Geologic CO2 Sequestration in Saline Aquifers: The Influence of Pure CO2 and of Mixtures of CO2 with CH4 on the Sealing Capacity of Cap Rock at 37 ℃ and 100 bar. Chemical Geology, 367: 39-50. doi: 10.1016/j.chemgeo.2014.01.002 |
André, L., Audigane, P., Azaroual, M., et al., 2007. Numerical Modeling of Fluid-Rock Chemical Interactions at the Supercritical CO2-Liquid Interface during CO2 Injection into a Carbonate Reservoir, the Dogger Aquifer (Paris Basin, France). Energy Conversion and Management, 48(6): 1782-1797. doi: 10.1016/j.enconman.2007.01.006 |
Assayag, N., Matter, J., Ader, M., et al., 2009. Water-Rock Interactions during a CO2 Injection Field-Test: Implications on Host Rock Dissolution and Alteration Effects. Chemical Geology, 265(1-2): 227-235. doi: 10.1016/j.chemgeo.2009.02.007 |
Bacci, G., Korre, A., Durucan, S., 2011. An Experimental and Numerical Investigation into the Impact of Dissolution/Precipitation Mechanisms on CO2 Injectivity in the Wellbore and Far Field Regions. International Journal of Greenhouse Gas Control, 5(3): 579-588. doi: 10.1016/j.ijggc.2010.05.007 |
Bachu, S., 2000. Sequestration of CO2 in Geological Media: Criteria and Approach for Site Selection in Response to Climate Change. Energy Conversion and Management, 41(9): 953-970. doi: 10.1016/s0196-8904(99)00149-1 |
Balashov, V. N., Guthrie, G. D., Hakala, J. A., et al., 2013. Predictive Modeling of CO2 Sequestration in Deep Saline Sandstone Reservoirs: Impacts of Geochemical Kinetics. Applied Geochemistry, 30(2): 41-56. doi: 10.1016/j.apgeochem.2012.08.016 |
Bertier, P., Swennen, R., Laenen, B., et al., 2006. Experimental Identification of CO2-Water-Rock Interactions Caused by Sequestration of CO2 in Westphalian and Buntsandstein Sandstones of the Campine Basin (NE-Belgium). Journal of Geochemical Exploration, 89(1-3): 10-14. doi: 10.1016/j.gexplo.2005.11.005 |
British Petroleum (BP), 2010. BP Statistical Review of World Energy 2010. BP Plc, British |
China Shenhua Coal to Liquid Chemical Engineering Company, 2014. The Operation Report of the Shenhua 0. 1 Mt CCS Demonstration Project, Ordos (in Chinese) |
Corey, A. T., 1954. The Interrelation between Gas and Oil Relative Permeabilities. Producers Monthly, 19(1): 38-41 |
Credoz, A., Bildstein, O., Jullien, M., et al., 2009. Experimental and Modeling Study of Geochemical Reactivity between Clayey Caprocks and CO2 in Geological Storage Conditions. Energy Procedia, 1(1): 3445-3452. doi: 10.1016/j.egypro.2009.02.135 |
Eiken, O., Ringrose, P., Hermanrud, C., et al., 2011. Lessons Learned from 14 Years of CCS Operations: Sleipner, in Salah and Sn hvit. Energy Procedia, 4: 5541-5548. doi: 10.1016/j.egypro.2011.02.541 |
Gaus, I., Audigane, P., André, L., et al., 2008. Geochemical and Solute Transport Modelling for CO2 Storage, What to Expect from It?. International Journal of Greenhouse Gas Control, 2(4): 605-625. doi: 10.1016/j.ijggc.2008.02.011 |
Gaus, I., Azaroual, M., Czernichowski-Lauriol, I., 2005. Reactive Transport Modelling of the Impact of CO2 Injection on the Clayey Cap Rock at Sleipner (North Sea). Chemical Geology, 217(3-4): 319-337. doi: 10.1016/j.chemgeo.2004.12.016 |
Goddéris, Y., Williams, J. Z., Schott, J., et al., 2010. Time Evolution of the Mineralogical Composition of Mississippi Valley Loess over the Last 10 kyr: Climate and Geochemical Modeling. Geochimica et Cosmochimica Acta, 74(22): 6357-6374. doi: 10.1016/j.gca.2010.08.023 |
Goodarzi, S., Settari, A., Keith, D., 2012. Geomechanical Modeling for CO2 Storage in Nisku Aquifer in Wabamun Lake Area in Canada. International Journal of Greenhouse Gas Control, 10(10): 113-122. doi: 10.1016/j.ijggc.2012.05.020 |
Hellevang, H., Aagaard, P., Oelkers, E. H., et al., 2005. Can Dawsonite Permanently Trap CO2?. Environmental Science & Technology, 39(21): 8281-8287. doi: 10.1021/es0504791 |
Hermanrud, C., Andresen, T., Eiken, O., et al., 2009. Storage of CO2 in Saline Aquifers-Lessons Learned from 10 Years of Injection into the Utsira Formation in the Sleipner Area. Energy Procedia, 1(1): 1997-2004. doi: 10.1016/j.egypro.2009.01.260 |
Hou, G. C., Zhang, M. S., Liu, F., 2008. The Ordos Basin Groundwater Investigation Research. Geological Publishing House, Beijing (in Chinese) |
IEA, 2008. CO2 Capture and Storage: A Key Carbon Abatement Option. OECD Publishing, Paris. doi: 10.1787/9789264041417-en |
IPCC, 2005. IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group Ⅲ of the Intergovernmental Panel on Climate Change. In: Metz, B. , Davidson, O. , de Coninck, H. C. , et al. , eds. , Cambridge University Press, Cambridge. 442 |
Izgec, O., Demiral, B., Bertin, H., et al., 2008. CO2 Injection into Saline Carbonate Aquifer Formations Ⅱ: Comparison of Numerical Simulations to Experiments. Transport in Porous Media, 73(1): 57-74. doi: 10.1007/s11242-007-9160-1 |
Kampman, N., Bickle, M., Wigley, M., et al., 2014. Fluid Flow and CO2-Fluid-Mineral Interactions during CO2-Storage in Sedimentary Basins. Chemical Geology, 369(14): 22-50. doi: 10.1016/j.chemgeo.2013.11.012 |
Kharaka, Y. K., Cole, D. R., Hovorka, S. D., et al., 2006. Gas-Water-Rock Interactions in Frio Formation Following CO2 Injection: Implications for the Storage of Greenhouse Gases in Sedimentary Basins. Geology, 34(7): 577-580. doi: 10.1130/g22357a.1 |
Kharaka, Y. K., Thordsen, J. J., Hovorka, S. D., et al., 2009. Potential Environmental Issues of CO2 Storage in Deep Saline Aquifers: Geochemical Results from the Frio-I Brine Pilot Test, Texas, USA. Applied Geochemistry, 24(6): 1106-1112. doi: 10.1016/j.apgeochem.2009.02.010 |
Kihm, J. H., Kim, J. M., Wang, S., et al., 2012. Hydrogeochemical Numerical Simulation of Impacts of Mineralogical Compositions and Convective Fluid Flow on Trapping Mechanisms and Efficiency of Carbon Dioxide Injected into Deep Saline Sandstone Aquifers. Journal of Geophysical Research: Solid Earth, 117(B6): 6204. doi: 10.1029/2011jb008906 |
Li, D. S., 2004. Return to Petroleum Geology of Ordos Basin. Petroleum Exploration & Development, 31(6): 1-7 (in Chinese with English Abstract) |
Li, Q., Liu, G. Z., Liu, X. H., et al., 2013. Application of a Health, Safety, and Environmental Screening and Ranking Framework to the Shenhua CCS Project. International Journal of Greenhouse Gas Control, 17(5): 504-514. doi: 10.1016/j.ijggc.2013.06.005 |
Li, X. Q., Hou, D. J., Hu, G. Y., 2005. Formation Fluid Characteristics and Gas Accumulation of the Central Gas Field of Ordos Basin. Geological Publishing House, Beijing (in Chinese) |
Liu, H. J., Hou, Z. M., Were, P., et al., 2015. Modelling CO2-Brine-Rock Interactions in the Upper Paleozoic Formations of Ordos Basin Used for CO2 Sequestration. Environmental Earth Sciences, 73(5): 2205-2222. doi: 10.1007/s12665-014-3571-4 |
Liu, N. N., Liu, L., Ming, X. R., et al., 2014. Petrologic and Geochemical Characteristics and Carbon Sequestration Capability of the Permian Shiqianfeng Formation around Ejin Horo Banner of Ordos Basin. Acta Petrologica et Mineralogica, 33(2): 255-262 (in Chinese with English Abstract) |
Liu, N., Liu, L., Qu, X. Y., et al., 2011. Genesis of Authigene Carbonate Minerals in the Upper Cretaceous Reservoir, Honggang Anticline, Songliao Basin: A Natural Analog for Mineral Trapping of Natural CO2 Storage. Sedimentary Geology, 237(3/4): 166-178. doi: 10.1016/j.sedgeo.2011.02.012 |
Lu, J. M., Kharaka, Y. K., Thordsen, J. J., et al., 2012. CO2-Rock-Brine Interactions in Lower Tuscaloosa Formation at Cranfield CO2 Sequestration Site, Mississippi, U.S.A.. Chemical Geology, 291(1): 269-277. doi: 10.1016/j.chemgeo.2011.10.020 |
Lu, J., Kordi, M., Hovorka, S. D., et al., 2013. Reservoir Characterization and Complications for Trapping Mechanisms at Cranfield CO2 Injection Site. International Journal of Greenhouse Gas Control, 18(7): 361-374. doi: 10.1016/j.ijggc.2012.10.007 |
Lu, P., Fu, Q., Seyfried, W. E., et al., 2011. Navajo Sandstone-Brine-CO2 Interaction: Implications for Geological Carbon Sequestration. Environmental Earth Sciences, 62(1): 101-118. doi: 10.1007/s12665-010-0501-y |
Luengen, H. B., Endemann, G., Schm le, P., 2011. Measures to Reduce CO2 and Other Emissions in the Steel Industry in Germany and Europe. World Iron & Steel, 16(5): 42-50 |
Mitiku, A. B., Li, D., Bauer, S., et al., 2013. Geochemical Modelling of CO2-Water-Rock Interactions in a Potential Storage Formation of the North German Sedimentary Basin. Applied Geochemistry, 36(3): 168-186. doi: 10.1016/j.apgeochem.2013.06.008 |
Moore, J., Adams, M., Allis, R., et al., 2005. Mineralogical and Geochemical Consequences of the Long-Term Presence of CO2 in Natural Reservoirs: An Example from the Springerville-St. Johns Field, Arizona, and New Mexico, U.S.A.. Chemical Geology, 217(3/4): 365-385. doi: 10.1016/j.chemgeo.2004.12.019 |
Oelkers, E. H., Gislason, S. R., Matter, J., 2008. Mineral Carbonation of CO2. Elements, 4(5): 333-337. doi: 10.2113/gselements.4.5.333 |
Okuyama, Y., Todaka, N., Sasaki, M., et al., 2013. Reactive Transport Simulation Study of Geochemical CO2 Trapping on the Tokyo Bay Model--With Focus on the Behavior of Dawsonite. Applied Geochemistry, 30(2): 57-66. doi: 10.1016/j.apgeochem.2012.07.009 |
Olajire, A. A., 2013. A Review of Mineral Carbonation Technology in Sequestration of CO2. Journal of Petroleum Science and Engineering, 109: 364-392. doi: 10.1016/j.petrol.2013.03.013 |
Petroleum Geology Group of Oilfield, 1992. Petroleum Geology of China (Vol. 12) Changqing Oil Field. Petroleum Industry Press, Beijing. 490 (in Chinese) |
Rosenbauer, R. J., Koksalan, T., Palandri, J. L., 2005. Experimental Investigation of CO2-Brine-Rock Interactions at Elevated Temperature and Pressure: Implications for CO2 Sequestration in Deep-Saline Aquifers. Fuel Processing Technology, 86(14/15): 1581-1597. doi: 10.1016/j.fuproc.2005.01.011 |
Tambach, T. J., Koenen, M., Wasch, L. J., et al., 2015. Geochemical Evaluation of CO2 Injection and Containment in a Depleted Gas Field. International Journal of Greenhouse Gas Control, 32: 61-80. doi: 10.1016/j.ijggc.2014.10.005 |
Thomas, M. W., Stewart, M., Trotz, M., et al., 2012. Geochemical Modeling of CO2 Sequestration in Deep, Saline, Dolomitic-Limestone Aquifers: Critical Evaluation of Thermodynamic Sub-Models. Chemical Geology, 306/307: 29-39. doi: 10.1016/j.chemgeo.2012.02.019 |
Trémosa, J., Castillo, C., Vong, C. Q., et al., 2014. Long-Term Assessment of Geochemical Reactivity of CO2 Storage in Highly Saline Aquifers: Application to Ketzin, In Salah and Sn hvit Storage Sites. International Journal of Greenhouse Gas Control, 20: 2-26. doi: 10.1016/j.ijggc.2013.10.022 |
van Genuchten, M. T. V., 1980. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x |
Wang, H. Y. , 2012. Study on the Interaction of CO2 Fluid with Sandstone in Shiqianfeng: [Dissertation]. Jilin University, Changchun (in Chinese with English Abstract) |
Wang, L., Shen, Z. L., Hu, L. S., et al., 2014. Modeling and Measurement of CO2 Solubility in Salty Aqueous Solutions and Application in the Erdos Basin. Fluid Phase Equilibria, 377: 45-55. doi: 10.1016/j.fluid.2014.06.016 |
Wang, Y. S. , 2014. The Research Report of the Shenhua 0. 1 Mt CCS Demonstration Project. China Shenhua Coal Liquefaction Co. , Ltd. , Ordos. Unpulished Results (in Chinese) |
Wang, Y., Crandall, D., Bruner, K., et al., 2013. Core and Pore Scale Characterization of Liujiagou Outcrop Sandstone, Ordos Basin, China for CO2 Aquifer Storage. Energy Procedia, 37: 5055-5062. doi: 10.1016/j.egypro.2013.06.419 |
Watson, M. N., Zwingmann, N., Lemon, N. M., 2004. The Ladbroke Grove-Katnook Carbon Dioxide Natural Laboratory: A Recent CO2 Accumulation in a Lithic Sandstone Reservoir. Energy, 29(9/10): 1457-1466. doi: 10.1016/j.energy.2004.03.079 |
White, S. P., Allis, R. G., Moore, J., et al., 2005. Simulation of Reactive Transport of Injected CO2 on the Colorado Plateau, Utah, U.S.A.. Chemical Geology, 217(3/4): 387-405. doi: 10.1016/j.chemgeo.2004.12.020 |
Whittaker, S., Rostron, B., Hawkes, C., et al., 2011. A Decade of CO2 Injection into Depleting Oil Fields: Monitoring and Research Activities of the IEA GHG Weyburn-Midale CO2 Monitoring and Storage Project. Energy Procedia, 4: 6069-6076. doi: 10.1016/j.egypro.2011.02.612 |
Wigand, M., Carey, J. W., Sch¨¹tt, H., et al., 2008. Geochemical Effects of CO2 Sequestration in Sandstones under Simulated In-Situ Conditions of Deep Saline Aquifers. Applied Geochemistry, 23(9): 2735-2745. doi: 10.1016/j.apgeochem.2008.06.006 |
Wolery, T. J. , 1992. Software Package for Geochemical Modeling of Aqueous System: Package Overview and Installation Guide (Version 8. 0). Lawrence Livermore National Laboratory Report UCRL-MA-110662 PT I, Livermore, California, U. S. A. |
Wu, X. Z., 2013. Carbon Dioxide Capture and Geological Storage: The First Massive Exploration in China. Science Press, Beijing (in Chinese) |
Xie, H. P., Li, X. C., Fang, Z. M., et al., 2014. Carbon Geological Utilization and Storage in China: Current Status and Perspectives. Acta Geotechnica, 9(1): 7-27. doi: 10.1007/s11440013-0277-9 |
Xu, T. F., Apps, J. A., Pruess, K., 2004. Numerical Simulation of CO2 Disposal by Mineral Trapping in Deep Aquifers. Applied Geochemistry, 19(6): 917-936. doi: 10.1016/j.apgeochem.2003.11.003 |
Xu, T. F., Kharaka, Y. K., Doughty, C., et al., 2010. Reactive Transport Modeling to Study Changes in Water Chemistry Induced by CO2 Injection at the Frio-I Brine Pilot. Chemical Geology, 271(3/4): 153-164. doi: 10.1016/j.chemgeo.2010.01.006 |
Xu, T. F., Apps, J. A., Pruess, K., 2005. Mineral Sequestration of Carbon Dioxide in a Sandstone-Shale System. Chemical Geology, 217(3/4): 295-318. doi: 10.1016/j.chemgeo.2004.12.015 |
Xu, T. F., Sonnenthal, E., Spycher, N., et al., 2006. TOUGHREACT—A Simulation Program for Non-Isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media: Applications to Geothermal Injectivity and CO2 Geological Sequestration. Computers & Geosciences, 32(2): 145-165. doi: 10.1016/j.cageo.2005.06.014 |
Xu, T. F. , Spycher, N. , Sonnenthal, E. , et al. , 2012. TOUGHREACT User¡¯s Guide: A Simulation Program for Non-Isothermal Multiphase Reactive Transport in Variably Saturated Geologic Media, Version 2. 0. Earth Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 |
Yang, G. D. , Li, Y. L. , Cheng, P. , et al. , 2011. Assessment of CO2 Geological Storage Potential of Some Sedimentary Basins in China (Poster). 2011 GCEP Research Symposium: Addressing the Changing Energy Landscape. Stanford University, Stanford |
Yang, G. D., Li, Y. L., Ma, X., et al., 2014. Effect of Chlorite on CO2-Water-Rock Interaction. Earth Science--Journal of China University of Geosciences, 39(4): 462-472. doi:10.3799/dqkx.2014.044 (in Chinese with English Abstract) |
Zhang, S., DePaolo, D. J., Xu, T. F., et al., 2013. Mineralization of Carbon Dioxide Sequestered in Volcanogenic Sandstone Reservoir Rocks. International Journal of Greenhouse Gas Control, 18: 315-328. doi: 10.1016/j.ijggc.2013.08.001 |
Zhang, W., Li, Y. L., Xu, T. F., et al., 2009. Long-Term Variations of CO2 Trapped in Different Mechanisms in Deep Saline Formations: A Case Study of the Songliao Basin, China. International Journal of Greenhouse Gas Control, 3(2): 161-180. doi: 10.1016/j.ijggc.2008.07.007 |
Zhao, R. R., Cheng, J. M., 2016. Using Hydraulic Barrier Control CO2 Plume Migration in Sloping Reservoir. Earth Science--Journal of China University of Geosciences, 41(4): 675-682 (in Chinese with English Abstract) doi: 10.3799/dqkx.2016.056 |
Zhu, H. T., Liu, K. Y., Yang, X. H., et al., 2013. Sedimentary Controls on the Sequence Stratigraphic Architecture in Intra-Cratonic Basins: An Example from the Lower Permian Shanxi Formation, Ordos Basin, Northern China. Marine and Petroleum Geology, 45: 42-54. doi: 10.1016/j.marpetgeo.2013.04.0 |