Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 28 Issue 2
Apr 2017
Turn off MathJax
Article Contents
Xiao Wang, Jian Gao, Sheng He, Zhiliang He, Yan Zhou, Ze Tao, Jiankun Zhang, Yi Wang. Fluid Inclusion and Geochemistry Studies of Calcite Veins in Shizhu Synclinorium, Central China: Record of Origin of Fluids and Diagenetic Conditions. Journal of Earth Science, 2017, 28(2): 315-332. doi: 10.1007/s12583-016-0921-7
Citation: Xiao Wang, Jian Gao, Sheng He, Zhiliang He, Yan Zhou, Ze Tao, Jiankun Zhang, Yi Wang. Fluid Inclusion and Geochemistry Studies of Calcite Veins in Shizhu Synclinorium, Central China: Record of Origin of Fluids and Diagenetic Conditions. Journal of Earth Science, 2017, 28(2): 315-332. doi: 10.1007/s12583-016-0921-7

Fluid Inclusion and Geochemistry Studies of Calcite Veins in Shizhu Synclinorium, Central China: Record of Origin of Fluids and Diagenetic Conditions

doi: 10.1007/s12583-016-0921-7
More Information
  • Calcite veins in carbonate fracture have been investigated by petrographic, fluid inclusion, geochemical analyses and coupled with basin modeling techniques to provide useful insights into fluid activity and deformation conditions of the Cambrian to Triassic Shizhu synclinorium from the western region of Mid-Yangtze, central China. The results of the fluid inclusion microthermometry show a wide range of homogenization temperatures (78.6-215.5 ℃) and salinities (0.18-23.11 wt.% NaCl equivalent), indicating the formation under diverse fluid conditions. All the calcite veins have negative Ce anomalies, which are the typical characteristic of marine carbonate sediments; it is therefore plausible that calcite veins were precipitated from the marine basin fluid. The stable carbon isotopic compositions of calcites (δ13C V-PDB=-2.5‰-4.26‰) and host limestones (δ13C V-PDB=-3.56‰-5.80 ‰) are very similar with a correlation coefficient of 0.86, however, four calcites from the Lower Permian and Lower Triassic show lower δ13C values relative to the host limestones, and they are depleted in total REE concentrations (∑REE ratio varies from 0.74 to 2.06), suggesting the derivation of dissolved carbon from marine carbonates hosting the calcite veins and, less commonly, from the degradation of organic matter. Calculated δ18O of the fluids-precipitating calcites (δ18O V-SMOW=-0.41‰-14.42‰), 87Sr/ 86Sr ratios varying in the range of coeval seawater and the distinct REE pattern simultaneously suggest calcite-forming fluids in each stratigraphic unit could have formed from the involvement of fluids that originated from coeval seawater and evolved through different degrees of water rock interaction. However, the presence of more radiogenic 87Sr/ 86Sr ratios than coeval seawater and pronounced positive Eu anomalies in calcites of Lower to Middle Ordovician rocks indicate that terrestrial input from upper strata mudstone and siliciclastic rocks could be involved in the precipitation of the Ordovician calcite. Fluid-inclusion data combined with burial and thermal history modeling indicate there was large-scale flow of evolved basinal fluids through the carbonate formation fractures spanning a time frame from 135 to 50 Ma (Early Cretaceous-Eocene). Therefore, the geochemical characteristics of calcite veins can provide the basis for deformation events in Late Yanshanian and Early Himalayan orogeny.

     

  • loading
  • Abdalla, Y. M., Michael, J. P., William, A. A., et al., 1999. Modeling Petroleum Generation in the Southern Muglad Rift Basin, Sudan. AAPG Bulletin, 83 (12): 1943-1964 https://www.researchgate.net/publication/242464730_Modeling_Petroleum_Generation_in_the_Southern_Muglad_Rift_Basin_Sudan_1
    Agosta, F., Kirschner, D. L., 2003, Fluid Conduits in Carbonate-Hosted Seismogenic Normal Faults of Central Italy. Journal of Geophysical Research, 108(B4): 2221-2233. doi: 10.1029/2002jb002013
    Al-Aasm, I., Veizer, J., 1986. Diagenetic Stabilization of Aragonite and Low-Mg Calcite-2: Stable Isotopes in Rudists. Journal of Sedimentary Research, 56(6): 763-770. doi: 10.2110/jsr.56.763
    Barker, S. L. L., Cox, S. F., Egginns, S. M., et al., 2006. Microchemical Evidence for Episodic Growth of Antitaxial Veins during Fracture-Controlled Fluid Flow. Earth and Planetary Science Letters, 250(1-2): 331-344. doi: 10.1016/j.epsl.2006.07.051
    Barker, Ch. E., Goldstein, R. H., 1990. Fluid-Inclusion Technique for Determining Maximum Temperature in Calcite and Its Comparison to the Vitrinite Reflectance Geothermometer. Geology, 18(10): 1003-1006. doi:10.1130/0091-7613(1990)018<1003:fitfdm>2.3.co;2
    Bau, M., 1991. Rare Earth Element Mobility during Hydrothermal and Metamorphic Fluid-Rock Interaction and Significance of the Oxidation State of Europium. Chemical Geology, 93(3-4): 219-230. doi: 10.1016/0009-2541(91)90115-8
    Bau, M., Alexander, B., 2006. Preservation of Primary REE Patterns without Ce Anomaly during Dolomitization of Mid-Paleoproterozoic Limestone and the Potential Reestablishment of Marine Anoxia Immediately After the "Great Oxidation Event". South African Journal of Geology, 109(1-2): 81-86. doi: 10.2113/gssajg.109.1-2.81
    Bau, M., Moller, P., 1992. Rare Earth Element Fractionation in Metamorphogenic Hydrothermal Calcite, Magnesite and Siderite. Mineralogy and Petrology, 45: 231-246. doi: 10.1007/bf01163114
    Bebout, G. E., Anastasio, D. J., Holl, J. E., 2001. Synorogenic Crustal Fluid Infiltration in the Idaho-Montana Thrust Belt. Geophysical Research Letters, 28(22): 4295-4298. doi: 10.1029/2001gl013711
    Bethke, C., Marshak, S., 1990. Brine Migrations Across North America-The Plate Tectonics of Groundwater. Annual Reviews in Earth and Planetary Sciences, 18(1): 287-315. doi: 10.1146/annurev.ea.18.050190.001443
    Bodnar, R. J., 1993. Revised Equation and Table for Determining the Freezing Point Depression of H 2O-NaCl Solution: Geochimica et Cosmochimica Acta, 57(3): 683-684. doi: 10.1016/0016-7037(93)90378-a
    Burrus, R. C., Cercone, K. R., Harris, P. M., 1985. Timing of Hydrocarbon Migration: Evidence from Fluid Inclusions in Calcite Cements, Tectonics and Burial History, In: Schneidermann, N., Harris, P.M. eds., Carbonate Cements. Soc. Econ. Paleont. Mineral., Spec. Publ, 36: 277-289. doi: 10.2110/pec.85.36.0277
    Burruss, R. C., 1991. Practical Aspects of Fluorescence Microscopy of Petroleum Fluid Inclusions, In: Barker, C.E., Kopp, O.C. eds., Luminescence Microscopy and Spectroscopy: Qualitative and Quantitative Applications. SEPM Short Course, 25: 1-7.
    Cai, C. F., Li, K. K., Li H. T., et al., 2008. Evidence for Cross Formational Hot Brine Flow from Integrated 87Sr/ 86Sr, REE and Fluid Inclusions of the Ordovician Veins in Central Tarim, China. Appl. Geochem. 23(8): 2226-2235. doi: 10.1016/j.apgeochem.2008.03.009
    Clayton, C. J., 1994. Microbial and Organic Processes, In: Parker, A., Sellwood, B.W., eds., Quantatative Diagenesis: Recent Developments an Applications to Reservoir Geology. NATO ASI Series, 453: 125-160. doi: 10.1007/978-94-011-0189-9_4
    Conti, A., Turpin, L., Polino, R., et al., 2001. The Relationship between Evolution of Fluid Chemistry and the Style of Brittle Deformation: Examples from the Northern Apennines (Italy). Tectonophysics, 330(1-2): 103-117. doi: 10.1016/s0040-1951(00)00224-9
    Coplen, T. B., C, Kendall., J, Hopple., 1983. Comparison of Stable Isotope reference Samples. Nature, 302(5905): 236-238. doi: 10.1038/302236a0
    Denison, R. E., Koepnick, R. B., Burke, W. H., et al., 1998. Construction of the Cambrian and Ordovician Seawater 87Sr/ 86Sr Curve. Chemical Geology, 152(3-4): 325-340. doi: 10.1016/s0009-2541(98)00119-3
    Evans, M. A., Battles, D. A., 1999. Fluid Inclusion and Stable Isotope Analyses of Veins from the Central Appalachian Valley and Ridge Province: Implications for Regional Synorogenic Hydrologic Structure and Fluid Migration. Geological Society of America Bulletin, 111(12): 1841-1860. doi:10.1130/0016-7606(1999)111<1841:fiasia>2.3.co;2
    Eichhubl, P., Boles, J. R., 2000. Focused Fluid Flow along Faults in the Monterey Formation, Coastal California. Geological Society of America Bulletin, 112(11): 1667-1679. doi:10.1130/0016-7606(2000)112 <1667:fffafi>2.0.co;2
    Evans, M. A., 1994. Joints and Decollement Zones in the Middle Devonian Shales: Evidence for Multiple Deformation Events in the Central Appalachian Plateau. Geological Society of America Bulletin, 106(4): 447-460. doi:10.1130/0016-7606(1994)106<0447:jadczi>2.3.co;2
    Evans, M., 1995. Fluid Inclusions in Veins from the Middle Devonian Shales: A Record of Deformation Conditions and Fluid Evolution in the Appalachian Plateau. Geological Society of America Bulletin, 107:327-339. doi: 10.1130/0016-7606(1995)107<0327:FIIVFT>2.3.CO;2
    Falvey, D. A., Middleton, M. F., 1981. Passive Continental Margins: Evidence for a Prebreakup Deep Crustal Metamorphic Subsidence Mechanism. Oceanologica Acta, 4(Suppl.): 103-114
    Foreman, J. L., Dunne, W. M., 1991. Conditions of Vein Formation in the Southern Appalachian Foreland: Constraints from Vein Geometries and Fluid Inclusions. Journal of Structural Geology, 13(10): 1173-1183. doi: 10.1016/0191-8141(91)90076-u
    Gao, J., He, S., He, Z. L., et al., 2014. Genesis of Calcite Vein and Its Implication to Petroleum Preservation in Jingshan Region, Mid-Yangtze. Oil & Gas Geology, 35(1): 33-41. https://www.researchgate.net/publication/287579441_Genesis_of_calcite_vein_and_its_implication_to_petroleum_preservation_in_Jingshan_region_Mid-Yangtze
    Garven, A., 1989. Hydrogeologic Model of the Formation of the Giant Oil Sands Deposits of the Western Canada Sedimentary Basin. Economic Geology, 289(2): 105-166. doi: 10.2475/ajs.289.2.105
    Gayer, R., Garven, G., Rickard, D., 1998. Fluid Migration and Coalrank Development in Foreland Basin. Geology, 26(8): 679-682. doi:10.1130/0091-7613(1998)026<0679:fmacrd>2.3.co;2
    Goldstein, R. H., Reynolds, T. J., 1994. Systematics of Fluid Inclusions in Diagenetic Minerals: SEPM (Society for Sedimentary Geology) Short Course, 31: 199
    Guo, Z., Deng, K., Han, Y., 1996. Formation and Evolution of the Sichuan Basin. Geological Publishing House (in Chinese), Beijng. Grover, G., Read, J.F., 1983. Paleoaquifer and Deep Burial Related Cements Defined by Regional Cathodoluminescent Pattern, Middle Ordovician Carbonates, Virginia. American Association of Petroleum Geologists Bulletin, 67: 1275-1303
    Guilhaumou, N., Touray, J. C., Perthuisot, V., 1996. Paleocirculation in the Basin of Southeastern France Subalpine Range: A Synthesis from Fluid Inclusion Studies. Marine Petroleum Geology, 13(6): 695-706. doi: 10.1016/0264-8172(95)00064-x
    Hanor, J. S., Sassen, R., 1990. Evidence for Large-Scale Vertical and Lateral Migration of Formation Waters, Dissolved Salt, and Crude Oil in the Louisiana Gulf Coast. In: Schumacher, D. Perkins, B. F., eds., Gull Coast Oil and Gases: Their Characteristics, Origin, Distribution, and Exploration and Production Significance. Proc. 9th Annu. Res. Conf. Gulf Coast Sect. Soc, Econ. Paleo, Min. Foundation. 293-296
    He, S., Gao, J., Zhang, J. K., 2014. The Comparative Study of Fluid Storage Unit in the Western Middle-Yangtze Plate. Research Report, China University of Geosciences
    He, Z. L., Wang, X. W., Li, S. J., et al., 2011. Yanshan Movement and Its Influence on Petroleum Preservation in Middle-Upper Yangtze Region. Petroleum Geology & Experiment, 33 (1): 1-11.
    Hickman, S., R, Sibson., R, Bruhn. eds., 1995. Mechanical Involvement of Fluids in Faulting. Journal of Geophysical Research, 12: 831-838. doi: 10.1029/95jb01121
    Hudson, J. D., 1977. Stable Isotopes and Limestone Lithifications. Journal of the Geological Society (London), 133(6): 637-660. doi: 10.1144/gsjgs.133.6.0637
    Irwin, H., Curtis, C. D., Colman, M., 1977. Isotopic Evidence for Source of Digenetic Carbonates Formed during Burial of Organic Rich Sediments. Nature, 269(5626): 209-213. doi: 10.1038/269209a0
    Jarvis, G. T., Mckenzie, D. P., 1980. Sedimentary Basin Formation with Finite Extension Rates. Earth Planetary Science Letters 48(1): 42-52. doi: 10.1016/0012-821x(80)90168-5
    Katz, D. A., Eberli, G. P., Swart, P. K., et al., 2006. Tectonic-Hydrothermal Brecciation Associated with Calcite Precipitation and Permeability Destruction in Mississippian Carbonate Reservoirs, Montana and Wyoming. American Association of Petroleum Geologists Bulletin, 90(11): 1803-1841. doi: 10.1306/03200605072
    Kerrich, R., La Tour, T. E., Willmore, L., 1984. Fluid Participation in Deep Fault Zones: Evidence from Geological, Geochemical, and 18O/ 16O Relations. Journal of Geophysical Research, 89(B6): 4331-4343. doi: 10.1029/jb089ib06p04331
    Kerrich, R., 1986. Fluid Infiltration into Fault Zones: Chemical, Isotopic, and Mechanical Effects. Pure and Applied Geophysics, 124(1-2): 226-268. doi: 10.1007/bf00875727
    Kerrich, R., Hyndman, D., 1986. Thermal and Fluid Regimes in the Bitterrot Lobe-Sapphire Block Detachment Zone, Montana: Evidence from 18O/ 16O and Geologic Relations. Geological Society of America Bulletin, 97(2): 147-155. doi:10.1130/0016-7606(1986)97<147:tafrit>2.0.co;2
    Kyser, T. K., Kerrich, R., 1990. Geochemistry of Fluids in Tectonically Active Crustal Regions. In: Nesbitt, B.E. ed., Short Course on Fluids in Tectonically Active Regimes of the Continental Crust. Mineral. Assoc. Canada Short Course Handbook, 18: 133-230
    Lawler, J. P., Crawford, M. L., 1983. Stretching of Fluid Inclusions Resulting from a Low-Temperature Microthermometric Technique. Economic Geology, 78(3): 527-529. doi: 10.2113/gsecongeo.78.3.527
    Lee, S. G., Lee, D. H., Kim, Y., et al., 2003. Rare Earth Elements as Indicators of Graoundwater Environmemnt Changes in a Fractured Rock System: Evidence from Fracture-Filling Calcite. Applied Geochemistry, 18(1): 135-143. doi: 10.1016/s0883-2927(02)00071-9
    Li, K. K., Cai, C. F., Jiang, L., et al., 2012. Sr Evolution in the Upper Permian and Lower Triassic Carbonates, Northeast Sichuan Basin, China: Constraints from Chemistry, Isotope and Fluid Inclusions. Applied Geochemistry, 27(12): 2409-2424. doi: 10.1016/j.apgeochem.2012.07.013
    Li, Q., Jiang, S. Y., 2016. Trace and Rare Earth Element Characteristics in Fe-Mn Carbonates Associated with Stratiform Ag-Pb-Zn Mineralization from the Lengshuikeng Ore District, Jiangxi Province: Implications for Their Genesis and Depositional Environment. Journal of Earth Science, 27(4): 571-583. doi: 10.1007/s12583-016-0908-9
    Liu, Y. S., Zong, K. Q., Kelemen, P. B., et al., 2008. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1-2): 133-153. doi: 10.1016/j.chemgeo.2007.10.016
    Li, R. X., Dong, S. W., Lehrmann, D., et al., 2013. Tectonically Driven Organic Fluid Migration in the Dabashan Foreland Belt: Evidenced by Geochemistry and Geothermometry of Vein-Filling Fibrous Calcite with Organic Inclusions. Journal of Asian Earth Sciences, 75: 202-212. doi: 10.1016/j.jseaes.2013.07.026
    Lu, Q. Z., Ma, Y. S., Guo, T. L., et al., 2007. Thermal History and Hydrocarbon Generation History in Western Hubei-Eastern Chongqing Area. Chinese Journal of Geology, 42(1): 189-198 https://www.researchgate.net/publication/280858800_Thermal_history_and_hydrocarbon_generation_history_in_Western_Hubei-eastern_Chongqing_Area
    Machel, H. G., 2001. Bacterial and Thermochemical Sulfate Reduction in Diagenetic Settings Old and New Insights. Sedimentary Geology, 140(1-2): 143-175. doi: 10.1016/s0037-0738(00)00176-7
    Meunier, J. D., 1989. Assessment of Low-Temperaturefluid Inclusions in Calcite Using Microthermometry. Economic Geology, 84(1): 167-170. doi: 10.2113/gsecongeo.84.1.167
    Meyers, W. J., 1974. Carbonate Cement Stratigraphy of the Lake Valley Formation (Mississippian) Sacramento Mountains, New Mexico. Journal of Sedimentary Petrology, 44: 837-861. doi: 10.1306/212f6bc2-2b24-11d7-8648000102c1865d
    Mei, L. F., Liu, Z. Q, Tang, J. G., et al., 2010. Mesozoic Intra-Continental Progressive Deformation in Western Hunan-Hubei-Eastern Sichuan Provinces of China: Evidence from Apatite Fission Track and Balanced Cross-Section. Earth Science—Journal of China University of Geosciences, 35(2): 161-174 doi: 10.3799/dqkx.2010.017
    McArthur, J. M., 1994. Recent-Trends in Strontium Isotope Stratigraphy. Terra Nova, 6: 331-358. doi: 10.1111/j.1365-3121.1994.tb00507.x
    Morad, S., Al-Aasm, I. S., Sirat, M., et al., 2010. Vein Calcite in Cretaceous Carbonate Reservoirs of Abu Dhabi: Record of Origin of Fluids and Diagenetic Conditions. Journal of Geochemical Exploration, 106(1): 156-170. doi: 10.1016/j.gexplo.2010.03.002
    Muchez, Ph., Slobodnik, M., Viaene, W. A., et al., 1995. Geochemical Constraints on the Origin of Paleofluids at the Northern Margin of the Variscan Foreland, Southern Belgium. Sedimentary Geology, 96(3-4): 191-200. doi: 10.1016/0037-0738(94)00118-e
    Oliver, J., 1986. Fluids Expelled Tectonically from Orogenic Belts: Their Role in Hydrocarbon Migration and other Geologic Phenomena. Geology, 14(2): 99-102. doi:10.1130/0091-7613(1986)14<99:fetfob>2.0.co;2
    O'Neil, J. R., Clayton, R. N., Mayeda, T. K., 1969. Oxygen Isotope Fractionation in Divalent Metal Carbonates. The Journal of Chemical Physics, 51(12): 5547-5558 doi: 10.1063/1.1671982
    Pagel, M., Braun, J. J., Disnar, J. R., et al., 1997. Thermal History Constraints from Studies of Organic Matter, Clay Minerals, Fluid Inclusions, and Apatite Fission Tracks at the Ardeche Paleo-Margin (BA1 Drill hole, GPF Program), France. Journal of Sedimentary Research, 67: 235-245. doi: 10.1306/d4268540-2b26-11d7-8648000102c1865d
    Parnell, J., Honghan, C., Middleton, D., et al., 2000. Significance of Fibrous Mineral Veins in Hydrocarbon Migration: Fluid Inclusion Studies. Journal of Geochemical Exploration, 69-70: 623-627. doi: 10.1016/s0375-6742(00)00040-6
    Prezbindowski, D. R., Larese, R. E., 1987. Experimental Stretching of Fluid Inclusions in Calcite-Implications for Diagenetic Studies. Geology, 15(4): 333-336. doi:10.1130/0091-7613(1987)15<333:esofii>2.0.co;2
    Sample, J. C., Reid, M. R., 1998. Contrasting Hydrogeologic Regimes along Strike-Slip and Thrust Faults in the Oregon Convergent Margin: Evidence from the Chemistry of Syntectonic Carbonate Cements and Veins. Geological Society of America Bulletin, 110(1): 48-59. doi:10.1130/0016-7606(1998)110<0048:chrass>2.3.co;2
    Slobodinik, M., Muchez, P., Kral, J., et al., 2006. Variscan Veins: Record of Fluid Corculation and Variscan Tectonothermal Events in Upper Palaeozoic Limestones of the Moravian Karst, Czech Republic. Geological Magazine, 143(4): 491-508. doi: 10.1017/s0016756806001981
    Sheppard, S. M. F., 1986. Characterization and Isotopic Variations in Natural Waters. In: Stable Isotopes in High Temperature Geochemical Processes. Reviews in Mineralogy, 16: 165-183 doi: 10.1007%2FBF00310608
    Shi, H. C., Shi, X. B., Yang, X. Q., et al., 2012. Exhumation Process of the Fangdoushan-Shizhu Fold Belt in Meso-Neozoic and Its Tectonic Significance in Western Hubei-Eastern Chongqing. Progress in Geophysics, 26(6): 1993-2002 http://manu39.magtech.com.cn/Geoprog/EN/abstract/abstract8335.shtml
    Shi, H., Huang, S. J., Shen, L. C., 2002. Stratigraphical Significance of the Strontium Isotopic Curve of the Upper Paleozoic of Sichuan and Guizhou. Journal of Stratigraphy, 26 (2): 106-110
    Shields, G. A., Carden, G. A., Veizer, J., et al., 2003. Sr, C, and O Isotope Geochemistry of Ordovician Brachiopods: A Major Isotopic Event around the Middle-Late Ordovician Transition. Geochimica et Cosmochimica Acta, 67(11): 2005-2025. doi: 10.1016/s0016-7037(02)01116-x
    Sorkhabi, R. B., 2005. Geochemical Signatures of Fluid Flow in Thrust Sheets: Fluid-Inclusion and Stable Isotope Studies of Calcite Veins in Western Wyoming. Sorkhabi, R. B., Tsuji Y eds., Faults, Fluid Flow, and Petroleum Traps. American Association of Petroleum Geologists Memoir, 85: 251-267
    Suchy, V., Heijlen, W., Sykorova, I., 2000. Geochemical Study of Calcite Veins in the Silurian and Devonian of the Barrandian Basin (Czech Republic): Evidence for Widespread Post-Variscan Fluid Flow in the Central Part of the Bohemian Massif. Sedimentary Geology, 131 (3): 201-219 https://www.researchgate.net/publication/248232501_Geochemical_study_of_calcite_veins_in_the_Silurian_and_Devonian_of_the_Barrandian_Basin_Czech_Republic_Evidence_for_widespread_post-Variscan_fluid_flow_in_the_central_part_of_the_Bohemian_Massif
    Sverjensky, D. A., 1984. Europium Redox Equilibria in Aqueous-Solution. Earth and Planetary Science Letters, 67(1): 70-78. doi: 10.1016/0012-821x(84)90039-6
    Sianisyan, E. S., Volkov, V. N., 1996. Catagenesis of Deeply Buried Subsurface Waters According to the Data of Fluid Inclusion Research. Litologia i Poleznye Iskopaemye, 3: 235-240 (in Russian)
    Ulrich, M. R., Bodnar, R. J., 1988. Systematics of Stretching of Fluid Inclusions; II, Barite at 1 atm Confining Pressure. Economic Geology, 83(5): 1037-1046 doi: 10.2113/gsecongeo.83.5.1037
    Uysal, T., Zhao, J. X., Golding, S., et al., 2007. Sm-Nd Dating and Rare-Earth Element Tracing of Calcite: Implications for Fluid Flow Events in the Bowen Basin, Australia. Chemical Geology, 238(1-2): 63-71. doi: 10.1016/j.chemgeo.2006.10.014
    Vrolijk, P., 1987. Tectonically Driven Fluid Flow in the Kodiak Accretionary Complex, Alaska. Geology, 15(5): 466-469. doi:10.1130/0091-7613(1987)15<466:tdffit>2.0.co;2
    Wang, D. Y., 2000. Stable Isotope Geochemistry of Oil and Gas (in Chinese). Petroleum Industry Press, Beijing. 275
    Wang, F. R., He, S., Yang, X.Y., 2012. Indication of Calcite Vein Characteristics on Petroleum Preservation in the Chenhutuditang Synclinorium, Middle Yangtze Region, Southern China. Journal of Mineralogy and Petrology, 32: 94-100 https://www.researchgate.net/publication/289256905_Indication_of_calcite_vein_characteristics_on_petroleum_preservation_in_the_chenhutuditang_syclinoriummiddle_yangtze_region_Southern_China
    Wang, G. Z., Xu, G. S., Yuan, H. F., et al., 2011. Research on Paleo-Fluid Sources and Hydrocarbon Preservation Conditions in Marine Carbonates in the Central Yangtze, China. Petroleum Science, 8(3): 239-250. doi: 10.1007/s12182-011-0141-1
    Wang, J. S., Wen, H. J., Shi, S. H., 2010. Characteristics and Implications of REE, Carbon and Oxygen Isotopes of Hydrothermal Calcite from the Mercury Metallogenic Belt in Hunan and Guizhou Provinces, China. Acta Mineralogica Sinica, 8(3): 239-250.
    Wang, H., Wu, Y. B., Qin, Z. W., et al., 2013. Age and Geochemistry of Silurian Gabbroic Rocks in the Tongbai Orogen, Central China: Implications for the Geodynamic Evolution of the North Qinling Arc-Back-Arc System. Lithos, 179: 1-15. doi: 10.1016/j.lithos.2013.07.021
    Wang, W., 2009. Study on the Fluids Characteristics of the Marine Strata in the Middle Yangtze Region and It's Connection with Hydrocarbon Preservation. [Dissertation], Chengdu University of Technology, Chengdu. (In Chinese with English Abstract)
    Webb, G. E., Kamber, B. S., 2000. Rare Earth Elements in Holocene Reefal Microbialites: A New Shallow Seawater Proxy. Geochimica et Cosmochimica Acta, 64(9): 1557-1565. doi: 10.1016/s0016-7037(99)00400-7
    Winter B. L., Johnson C. M., Clark D. L., 1997. Strontium, Neodymium, Andlead Isotope Variations of Authigenic and Silicate Sediment Components from the Late Cenozoic Arctic Ocean: Implications for Sediment Provenance and the Source of Trace Metals in Seawater. Geochim Cosmochim Acta, 61(19): 4181-4200. doi: 10.1016/s0016-7037(97)00215-9
    Xiong, S. F., Yao, S. Z., Gong, Y. J., et al., 2016. Ore Forming Fluid and Thermochemical Sulfate Reduction in the Wusihe Lead Zinc Deposit, Sichuan Province, China. Earth Science, 41(1): 105-120
    Xu, Z. Y., Li, D. C., Lu, W. Z., et al., 2004. Pattern Analysis and Genetic Interpretation about the Geotectonics of Yudong (East Chongqing). Geotectonica et Metallogenia, 28: 15-22
    Yang, X. Y., He, S., He Z. L., et al., 2013. Characteristics and Pale-Fluid Activity Implications of Fluid-Inclusion and Isotope of Calcite Veins in Jingshan, Northern Mid-Yangtze. Journal of China University of Petroleum (Edition of Natural Sciences), 37(1): 19-26
    Yang, J., 2011. Research on Fliud Migration and Transformation of Dolomitereservoirs in Shizhu Synclinore Zone. Master's Thesis, Chengdu University of Technology
    Yuan, Y. S., Ma, Y. S., Hu, S. B., et al., 2006. Present-Day Geothermal Characteristics in South China. Chinese Journal of Geophysics, 49(4): 1118-1126. doi: 10.1002/cjg2.922
    Zhang, J. K., 2014. Thermal Evolution and Reformation Model of the Wufeng-Longmaxi Shales in the West of Middle Yangtze and Its Adjacent Regions: [Dissertation], China University of Geosciences, Wuhan.
    Zhang, J. K., He, S., Yi, J. Z., et al., 2014. Rock Thermo-Acoustic Emission and Basin Modeling Technologies Applied to the Study of Maximum Paleotemperatures and Thermal Maturity Histories of the Lower Paleozoic Marine Shales in the West of Middle Yangtze Area. Acta petrolei Sinica, 35 (1): 58-67 doi: 10.1038/aps.2013.122
    Zhao, Z. J., Yu, G., Zhu, Y., et al., 2003. Tectonic Evolution and Its Control over Hydrocarbon in Southern China. Journal of Chengdu University of Technology (Science & Technology Edition), 30(2): 155-168
    Zheng, Y. F., Chen, J. F., 2000. Geochemistry of Stable Isotope. Beijing: Science Press, 175-17. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views(879) PDF downloads(272) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return