China Geological Survey, 2012. Handbook of Hydrogeology (2nd Version). Geological Publishing House, Beijing |
Choe, S., Chang, Y. Y., Hwang, K. Y., et al., 2000. Kinetics of Reductive Denitrification by Nanoscale Zero-Valent Iron. Chemosphere, 41(8): 1307–1311. doi: 10.1016/s0045-6535(99)00506-8 |
Choe, S., Liljestrand, H. M., Khim, J., 2004. Nitrate Reduction by Zero-Valent Iron under Different pH Regimes. Applied Geochemistry, 19(3): 335–342. doi: 10.1016/j.apgeochem.2003.08.001 |
Clement, T. P. , 1997. A Modular Computer Code for Simulating Reactive Multi-Species Transport in 3-Dimensional Groundwater Aquifers. Pacific Northwest National Laboratory, Washington |
Cohen, E. L., Patterson, B. M., McKinley, A. J., et al., 2009. Zero Valent Iron Remediation of a Mixed Brominated Ethene Contaminated Groundwater. Journal of Contaminant Hydrology, 103(3/4):109–118. doi: 10.1016/j.jconhyd.2008.09.010 |
Liou, Y. H., Lo, S. L., Lin, C. J., et al., 2005. Methods for Accelerating Nitrate Reduction Using Zero-Valent Iron at Near-Neutral pH : Effects of H2-Reducing Pretreatment and Copper Deposition. Environmental Science & Technology, 39(24): 9643–9648. doi: 10.1021/es048038p |
Henderson, A. D., Demond, A. H., 2007. Long-Term Performance of Zero-Valent Iron Permeable Reactive Barriers: A Critical Review.Environmental Engineering Science, 24(4): 401–423. doi: 10.1089/ees.2006.0071 |
Huang, Y. H., Zhang, T. C., 2002. Kinetics of Nitrate Reduction by Iron at near Neutral pH. Journal of Environmental Engineering, 128(7): 604–611. doi: 10.1061/(asce)0733-9372(2002)128:7(604) |
Huang, Y. Y., Liu, D. D., Li, G. R., 2012. Adsorption Kinetics of As (Ⅲ) from Groundwater by Nanoscale Zero-Valent Iron. Earth Science––Journal of China University of Geosciences, 37(2): 294–300 (in Chinese with English Abstract) |
Jeen, S. W., Amos, R. T., Blowes, D. W., 2012. Modeling Gas Formation and Mineral Precipitation in a Granular Iron Column. Environmental Science & Technology, 46(12): 6742–6749. doi: 10.1021/es300299r |
Jeen, S. W., Gillham, R. W., Przepiora, A., 2011. Predictions of Long-Term Performance of Granular Iron Permeable Reactive Barriers: Field-Scale Evaluation. Journal of Contaminant Hydrology, 123(1/2): 50–64. doi: 10.1016/j.jconhyd.2010.12.006 |
Jeen, S., Gillham, R. W., Blowes, D. W., 2006. Effects of Carbonate Precipitates on Long-Term Performance of Granular Iron for Reductive Dechlorination of TCE. Environmental Science & Technology, 40(20): 6432–6437. doi: 10.1021/es0608747 |
Jeen, S., Mayer, K. U., Gillham, R. W., et al., 2007. Reactive Transport Modeling of Trichloroethene Treatment with Declining Reactivity of Iron. Environmental Science & Technology, 41(4): 1432–1438. doi: 10.1021/es062490m |
Jin, S. O., Jeen, S. W., Gillham, R., et al., 2009. Effects of Initial Iron Corrosion Rate on Long-Term Performance of Iron Permeable Reactive Barriers: Column Experiments and Numerical Simulation. Journal of Contaminant Hydrology, 103(3/4): 145–156. doi: 10.1016/j.jconhyd.2008.09.013 |
Johnson, R. L., Thoms, R. B., O'Brien Johnson, R., et al., 2008. Mineral Precipitation Upgradient from a Zero-Valent Iron Permeable Reactive Barrier. Ground Water Monitoring & Remediation, 28(3): 56–64. doi: 10.1111/j.1745-6592.2008.00203.x |
Kamolpornwijit, W., Liang, L., West, O. R., et al., 2003. Preferential Flow Path Development and Its Influence on Long-Term PRB Performance: Column Study. Journal of Contaminant Hydrology, 66(3–4): 161–178. doi: 10.1016/s0169-7722(03)00031-7 |
Liang, L. Y., Moline, G. R., Kamolpornwijit, W., et al., 2005. Influence of Hydrogeochemical Processes on Zero-Valent Iron Reactive Barrier Performance: A Field Investigation. Journal of Contaminant Hydrology, 78(4): 291–312. doi: 10.1016/j.jconhyd.2005.05.006 |
Mayer, K. U., Blowes, D. W., Frind, E. O., 2001. Reactive Transport Modeling of an in Situ Reactive Barrier for the Treatment of Hexavalent Chromium and Trichloroethylene in Groundwater. Water Resources Research, 37(12): 3091–3103. doi: 10.1029/2001wr000234 |
Nyirenda, T. M., Zhou, J. W., Xie, L. N., et al., 2015. Determination of Carbonate Minerals Responsible for Alkaline Mine Drainage at Xikuangshan Antimony Mine, China: Using Thermodynamic Chemical Equilibrium Model. Journal of Earth Science, 26(5): 755–762. doi: 10.1007/s12583-015-0590-3 |
Parkhurst, D. L. , Appelo, C. A. J. , 1999. User's Guide to PHREEQC (Version 2)-A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. U. S. Geological Survey Water-Resources Investigations Report, Amsterdam |
Prommer, H., Aziz, L. H., Bola o, N., et al., 2008. Modelling of Geochemical and Isotopic Changes in a Column Experiment for Degradation of TCE by Zero-Valent Iron. Journal of Contaminant Hydrology, 97(1/2): 13–26. doi: 10.1016/j.jconhyd.2007.11.003 |
Robertson, W. D., Cherry, J. A., 1995. In Situ Denitrification of Septic-System Nitrate Using Reactive Porous Media Barriers: Field Trials. Ground Water, 33(1): 99–111. doi: 10.1111/j.1745-6584.1995.tb00266.x |
Robertson, W. D., Ptacek, C. J., Brown, S. J., 2007. Geochemical and Hydrogeological Impacts of a Wood Particle Barrier Treating Nitrate and Perchlorate in Ground Water. Ground Water Monitoring & Remediation, 27(2): 85–95. doi: 10.1111/j.1745-6592.2007.00140.x |
Robertson, W. D., Blowes, D. W., Ptacek, C. J., et al., 2000. Long-Term Performance of in Situ Reactive Barriers for Nitrate Remediation. Ground Water, 38(5): 689–695. doi: 10.1111/j.1745-6584.2000.tb02704.x |
Rodríguez-Maroto, J. M., García-Herruzo, F., García-Rubio, A., et al., 2009. Kinetics of the Chemical Reduction of Nitrate by Zero-Valent Iron. Chemosphere, 74(6): 804–809. doi: 10.1016/j.chemosphere.2008.10.020 |
RTDF, Remediation Technologies Development Forum. 2001. Permeable Reactive Barrier Installation Profiles. [2017-03-16]. http://www.rtdf.org/public/permbarr/prbsumms/default.cfm. |
Till, B. A., Weathers, L. J., Alvarez, P. J. J., 1998. Fe(0)-Supported Autotrophic Denitrification. Environmental Science & Technology, 32(5): 634–639. doi: 10.1021/es9707769 |
Wilkin, R. T., Puls, R. W., Sewell, G. W., 2003. Long-Term Performance of Permeable Reactive Barriers Using Zero-Valent Iron: Geochemical and Microbiological Effects. Ground Water, 41(4): 493–503. doi: 10.1111/j.1745-6584.2003.tb02383.x |
Thiruvenkatachari, R., Vigneswaran, S., Naidu, R., 2008. Permeable Reactive Barrier for Groundwater Remediation. Journal of Industrial and Engineering Chemistry, 14(2): 145–156. doi: 10.1016/j.jiec.2007.10.001 |
Vogan, J. L., Focht, R. M., Clark, D. K., et al., 1999. Performance Evaluation of a Permeable Reactive Barrier for Remediation of Dissolved Chlorinated Solvents in Groundwater. Journal of Hazardous Materials, 68(1/2): 97–108. doi: 10.1016/s0304-3894(99)00033-3 |
Zhang, J. H., Hao, Z. W., Zhang, Z., et al., 2010. Kinetics of Nitrate Reductive Denitrification by Nanoscale Zero-Valent Iron. Process Safety and Environmental Protection, 88(6): 439–445. doi: 10.1016/j.psep.2010.06.002 |
Zhang, Z., Hao, Z. W., Yang, Y. P., et al., 2010. Reductive Denitrification Kinetics of Nitrite by Zero-Valent Iron. Desalination, 257(1/2/3): 158–162. doi: 10.1016/j.desal.2010.02.031 |
Zhang, Y. S., Gillham, R. W., 2005. Effects of Gas Generation and Precipitates on Performance of Fe0 PRBs. Ground Water, 43(1): 113–121. doi: 10.1111/j.1745-6584.2005.tb02290.x |
Zheng, C. , Wang, P. P. , 1999. MT3DMS: A Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems, Documentation and User's Guide. Contract Report SERDP-99-1, U. S. Vicksburg, Army Engineer Research and Development Center, Mississippi |
Schipper, L., Vojvodić-Vuković, M., 1998. Nitrate Removal from Groundwater Using a Denitrification Wall Amended with Sawdust: Field Trial. Journal of Environment Quality, 27(3): 664. doi: 10.2134/jeq1998.00472425002700030025x |
Mackenzie, P. D., Horney, D. P., Sivavec, T. M., 1999. Mineral Precipitation and Porosity Losses in Granular Iron Columns. Journal of Hazardous Materials, 68(1/2): 1–17. doi: 10.1016/s0304-3894(99)00029-1 |
Alowitz, M. J., Scherer, M. M., 2002. Kinetics of Nitrate, Nitrite, and Cr (Ⅵ) Reduction by Iron Metal. Environmental Science & Technology, 36(3): 299–306. doi: 10.1021/es011000h |
Li, L., Benson, C. H., Lawson, E. M., 2005. Impact of Mineral Fouling on Hydraulic Behavior of Permeable Reactive Barriers. Ground Water, 43(4): 582–596. doi: 10.1111/j.1745-6584.2005.0042.x |
Chen, Y. M., Li, C. W., Chen, S. S., 2005. Fluidized Zero Valent Iron Bed Reactor for Nitrate Removal. Chemosphere, 59(6): 753–759. doi: 10.1016/j.chemosphere.2004.11.020 |
Robertson, W. D., Vogan, J. L., Lombardo, P. S., 2008. Nitrate Removal Rates in a 15-Year-Old Permeable Reactive Barrier Treating Septic System Nitrate. Ground Water Monitoring & Remediation, 28(3): 65–72. doi: 10.1111/j.1745-6592.2008.00205.x |
Hwang, Y. H., Kim, D. G., Shin, H. S., 2011. Mechanism Study of Nitrate Reduction by Nano Zero Valent Iron. Journal of Hazardous Materials, 185(2–3): 1513–1521. doi: 10.1016/j.jhazmat.2010.10.078 |