Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 28 Issue 2
Apr 2017
Turn off MathJax
Article Contents
Xuxuan Ma, Zhiqin Xu, Xijie Chen, Joseph G. Meert, Zhenyu He, Fenghua Liang, Yuanku Meng, Shiwei Ma. The Origin and Tectonic Significance of the Volcanic Rocks of the Yeba Formation in the Gangdese Magmatic Belt, South Tibet. Journal of Earth Science, 2017, 28(2): 265-282. doi: 10.1007/s12583-016-0925-8
Citation: Xuxuan Ma, Zhiqin Xu, Xijie Chen, Joseph G. Meert, Zhenyu He, Fenghua Liang, Yuanku Meng, Shiwei Ma. The Origin and Tectonic Significance of the Volcanic Rocks of the Yeba Formation in the Gangdese Magmatic Belt, South Tibet. Journal of Earth Science, 2017, 28(2): 265-282. doi: 10.1007/s12583-016-0925-8

The Origin and Tectonic Significance of the Volcanic Rocks of the Yeba Formation in the Gangdese Magmatic Belt, South Tibet

doi: 10.1007/s12583-016-0925-8
More Information
  • Zircon U-Pb geochronology, Hf isotope and whole-rock geochemistry were performed on the tuffs of the Yeba Formation in the Gangdese magmatic belt, South Tibet. The results are used to detail the age, source nature and tectonic processes that led to the formation of the Gangdese belt. Dating results indicate that the rhyolitic-andesitic tuffs were formed at 174-170 Ma. Positive and variable zircon εHf (t) values of the rhyolitic tuffs reveal that the source was dominated by juvenile material, however, experienced crustal contamination. The basaltic tuffs have low HREEs, high contents of compatible elements (V and Cr) and no Eu anomaly. In contrast, the rhyolitic-andesitic tuffs show low compatible trace elements, depletion in Eu but enrichment in incompatible elements (Rb, Zr and Hf) . According to the discrimination diagrams of P2O5-SiO2 and Th-Rb, the rhyolitic-andesitic tuffs show a close affinity to I-type granitoids. Moreover, these tuffs are marked by significant depletion in Nb, Ta and Ti, plotted in calc-alkaline field, and with the andesitic-rhyolitic tuffs falling into an active continental margin setting. We suggest that these tuffs of the Yeba Formation were probably generated in an active continental margin above the northward subduction of the Neo-Tethyan oceanic lithosphere.

     

  • loading
  • Aitchison, J. C., Badengzhu, Davis, A. M., et al., 2000. Remnants of a Cretaceous Intra-Oceanic Subduction System within the Yarlung-Zangbo Suture (Southern Tibet) . Earth and Planetary Science Letters, 183 (1-2) : 231-244. doi:10.1016/s0012-821x (00) 00287-9
    Allègre, C. J., Minster, J. F., 1978. Quantitative Models of Trace Element Behavior in Magmatic Processes. Earth and Planetary Science Letters, 38 (1) : 1-25. doi:10.1016/0012-821x (78) 90123-1
    Andersen, T., 2002. Correction of Common Pb in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192 (1-2) : 59-79. doi:10.1016/s0009-2541 (02) 00195-x
    Barbey, P., Allé, P., Brouand, M., et al., 1995. Rare-Earth Patterns In Zircons from the Manaslu Granite and Tibetan Slab Migmatites (Himalaya) : Insights In the Origin and Evolution of a Crustal Derived-Granite Magma. Chemical Geology, 125 (1-2) : 1-17. doi:10.1016/0009-2541 (95) 00068-w
    Beaudoin, G., Hebert, R., Wang, C. S., et al., 2005. Epithermal Au-Ag-Cu, Porphyry Cu- (Au-Mo) and Cu-Au-Ag-Zn-Pb Skarn Deposits of the Gangdese Arc, Tibet: Mineral Deposit Research: Meeting the Global Challenge, Biennial SGA Meeting, 8th, Beijing, China, 18-21 August 2005, Proceedings. 2: 1219-1222. doi:10.1007/3-540-27946-6_311
    Belousova, E. A., Griffin, W. L., O' Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143 (5) : 602-622. doi: 10.1007/s00410-002-0364-7
    Belousova, E. A., Griffin, W. L., O' Reilly, S. Y., 2006. Zircon Crystal Morphology, Trace Element Signatures and Hf Isotope Composition as a Tool for Petrogenetic Modeling: Examples from Eastern Australian Granitoids. Journal of Petrology, 47 (2) : 329-353. doi: 10.1093/petrology/egi077
    Boynton, W. V., 1984. Geochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P. ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam. 63-114.
    Burchfiel, B. C., Chen, Z., Hodges, K. V., et al., 1992. The South Tibetan Detachment System, Himalayan Orogeny: Extension Contemporaneous with and Parallel to Shortening in a Collisional Mountain Belt. Geo. Soc. Am. Spec. Pap., 269: 1-41. doi: 10.1130/spe269-p1
    Burg, J. P., 2011. The Asia-Kohistan-India Collision: Review and Discussion. Frontiers in Earth Science, 279-309. doi: 10.1007/978-3-540-88558-0_10
    Castieiras, P., García, F. D., Barreiro, J. G., 2010. REE-Assisted U-Pb Zircon Age (SHRIMP) of an Anatectic Granodiorite: Constraints on the Evolution of the a Silva Granodiorite, Iberian Allochthonous Complexes. Lithos, 116 (1-2) : 153-166. doi: 10.1016/j.lithos.2010.01.013
    Chappell, B. W., 1999. Aluminium saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46 (3) : 535-551. doi:10.1016/s0024-4937 (98) 00086-3
    Chen, W., Ma, C. Q., Bian, Q. J., et al., 2009. Evidences from Geochemistry and Zircon U-Pb Geochronology of Volcanic Rocks of Yeba Formation In Demingding Area, the East of Middle Gangdise, Tibet. Geological Science and Technology Information, 28 (3) : 31-40 (in Chinese with English Abstract)
    Chen, J. S., Huang, B. C., Sun, L. S., 2010. New Constraints to the Onset of the India-Asia Collision: Paleomagnetic Reconnaissance on the Linzizong Group in the Lhasa Block, China. Tectonophysics, 489 (1-4) : 189-209. doi: 10.1016/j.tecto.2010.04.024
    Chu, M. F., Chung, S. L., Song, B., et al., 2006. Zircon U-Pb and Hf Isotope Constraints on the Mesozoic Tectonics and Crustal Evolution of Southern Tibet. Geology, 34 (9) : 745-748. doi: 10.1130/g22725.1
    Chung, S. L., Chu, M. F., Zhang, Y. Q., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations In Post-Collisional Magmatism. Earth-Science Reviews, 68 (3-4) : 173-196. doi: 10.1016/j.earscirev.2004.05.001
    Chung, S. L., Chu, M. F., Ji, J. Q., et al., 2009. The Nature and Timing of Crustal Thickening in Southern Tibet: Geochemical and Zircon Hf Isotopic Constraints from Postcollisional Adakites. Tectonophysics, 477 (1-2) : 36-48. doi: 10.1016/j.tecto.2009.08.008
    Claiborne, L. L., Miller, C. F., Wooden, J. L., 2010. Trace Element Composition of Igneous Zircon: A Thermal and Compositional Record of the Accumulation and Evolution of a Large Silicic Batholith, Spirit Mountain, Nevada. Contributions to Mineralogy and Petrology, 160 (4) : 511-531. doi: 10.1007/s00410-010-0491-5
    Condie, K. C., 2004. Earth as an Evolving Planetary System. Amsterdam: Elsevier Press
    Corfield, R. I., Searle, M. P., Pederson, R. B., 2001. Tectonic Setting, Origin, and Obduction History of the Spontang Ophiolite, Ladakh Himalaya, NW India. The Journal of Geology, 109 (6) : 715-736. doi: 10.1086/323191
    Coulon, C., Maluski, H., Bollinger, C., et al., 1986. Mesozoic and Cenozoic Volcanic Rocks from Central and Southern Tibet: 39Ar-40Ar Dating, Petrological Characteristics and Geodynamical Significance. Earth and Planetary Science Letters, 79 (3-4) : 281-302. doi:10.1016/0012-821x (86) 90186-x
    Dai, J. G., Wang, C. S., Hébert, R., et al., 2012. Petrology and Geochemistry of Peridotites In the Zhongba Ophiolite, Yarlung Zangbo Suture Zone: Implications for the Early Cretaceous Intra-Oceanic Subduction Zone within the Neo-Tethys. Chemical Geology, 288 (3-4) : 133-148. doi: 10.1016/j.chemgeo.2011.07.011
    Debon, F., Le Fort, P., Sheppard, S. M. F., Sonet, J., 1986. The Four Plutonic Belts of the Transhimalaya-Himalaya: A Chemical, Mineralogical, Isotopic, and Chronological Synthesis along a Tibet-Nepal Section. Journal of Petrology, 27 (1) : 219-250. doi: 10.1093/petrology/27.1.219
    Dewey, J. F., Shackelton, R. M., Chang, C., et al., 1988. The Tectonic Evolution of the Tibetan Plateau. Phil. Trans. R. Soc. Lond., A327: 379-413
    Ding, L., Kapp, P., Wan, X. Q., 2005. Paleocene-Eocene Record of Ophiolite Obduction and Initial India-Asia Collision, South Central Tibet. Tectonics, 24 (3) : 2004TC001729. doi: 10.1029/2004tc001729
    Dong, G. C., 2002. Linzizong Volcanic Rocks in Linzhou Volcanic Basin, Tibet and Implication for India-Eurasia Collision Process:[Dissertation]. China University of Geoscience, Beijing. (in Chinese with English Abstract)
    Dong, G. C., Mo, X. X., Zhao, Z. D., et al., 2005. A New Understanding of the Stratigraphic Successions of the Linzizong Volcanic Rocks In the Lhnzhub Basin, Northern Lhasa, Tibet, China. Geological Bulletin of China, 24 (6) : 549-557 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200506012.htm
    Dong, G. C., Mo, X. X., Zhao, Z. D., et al., 2006a. Magma Mixing in Middle Part of Gangdise Magma Belt: Evidences from Granitoid Complex. Acta Petrologica Sinica, 22 (4) : 835-844 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200604007.htm
    Dong, Y. H., Xu, J. F., Zeng, Q. G., et al., 2006b. Is there a Neo-Tethys' Subduction Record Earlier than Arc Volcanic Rocks in the Sangri Group? Acta Petrologica Sinica, 22 (3) : 661-668 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200603015.htm
    Dupuis, C., Hébert, R., Dubois-Cté, V., et al., 2005. Petrology and Geochemistry of Mafic Rocks from Mélange and Flysch Units Adjacent to the Yarlung Zangbo Suture Zone, Southern Tibet. Chemical Geology, 214 (3-4) : 287-308. doi: 10.1016/j.chemgeo.2004.10.005
    Geng, Q. R., Pan, G. T., Jin, Z. M., et al., 2005a. Geochemistry and Genesis of the Yeba Volcanic Rocks in the Gangdise Magmatic Arc, Tibet. Earth Science—Journal of China University of Geosciences, 30 (6) : 747-760 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200506010.htm
    Geng, Q. R., Pan, G. T., Wang, L. Q., et al., 2005b. Isotopic Geochronology of the Volcanic Rocks from the Yeba Formation in the Gangdise Zone, Xizang. Sedimentary Geology and Tethyan Geology, 26 (1) : 1-7 (in Chinese with English Abstract)
    Girardeau, J., Marcoux, J., Allègre, C. J., et al., 1984. Tectonic Environment and Geodynamic Significance of the Neo-Cimmerian Donqiao Ophiolite, Bangong-Nujiang Suture Zone, Tibet. Nature, 307 (5496) : 27-31. doi: 10.1038/307027a0
    Gorton, M. P., Schandl, E. S., 2000. From Continents to Island Arcs: A Geochemical Index of Tectonic Setting for Arc-Related and within-Plate Felsic to Intermediate Volcanic Rocks. The Canadian Mineralogist, 38 (5) : 1065-1073. doi: 10.2113/gscanmin.38.5.1065
    Gou, J., 1994. A New Knowledge on the Attributes of Yeba Formation in Lhasa Area. Tibetan Geology, 1: 1-6 (in Chinese with English Abstract)
    Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica at Cosmochimica Acta, 64 (1) : 133-147. doi:10.1016/s0016-7037 (99) 00343-9
    Guo, L. S., Liu, Y. L., Liu, S. W., et al., 2013. Petrogenesis of Early to Middle Jurassic Granitoid Rocks from the Gangdese Belt, Southern Tibet: Implications for Early History of the Neo-Tethys. Lithos, 179 (5) : 320-333. doi: 10.1016/j.lithos.2013.06.011
    Gutscher, M. A., Maury, R., Eissen, J. P., 2000. Can Slab Melting be Caused by Flat Subduction? Geology, 28 (6) : 535-538. doi:10.1130/0091-7613 (2000) 028<0535:csmbcb>2.3.co;2
    Guynn, J. H., Kapp, P., Pullen, A., et al., 2006. Tibetan Basement Rocks Near Amdo Reveal "Missing" Mesozoic Tectonism along the Bangong Suture, Central Tibet. Geology, 34 (6) : 505-508. doi: 10.1130/g22453.1
    Harrison, T. M., Yin, A., Grove, M., et al., 2000. The Zedong Window: A Record of Superposed Tertiary Convergence in Southeastern Tibet. Journal of Geophysical Research, 105 (B8) : 19211-19230. doi: 10.1029/2000jb900078
    Hawkesworth, C. J., Kemp, A. I. S., 2006. Evolution of the Continental Crust. Nature, 443 (7113) : 811-817. doi: 10.1038/nature05191
    He, S., Kapp, P., DeCelles, P. G., et al., 2007. Cretaceous-Tertiary Geology of the Gangdese Arc in the Linzhou Area, Southern Tibet. Tectonophysics, 433 (1-4) : 15-37. doi: 10.1016/j.tecto.2007.01.005
    He, Z. H., Yang, D. M., Zheng, C. Q., et al., 2006. Isotopic Dating of the Mamba Granitoid in the Gangdise Tectonic Belt and Its Constraints on the Subduction Time of the Neotethys. Geological Review, 52 (1) : 100-106 (in Chinese with English Abstract)
    Heaman, L. M., Bowsin, R., Crocket, J., 1990. The Chemical Composition of Igneous Zircon Suites: Implications for Geochemical Tracer Studies. Geochimica et Cosmochimica Acta, 54 (6) : 1597-1607. doi:10.1016/0016-7037 (90) 90394-z
    Hinton, R. W., Upton, B. G. J., 1991. The Chemistry of Zircon: Variations within and between Large Crystals from Syenite and Alkali Basalt Xenoliths. Geochimica et Cosmochimica Acta, 55 (1) : 3287-3302. doi:10.1016/0016-7037 (91) 90489-r
    Hoskin, P. W. O., Ireland, T. R., 2000. Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicator. Geology, 28 (7) : 627-630. doi:10.1130/0091-7613 (2000) 028<0627:reecoz>2.3.co;2
    Hoskin, P. W. O., Black, L. P., 2000. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18 (4) : 423-439. doi: 10.1046/j.1525-1314.2000.00266.x
    Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53 (1) : 27-55 doi: 10.2113/0530027
    Hou, Z. Q., Gao, Y. F., Qu, X. M., et al., 2004. Origin of Adakitic Intrusives Generated during Mid-Miocene East-West Extension in Southern Tibet. Earth and Planetary Science Letters, 220 (1-2) : 139-155. doi:10.1016/s0012-821x (04) 00007-x
    Hu, Z. C., Liu, Y. S., Chen, L., et al., 2011. Contrasting Matrix Induced Elemental Fractionation in NIST SRM and Rock Glasses during Laser Ablation ICP-MS Analysis at High Spatial Resolution. Journal of Analytical Atomic Spectrometry, 26 (2) : 425-430. doi: 10.1039/c0ja00145g
    Ji, W. Q., Wu, F. Y., Chung, S. L., et al., 2009. Zircon U-Pb Geochronology and Hf Isotopic Constraints on Petrogenesis of the Gangdese Batholith, Southern Tibet. Chemical Geology, 262 (3-4) : 229-245. doi: 10.1016/j.chemgeo.2009.01.020
    Jiang, X., Zhao, Z. D., Zhu, D. C., et al., 2010. Zircon U-Pb Geochronology and Hf Isotopic Geochemistry of Jiangba, Bangba, and Xiongba Granitoids in Western Gangdese, Tibet. Acta Petrologica Sinica, 26: 2155-2164 (in Chinese with English Abstract)
    Jiang, Z. Q., Wang, Q., Li, Z. X., et al., 2012. Late Cretaceous (Ca. 90 Ma) Adaitic Intrusive Rocks in the Kelu Area, Gangdese Belt (Southern Tibet) : Slab Melting and Implications for Cu-Au Mineralization. Journal of Asian Earth Sciences, 53 (7) : 67-81. doi: 10.1016/j.jseaes.2012.02.010
    Kang, Z. Q., Xu, J. F., Chen, J. L., et al., 2009. Geochemistry and Origin of Cretaceous Adakites in Mamuxia Formation, Sangri Group, South Tibet. Geochimica, 38 (4) : 334-344 (in Chinese with English Abstract)
    Kang, Z. Q., Xu, J. F., Chen, J. L., et al., 2010. The Geochronology of Sangri Group Volcanic Rocks in Tibet: Constraints from Later Mamen Intrusions. Geochimica, 39 (6) : 520-530 (in Chinese with English Abstract)
    Kang, Z. Q., Xu, J. F., Wilde, S. A., et al., 2014. Geochronology and Geochemistry of the Sangri Group Volcanic Rocks, Southern Lhasa Terrane: Implications for the Early Subduction History of the Neo-Tethys and Gangdese Magmatic Arc. Lithos, 200-201 (1) : 157-168. doi: 10.1016/j.lithos.2014.04.019
    Kelemen, P. B., Hanghoj, K., Greene, A. R., 2003. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. Treastise Geochem., 3: 593-660. doi: 10.1016/b0-08-043751-6/03035-8
    Konstantinovskaia, E. A., Brunel, M., Malavieille, J., 2003. Discovery of the Paleo-Tethys Residual Peridotites along the Anyemaqen-Kunlun Suture Zone (North Tibet) . C. R. Geoscience, 335 (8) : 709-719. doi:10.1016/s1631-0713 (03) 00118-4
    Lang, X. H., Tang, J. X., Li, Z. J., et al., 2014. U-Pb and Re-Os Geochronological Evidence for the Jurassic Porphyry Metallogenic Event of the Xietongmen District in the Gangdese Porphyry Copper Belt, Southern Tibet, PRC. Journal of Asian Earth Sciences, 79 (B) : 608-622. doi: 10.1016/j.jseaes.2013.08.009
    Lee, H. Y., Chung, S. L., Lo, C. H., Ji, J., et al., 2009. Eocene Neotethyan Slab Breakoff in Southern Tibet Inferred from the Linzizong Volcanic Record. Tectonophysics, 477 (1-2) : 20-35. doi: 10.1016/j.tecto.2009.02.031
    Lee, H. Y., Chung, S. L., Ji, J. Q., et al., 2012. Geochemical and Sr-Nd Isotopic Constraints on the Genesis of the Cenozoic Linzizong Volcanic Successions, Southern Tibet. Journal of Asian Earth Sciences, 53 (2) : 96-114. doi: 10.1016/j.jseaes.2011.08.019
    Le Bas, M. J., Le Maitre, R. W., Streckeisen, A. L., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27 (2) : 745-750. doi: 10.1093/petrology/27.3.745
    Leng, Q. F., Tang, J. X., Zheng, W. B., et al., 2016. Geochronology, Geochemistry and Zircon Hf Isotopic Compositions of the Ore-Bearing Porphyry in the Lakang-E Porphyry Cu-Mo Deposit, Tibet. Earth Science, 41 (6) :999-1015
    Li, X. H., Li, Z. X., Zhou, H. W., Liu, Y., et al., 2002. U-Pb Zircon Geochronology, Geochemistry and Nd Isotopic Study of Neoproterozoic Bimodal Volcanic Rocks in the Kangdian Rift of South China: Implications for the Initial Rifting of Rodinia. Precambrian Research, 113 (1-2) : 135-154. doi:10.1016/s0301-9268 (01) 00207-8
    Li, X. W., Mo, X. X., Scheltens, M. et al., 2016. Mineral Chemistry and Crystallization Conditions of the Late Cretaceous Mamba Pluton from the Eastern Gangdese, Southern Tibetan Plateau. Journal of Earth Science, 27 (4) : 545-570. doi: 10.1007/s12583-016-0713-5
    Li, C., Wang, T. W., Li, H. M., et al., 2003. Discovery of Indosinian Megaporphyritic Granodiorite in the Gangdise Area: Evidence for the Existence of Paleo-Gangdise. Geological Bulletin of China, 22 (5) : 364-366 (in Chinese with English Abstract)
    Li, H. Q., Xu, Z. Q., Yang, J. S., et al., 2012. Indosinian Orogenesis In the Lhasa Terrane, Tibet: New Muscovite 40Ar-39Ar Geochronology and Evolutionary Process. Acta Geologica Sinica, 86 (5) : 1116-1127. doi: 10.1111/j.1755-6724.2012.00735.x
    Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010a. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55 (15) : 1535-1546. doi: 10.1007/s11434-010-3052-4
    Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010b. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51 (1-2) : 537-571. doi: 10.1093/petrology/egp082
    Ludwig, K. R., 2001. Users Manual for Isoplot/Ex (Rev. 2.49) : A Geochronological Toolkit for Microsoft Excel, vol. 1a. Berkeley Geochronology Center, C. A. 55 (Special Publication)
    Ma, L. Y., Wang, Y. J., Fan, W. M., et al., 2014. Petrogenesis of the Early Eocene I-Type Granites in West Yingjiang (SW Yunnan) and Its Implications for the Eastern Extension of the Gangdese Batholiths. Gondwana Research, 25 (1) : 401-419. doi: 10.1016/j.gr.2013.04.010
    Maas, R., Kinny, P. D., Williams, I. S., et al., 1992. The Earth' s Oldest Known Crust: A Geochronological and Geochemical Study of 3900-4200 Ma Old Detrital Zircon from Mt. Narryer and Jack Hill, Western Australia. Geochimica et Cosmochimica Acta, 56 (3) : 1281-1300. doi:10.1016/0016-7037 (92) 90062-n
    Mao, G. Z., Hu, J. R., Xie, Y. W., 2002. Characteristics and Genetic Environment of the Yeba Formation in Lhasa Region. Tibetan Geology, 1: 12-18 (in Chinese with English Abstract)
    Matte, P., Tapponnier, P., Arnaud, N., et al., 1996. Tectonics of Western Tibet, between the Tarim and the Indus. Earth and Planetary Science Letters, 142 (3-4) : 311-330. doi:10.1016/0012-821x (96) 00086-6
    McDermid, I. R. C., Aitchison, J. C., Davis, A. M., et al., 2002. The Zedong Terrane: A Late Jurassic Intra-Oceanic Magmatic Arc within the Yarlung-Tsangpo Suture Zone, Southeastern Tibet. Chemical Geology, 187 (3-4) : 267-277 doi: 10.1016/S0009-2541(02)00040-2
    Mo, X. X., Deng, J., Zhao, Z., 2003a. Volcanic Records of India-Asia Collision and Post-Collision Processes. Proc EGS-AGU-EUG Joint Assemby. 263
    Mo, X. X., Zhao, Z. D., Deng, J. F., et al., 2003b. Response of Volcanism to the India-Asia Collision. Earth Science Frontiers, 10 (3) : 135-148 (in Chinese with English Abstract)
    Mo, X. X., Dong, G. C., Zhao, Z. D., et al., 2005. Spatial and Temporal Distribution and Characteristics of Granitoids in the Gangdese, Tibet and Implication for Crustal Growth and Evolution. Geological Journal of China Universities, 11 (3) : 281-290 (in Chinese with English Abstract)
    Mo, X. X., Niu, Y. L., Dong, G. C., et al., 2008. Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth: a Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet. Chemical Geology, 250 (1-4) : 49-67. doi: 10.1016/j.chemgeo.2008.02.003
    Mo, X. X., Dong, G. C., Zhao, Z. D., et al., 2009. Mantle Input to the Crust in Southern Gangdese, Tibet, during the Cenozoic: Zircon Hf Isotopic Evidence. Journal of Earth Science, 20 (2) : 241-249. doi: 10.1007/s12583-009-0023-2
    Mo, X. X., 2011. Magmatism and Evolution of the Tibetan Plateau. Geological Journal of China Universities, 17 (3) : 351-367 (in Chinese with English Abstract)
    Murali, A. V., Parthasarathy, R., Mahadevan, T. M., et al., 1983. Trace Element Characteristics, REE Patterns and Partition Coefficients of Zircons from Different Geological Environments—A Case Study on Indian Zircon. Geochimica et Cosmochimica Acta, 47 (11) : 2047-2052.doi:10.1016/0016-7037 (83) 90220-x
    Murphy, M. A., Yin, A., Harrison, T. M., et al., 1997. Did the Indo-Asian Collision alone Create the Tibetan Plateau? Geology, 25 (8) : 719-722. doi:10.1130/0091-7613 (1997) 025<0719:dtiaca>2.3.co;2
    Nomade, S., Renne, P. R., Mo, X. X., et al., 2004. Miocene Volcanism In the Lhasa Block, Tibet: Spatial Trends and Geodynamic Implications. Earth and Planetary Science Letters, 221 (1-4) : 227-243. doi:10.1016/s0012-821x (04) 00072-x
    Pan, G. T., Mo, X. X., Hou, Z. Q., et al., 2006. Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22 (3) : 521-533 (in Chinese with English Abstract)
    Parrish, R. R., Hodges, K. V., 1996. Isotopic Constraints on the Age and Provenance of the Lesser and Greater Himalayan Sequences, Nepalese Himalaya. Bull. Geol. Soc. Am., 108 (7) : 904-911. doi:10.1130/0016-7606 (1996) 108<0904:icotaa>2.3.co;2
    Paterson, B. A., Stephens, W. E., Rogers, G., et al., 1992. The Nature of Zircon Inheritance in Two Granitic Plutons. Transactions of the Royal Society of Edinburgh Earth Sciences, 83 (1-2) : 459-471. doi: 10.1017/s0263593300008130
    Pedersen, R. B., Searle, M. P., Corfield, R. I., 2001. U-Pb Zircon Ages from the Spontang Ophiolite, Ladakh Himalaya. Journal of the Geological Society, 158 (3) : 513-520. doi: 10.1144/jgs.158.3.513
    Plank, T., Langmuir, C. H., 1998. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 145 (3-4) : 325-394. doi:10.1016/s0009-2541 (97) 00150-2
    Qu, X. M., Xin, H. B., Xu, W. Y., 2007. Collation of Age of Ore-Hosting Volcanics in Xiongcun Superlarge Cu-Au Deposit on Basis of Three Zircon U-Pb SHRIMP Ages. Mineral Deposits, 26 (5) : 512-518
    Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt At 8-32 Kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36 (4) : 891-931. doi: 10.1093/petrology/36.4.891
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article Metrics

    Article views(1025) PDF downloads(348) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return