Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 28 Issue 6
Nov 2017
Turn off MathJax
Article Contents
Shuangfang Lu, Wei Liu, Min Wang, Linye Zhang, Zhentao Wang, Guohui Chen, Dianshi Xiao, Zhandong Li, Huiting Hu. Shale Oil Resource Potential of Es3L Sub-Member of Bonan Sag, Bohai Bay Basin, Eastern China. Journal of Earth Science, 2017, 28(6): 996-1005. doi: 10.1007/s12583-016-0945-4
Citation: Shuangfang Lu, Wei Liu, Min Wang, Linye Zhang, Zhentao Wang, Guohui Chen, Dianshi Xiao, Zhandong Li, Huiting Hu. Shale Oil Resource Potential of Es3L Sub-Member of Bonan Sag, Bohai Bay Basin, Eastern China. Journal of Earth Science, 2017, 28(6): 996-1005. doi: 10.1007/s12583-016-0945-4

Shale Oil Resource Potential of Es3L Sub-Member of Bonan Sag, Bohai Bay Basin, Eastern China

doi: 10.1007/s12583-016-0945-4
More Information
  • Corresponding author: Min Wang, wangm@upc.edu.cn
  • Received Date: 03 May 2016
  • Accepted Date: 29 Nov 2016
  • Publish Date: 01 Dec 2017
  • Following shale gas, shale oil has become another highlight in unconventional hydrocarbon exploration and development. A large amount of shale oil has been produced from a host of marine shale in North America in recent years. In China, lacustrine shale, as the main source rock of conventional oil and gas, should also have abundant oil retained in place. In this study, geochemical and geologic characteristics of lacustrine shale from Es3L sub-member in Bonan sag were characterized by using total organic carbon (TOC), Rock-Eval pyrolysis, X-ray diffraction, and ∆log R method. The results show that the Es3L sub-member shale have TOC contents ranging from 0.5 wt.% to 9.3 wt.%, with an average of 2.9 wt.%. The organic matter is predominantly Type Ⅰ kerogen, with minor amounts of Type Ⅱ1 kerogen. The temperature of maximum yield of pyrolysate (Tmax) values ranges from 424 to 447 ℃, with an average of 440 ℃, and vitrinite reflectance (Ro%) ranges from 0.7% to 0.9%, indicating most of shales are thermally mature. The dominant minerals of Es3L shale in Bonan sag are carbonates (including calcite and dolomite), averaging 51.82 wt.%, and the second minerals are clay (mostly are montmorillonite-illite-mixed layer and illite) and quartz, averaging about 18 wt.%. Finally, its shale oil resources were evaluated by using the volumetric method, and the evaluation result shows that the shale oil resource is up to 5.94 billion tons, and mostly Class Ⅰ resource. Therefore, the exploration of the lacustrine shale oil of Es3L in Bonan sag should be strengthened.

     

  • loading
  • Badics, B., Vetö, I., 2012. Source Rocks and Petroleum Systems in the Hungarian Part of the Pannonian Basin: The Potential for Shale Gas and Shale Oil Plays. Marine and Petroleum Geology, 31(1): 53-69. https://doi.org/10.1016/j.marpetgeo.2011.08.015
    Bowker, K. A., 2007. Barnett Shale Gas Production, Fort Worth Basin: Issues and Discussion. AAPG Bulletin, 91(4): 523-533. https://doi.org/10.1306/06190606018
    Chen, H., 2006. Fractured Shale Gas Exploration Status. Foreign Science and Technology Information, 2006: 4-19 (in Chinese)
    Clarkson, C. R., Solano, N., Bustin, R. M., et al., 2013. Pore Structure Characterization of North American Shale Gas Reservoirs Using USANS/SANS, Gas Adsorption, and Mercury Intrusion. Fuel, 103(1): 606-616. https://doi.org/10.1016/j.fuel.2012.06.119
    Coope, D. F., Quinn, T. H., Frost, E., et al., 2009. A Rock Model for Shale Gas and Its Application Using Magnetic Resonance and Conventional LWD Logs. Society of Petrophysicists and Well-Log Analysts, 50th Annua Symposium, Texas http://www.onepetro.org/conference-paper/spwla-2009-23168
    Dong, D., Yang, S. B., Xiang, X. Y., et al., 1993. Muddy Hydrocarbon Reservoirs in Jiyang Depression. Petroleum Exploration and Development, 20(6): 15-22 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-SKYK199306002.htm
    Durand, B., Alpern, B., Pittion, J. L., et al., 1986. Reflectance of Vitrinite as a Control of Thermal History of Sediments. In: Burrus, J., ed., Thermal Modeling in Sedimentary Basins, Editions Technip, Paris. 441-474
    Horsfield, B., Schulz, H. M., 2012. Shale Gas Exploration and Exploitation. Marine and Petroleum Geology, 31(1): 1-2. https://doi.org/10.1016/j.marpetgeo.2011.12.006
    Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 91(4): 475-499. https://doi.org/10.1306/12190606068
    Jarvie, D. M., 2012. Shale Resource Systems for Oil and Gas: Part 2—Shale-Oil Resource Systems, In: Breyer, J. A., ed., Shale Reservoirs—Giant Resources for the 21st Century. AAPG Memoir, 97: 89-119 http://ourenergypolicy.org/wp-content/uploads/2012/08/CHAPTER1PART1.pdf
    Jiu, K., Ding, W. L., Huang, W. H., et al., 2013. Fractures of Lacustrine Shale Reservoirs, the Zhanhua Depression in the Bohai Bay Basin, Eastern China. Marine and Petroleum Geology, 48(12): 113-123. https://doi.org/10.1016/j.marpetgeo.2013.08.009
    Kirschbaum, M. A., Mercier, T. J., 2013. Controls on the Deposition and Preservation of the Cretaceous Mowry Shale and Frontier Formation and Equivalents, Rocky Mountain Region, Colorado, Utah, and Wyoming. AAPG Bulletin, 97(6): 899-921. https://doi.org/10.1306/10011212090
    Kinley, T. J., Cook, L. W., Breyer, J. A., et al., 2008. Hydrocarbon Potential of the Barnett Shale (Mississippian), Delaware Basin, West Texas and Southeastern New Mexico. AAPG Bulletin, 92(8): 967-991. https://doi.org/10.1306/03240807121
    Liu, C., Lu, S. F., Huang, W. B., et al., 2011. Improvement of ∆log R and Its Application in Source Rocks Evaluation. Petroleum Geology and Oilfield Development in Daqing, 30(3): 27-31 (in Chinese with English Abstract) https://www.researchgate.net/publication/292793825_Improvement_of_DlogR_and_its_application_in_source_rocks_evaluation
    Li, Z. M., Qin, J. Z., Xu, X. H., et al., 2008. The Relationship between Vitrinite Reflectance Suppression and Source Rock Quality—A Case Study on Source Rocks from the Dongying Sag, Bohai Bay Basin. Petroleum Geology & Experiment, 30(3): 276-280 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD200703014.htm
    Lin, S. H., Yuan, X. J., Tao, S. Z., et al., 2013. Geochemical Characteristics of the Source Rocks in Mesozoic Yanchang Formation, Central Ordos Basin. Journal of Earth Science, 24(5): 804-814. https://doi.org/10.1007/s12583-013-0379-1
    Lu, S. F., Huang, W. B., Chen, F. W., et al., 2012. Classification and Evaluation Criteria of Shale Oil and Gas Resources: Discussion and Application. Petroleum Exploration and Development, 39(2): 268-276. https://doi.org/10.1016/s1876-3804(12)60042-1
    Ning, F. X., 2008. Mechanism of Mudstone Fracture Reservoir Forming in Xianhezhuang Oilfield in Dongying Depression. Xinjiang Oil & Gas, 4(1): 20-25 (in Chinese with English Abstract) https://www.researchgate.net/publication/284793262_Mechanism_of...
    Pan, S. Q., Zou, C. N., Yang, Z., et al., 2015. Methods for Shale Gas Play Assessment: A Comparison between Silurian Longmaxi Shale and Mississippian Barnett Shale. Journal of Earth Science, 26(2): 285-294. https://doi.org/10.1007/s12583-015-0524-0
    Passey, Q. R., Creaney, S., Kulla, J. B., et al., 1990. A Practical Model for Organic Richness from Porosity and Resistivity Logs. AAPG Bulletin, 74(12): 1777-1794 http://www.wenkuxiazai.com/doc/c4df9b7b376baf1ffc4fad53.html
    Passey, Q. R., Bohacs, K., Esch, W. L., et al., 2010. From Oil-Prone Source Rock to Gas-Producing Shale Reservoir—Geologic and Petrophysical Characterization of Unconventional Shale Gas Reservoirs. International Oil and Gas Conference and Exhibition in China, Beijing. https://doi.org/10.2118/131350-ms https://www.researchgate.net/publication/254531498_From_Oil-Prone_Source_Rock_to_Gas-Producing_Shale_Reservoir_-_Geologic_and_Petrophysical_Characterization_of_Unconventional_Shale_Gas_Reservoirs
    Ross, D. J. K., Bustin, R. M., 2008. Characterizing the Shale Gas Resource Potential of Devonian-Mississippian Strata in the Western Canada Sedimentary Basin: Application of an Integrated Formation Evaluation. AAPG Bulletin, 92(1): 87-125. https://doi.org/10.1306/09040707048
    Shi, D. S., Li, M. W., Pang, X. Q., et al., 2005. Fault-Fracture Mesh Petroleum Plays in the Zhanhua Depression, Bohai Bay Basin: Part 2. Oil-Source Correlation and Secondary Migration Mechanisms. Organic Geochemistry, 36(2): 203-223. https://doi.org/10.1016/j.orggeochem.2004.09.003
    Slatt, R. M., Rodriguez, N. D., 2012. Comparative Sequence Stratigraphy and Organic Geochemistry of Gas Shales: Commonality or Coincidence? Journal of Natural Gas Science and Engineering, 8(8): 68-84. https://doi.org/10.1016/j.jngse.2012.01.008
    Song, M. Y., 2011. Study on Reservoir Development and Forming Mechanism of Fractured Shale Reservoirs in Bonan Sub-Sag: [Dissertation]. China University of Petroleum, Dongying (in Chinese with English Abstract)
    Wang, G. L., Wang, T. G., Simoneit, B. R. T., et al., 2010. Sulfur Rich Petroleum Derived from Lacustrine Carbonate Source Rocks in Bohai Bay Basin, East China. Organic Geochemistry, 41(4): 340-354. https://doi.org/10.1016/j.orggeochem.2009.12.010
    Wang, G. C., Carr, T. R., 2013. Organic-Rich Marcellus Shale Lithofacies Modeling and Distribution Pattern Analysis in the Appalachian Basin. AAPG Bulletin, 97(12): 2173-2205. https://doi.org/10.1306/05141312135
    Wang, M., Tian, S. S., Chen, G. H., et al., 2014. Correction Method of Light Hydrocarbons Losing and Heavy Hydrocarbon Handling for Residual Hydrocarbon (S1) from Shale. Acta Geologica Sinica—English Edition, 88(6): 1792-1797. https://doi.org/10.1111/1755-6724.12345
    Wang, M., Wilkins, R. W. T., Song, G. Q., et al., 2015. Geochemical and Geological Characteristics of the Es3L Lacustrine Shale in the Bonan Sag, Bohai Bay Basin, China. International Journal of Coal Geology, 138(1): 16-29. https://doi.org/10.1016/j.coal.2014.12.007
    Witkowsky, J. M., Galford, J. E., Quirein, J. A., et al., 2012. Predicting Pyrite and Total Organic Carbon from Well Logs for Enhancing Shale Reservoir Interpretation. SPE Eastern Regional Meeting, Lexington KY. https://doi.org/10.2118/161097-ms https://www.researchgate.net/publication/266665571_Predicting_Pyrite_and_Total_Organic_Carbon_from_Well_Logs_for_Enhancing_Shale_Reservoir_Interpretation
    Zhang, L. Y., Li, Z., Zhu, R. F., 2008. Resource Potential of Shale Gas in Paleogene in Jiyang Depression. Natural Gas Industry, 28(12): 26-29 (in Chinese with English Abstract) https://www.researchgate.net/publication/285727494_Resource...
    Zhang, J. C., Lin, L. M., Li, Y. X., et al., 2012. Classification and Evaluation of Shale Oil. Earth Science Frontiers, 19(5): 322-331 (in Chinese with English Abstract) https://www.sciencedirect.com/science/article/pii/S1876380412600421
    Zhang, L. Y., Li, Z., Li, J. Y., et al., 2012. Feasibility Analysis of Existing Recoverable Oil and Gas Resource in the Palaeogene Shale of Dongying Depression. Natural Gas Geosciences, 23(1): 1-13 (in Chinese with English Abstract) http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=...
    Zhang, S. W., Wang, Y. S., Zhang, L. H., et al., 2012. Formation Conditions of Shale Oil and Gas in Bonan Sub-Sag, Jiyang Depression. China Engineering Science, 14(6): 49-55 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-GCKX201206006.htm
    Zhang, L. Y., Li, J. Y., Li, Z., et al., 2014. Advances in Shale Oil/Gas Research in North America and Considerations on Exploration for Continental Shale Oil/Gas in China. Advances in Earth Science, 29(6): 700-711 (in Chinese with English Abstract) https://www.researchgate.net/publication/285884808_Advances_in...
    Zhao, W. Z., Zhang, G. Y., Wang, H. J., 2003. Basic Features of Petroleum Geology in the Superimposed Petroliferous Basins of China and Their Research Methodologies. Petroleum Exploration and Development, 30(2): 1-6 (in Chinese with English Abstract) https://www.researchgate.net/publication/292555176_Basic_features...
    Zhu, G. Y., Gu, L. J., Su, J., et al., 2012. Sedimentary Association of Alternated Mudstones and Tight Sandstones in China's Oil and Gas Bearing Basins and Its Natural Gas Accumulation. Journal of Asian Earth Sciences, 50(5): 88-104. https://doi.org/10.1016/j.jseaes.2012.01.008
    Zou, C. N., Dong, D. Z., Wang, S. J., et al., 2010. Geological Characteristics and Resource Potential of Shale Gas in China. Petroleum Exploration and Development, 37(6): 641-653. https://doi.org/10.1016/s1876-3804(11)60001-3
    Zou, C. N., Yang, Z., Cui, J. W., et al., 2013a. Formation Mechanism, Geological Characteristics and Development Strategy of Nonmarine Shale Oil in China. Petroleum Exploration and Development, 40(1): 15-27. https://doi.org/10.1016/s1876-3804(13)60002-6
    Zou, C. N., Tao, S. Z., Yang, Z., et al., 2013b. Development of Petroleum Geology in China: Discussion on Continuous Petroleum Accumulation. Journal of Earth Science, 24(5): 796-803. https://doi.org/10.1007/s12583-013-0373-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views(1276) PDF downloads(295) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return