Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 28 Issue 3
Jun 2017
Turn off MathJax
Article Contents
Xue'ang Zhang, Zhuwen Wang, Zhichao Yang. Distinguishing Oil and Water Layers in a Porous Cracked Medium by Interpreting Acoustic Logging Data on the Basis of Hudson Theory. Journal of Earth Science, 2017, 28(3): 500-506. doi: 10.1007/s12583-017-0620-4
Citation: Xue'ang Zhang, Zhuwen Wang, Zhichao Yang. Distinguishing Oil and Water Layers in a Porous Cracked Medium by Interpreting Acoustic Logging Data on the Basis of Hudson Theory. Journal of Earth Science, 2017, 28(3): 500-506. doi: 10.1007/s12583-017-0620-4

Distinguishing Oil and Water Layers in a Porous Cracked Medium by Interpreting Acoustic Logging Data on the Basis of Hudson Theory

doi: 10.1007/s12583-017-0620-4
More Information
  • During surveys, water layers may interfere with the detection of oil layers. In order to distinguish between oil and water layers in a porous cracked medium, research on the properties of cracks and oil and water layers and their relation to acoustic logging rules is essential. On the basis of Hudson's crack theory, we simulated oil and water layers in crack-porous medium with different crack parameters corresponding to the well-field response. We found that in a cracked medium with high crack angle or low number density of cracks, compressional and shear wave velocities are sensitive to crack characteristics; further, these velocities are more sensitive to crack characteristics when the waves propagate through the water layer than when they propagate through the oil layer. Compressional and shear wave velocities increase with an increase in crack angle: in the water layer, the increase is approximately linear. On comparing the full waveforms observed in the oil and water layers, we find that the amplitudes of most waves are higher in the water layer. Among the considered waves, the Stoneley wave suffers maximum amplitude attenuation in the oil layer. The maximum excitation intensity for oil layer is greater than that for the water layer. These results can guide further cracked media logging field exploration work.

     

  • loading
  • Antonio, J., Tadeu, A., Amado Mendes, P. A., 2009. Simulation of Wave Propagation in a Fluid-Filled Borehole Embedded in a Cracked Medium Using a Coupled BEM/TBEM Formulation. Bulletin of the Seismological Society of America, 99(6): 3326–3339. doi: 10.1785/0120090047
    Caleap, M., Aristégui, C., Angel, Y. C., 2009. Effect of Crack Opening and Orientation on Dispersion and Attenuation of Antiplane Coherent Wave. Geophysical Journal International, 177(3): 1151–1165. doi: 10.1111/j.1365-246X.2009.04127.x
    Feng, B., Wang, H. Z., 2015. Data-Domain Wave Equation Reflection Traveltime Tomography. Journal of Earth Science, 26(4): 487–494. doi: 10.1007/s12583-015-0562-7
    Germán, R. J., Quintal, B. M., Tobias, M., et al., 2015. Energy Dissipation of P and S-Waves in Fluid-Saturated Rocks: An Overview Focusing on Hydraulically Connected Fractures. Journal of Earth Science, 26(6): 785–790. doi: 10.1007/s12583-015-0613-0
    Guéguen, Y., Sarout, J., 2011. Characteristics of Anisotropy and Dispersion in Cracked Medium. Tectonophysics, 503(1/2): 165–172. doi: 10.1016/j.tecto.2010.09.021
    Hall, S. A., Kendall, J. M., Maddock, J., et al., 2008. Crack Density Tensor Inversion for Analysis of Changes in Rock Frame Architecture. Geophysical Journal International, 173(2): 577–592. doi: 10.1111/j.1365-246X.2008.03748.x
    Hudson, J. A., 1980. Overall Properties of a Cracked Solid. Mathematical Proceedings of the Cambridge Philosophical Society, 88(2): 371–384, doi: 10.1017/S0305004100057674
    Hudson, J. A., 1981. Wave Speeds and Attenuation of Elastic Waves in Material Containing Cracks. Geophysical Journal International, 64(1): 133–150 doi: 10.1111/j.1365-246X.1981.tb02662.x
    Hudson, J. A., 1990. Attenuation Due to Second-Order Scattering in Material Containing Cracks. Geophysical Journal International, 102(2): 485–490. doi: 10.1111/j.1365-246x.1990.tb04480.x
    Hudson, J. A., 1991. Overall Properties of Heterogeneous Material. Geophysical Journal International, 107(3): 505–511. doi: 10.1111/j.1365-246x.1991.tb01411.x
    Hudson, J. A., Liu, E., Crampin, S., 1996. The Mechanical Properties of Materials with Interconnected Cracks and Pores. Geophysical Journal International, 124(1): 105–112. doi: 10.1111/j.1365-246x.1996.tb06355.x
    Hudson, J. A., Pointer, T., Liu, E., 2001. Effective-Medium Theories for Fluid-Saturated Materials with Aligned Cracks. Geophysical Prospecting, 49(5): 509–522. doi: 10.1046/j.1365-2478.2001.00272.x
    Nandal, J. S., Saini, T. N., 2012. Reflection and Refraction at an Imperfectly Bonded Interface between Poroelastic Solid and Cracked Elastic Solid. Journal of Seismology, 17(2): 239–253, doi: 10.1007/s10950-012-9311-x
    Nishizawa, O., Kanagawa, K., 2010. Seismic Velocity Anisotropy of Phyllosilicate-Rich Rocks: Characteristics Inferred from Experimental and Crack-Model Studies of Biotite-Rich Schist. Geophysical Journal International, 182(1): 375–388, doi: 10.1111/j.1365-246X.2010.04614.x
    Peacock, S., Hudson, J. A., 1990. Seismic Properties of Rocks with Distributions of Small Cracks. Geophysical Journal International, 102(2): 471–484. doi: 10.1111/j.1365-246x.1990.tb04479.x
    Pointer, T., Liu, E. R., Hudson, J. A., 2000. Seismic Wave Propagation in Cracked Porous Media. Geophysical Journal International, 142(1): 199–231. doi: 10.1046/j.1365-246x.2000.00157.x
    Ruan, Z., Yu, B. S., Chen, Y. Y., 2013. Application of Fluid Inclusion Analysis for Buried Dissolution Predicting in the Tahe Oilfield of Tarim Basin, NW China. Journal of Earth Science, 24(3): 343–354. doi: 10.1007/s12583-013-0338-x
    Tsang, L., Rader, D., 1979. Numerical Evaluation of the Transient Acoustic Waveform Due to a Point Source in a Fluid-filled Borehole. Geophysics, 44(10): 1706–1720. doi: 10.1190/1.1440932
    Vilhelm, J., Rudajev, V., Živor, R., et al., 2010. Influence of Crack Distribution of Rocks on P-Wave Velocity Anisotropy––A Laboratory and Field Scale Study. Geophysical Prospecting, 58(6): 1099–1110. doi: 10.1111/j.1365-2478.2010.00875.x
    White, J. E., 1981. Cylindrical Waves in Transversely Isotropic Media. Journal of the Acoustical Society of America, 70(4): 1147. doi: 10.1121/1.386946
    Zhang, Z. G., Du, Y. S., Gao, L. F., et al., 2012. The Late Mesozoic Granodiorites from the Southwest Basin in the South China Sea and Its Tectonic Implication. Journal of Earth Science, 23(3): 268–276. doi: 10.1007/s12583-012-0252-7
    Zhao, Y., Yao, G. Q., Mu, L. H., et al., 2016. Characteristics and Controlling Factors of Fractures in Lacustrine Dolostones Reservoirs in Tanggu District. Earth Science––Journal of China University of Geosciences, 41(2): 252–264. doi: 10.3799/dqkx.2016.019 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(6)

    Article Metrics

    Article views(668) PDF downloads(109) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return