Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 29 Issue 3
Aug 2018
Turn off MathJax
Article Contents
Arash Barjasteh. Right Lateral Shear and Rotation in the Northeast of the Arabian-Iranian Collision Zone. Journal of Earth Science, 2018, 29(3): 616-628. doi: 10.1007/s12583-017-0682-3
Citation: Arash Barjasteh. Right Lateral Shear and Rotation in the Northeast of the Arabian-Iranian Collision Zone. Journal of Earth Science, 2018, 29(3): 616-628. doi: 10.1007/s12583-017-0682-3

Right Lateral Shear and Rotation in the Northeast of the Arabian-Iranian Collision Zone

doi: 10.1007/s12583-017-0682-3
More Information
  • Corresponding author: Arash Barjasteh, barjasteh@hotmail.com
  • Received Date: 20 Jan 2017
  • Accepted Date: 15 May 2017
  • Publish Date: 01 Jun 2018
  • Accommodation of continental convergence by crustal thickening and lateral transport is mainly featured as strike-slip faulting along the trends roughly orthogonal to the orientation of plate convergence. This style of faulting will affect seismicity of the involving areas which can be proved in low seismic zones by determining regional stress pattern using numerical methods. Accordingly, the stress distribution and deformation pattern of the South Sanandaj-Sirjan zone in the northeastern part of the Iranian-Arabian collision zone is investigated here using a three dimensional mechanical model. The modeled area is bounded between the Zagros thrust fault on the west and Dehshir-Baft fault in the east. The model is composed of three layers: the upper two layers represent the upper brittle and lower ductile crust of the collided continent and the lowest layer represents the lithospheric mantle. The upper crust behaves as an elastic material while the lower crust is considered as a non-Newtonian viscous fluid layer. The lithospheric mantle is taken as a low-viscosity material which is not allowed to move in any direction relative to the overlying layers. The Zagros thrust fault was treated with two different dip values saying 90 and 45 but Dehshir-Baft fault was modeled as a vertical fault and allowed to have a dextral movement regarding to the existing evidence. The driving mechanism applied to the western side of the model was chosen considering two different approaches including a kinematic approach (the Arabian-Eurasian convergence velocity; 35 mm/yr) and a dynamic approach (an external boundary force equal to 3.55E+17 N). The resulted stress field indicates an orogen-parallel component of right lateral shear along the Zagros fault implying a rotational deformation pattern within the modeled region that suggests a stress partitioning in the study area. The pattern also indicates a stress accumulation towards the south which could be a reason for the regional seismic quiescence between the two seismic Zagros thrust and Dehshir-Baft faults. Based on the present modeling results, it seems that high stress localization on the boundary faults can be a support of block structure approach or quasi-rigid blocks deformation within the study area. The resultant patterns of stress and displacement fields are generally totally comparable with plate boundary shear zones and have been proven by field data.

     

  • loading
  • Allen, M., Jackson, J., Walker, R., 2004. Late Cenozoic Reorganization of the Arabia-Eurasia Collision and the Comparison of Short-Term and Long-Term Deformation Rates. Tectonics, 23(2): 235–273. https://doi.org/10.1029/2003tc001530
    Ambraseys, N. N., Jackson, J. A., 1998. Faulting Associated with Historical and Recent Earthquakes in the Eastern Mediterranean Region. Geophysical Journal International, 133(2): 390–406. https://doi.org/10.1046/j.1365-246x.1998.00508.x
    Ambraseys, N., Melville, C., 1982. A History of Persian Earthquakes. Cambridge University Press, Cambridge
    Arfania, R., 2011. Investigation of the Brittle and Brittle-Ductile Meso-Structures of the Metamorphic Area in the Southeast of Eghlid (in Persian). Journal of Geosciences, Geological Survey of Iran, 82: 173–180 doi: 10.1007/s12583-017-0682-3
    Arzani, N., 2005. The Fluvial Megafan of Abarkoh Basin (Central Iran): An Example of Flash-Flood Sedimentation in Arid Lands. Geological Society, London, Special Publications, 251(1): 41–59. https://doi.org/10.1144/gsl.sp.2005.251.01.04
    Berberian, F., Berberian, M., 1981. Tectono-Plutonic Episodes in Iran. In: Gupta, H. K., Delany, F. M., eds., Zagros, Hindu Kush, Himalaya. Geodynamic Evolution, American Geophysical Union, Geodynamics: Series 3. American Geophysical Union, Washington DC. 5–32
    Bird, P., 1978. Finite Element Modeling of Lithosphere Deformation: The Zagros Collision Orogeny. Tectonophysics, 50(2/3): 307–336. https://doi.org/10.1016/0040-1951(78)90140-3
    Bonini, M., Corti, G., Sokoutis, D., et al., 2003. Insights from Scaled Analogue Modelling into the Seismotectonics of the Iranian Region. Tectonophysics, 376(3/4): 137–149. https://doi.org/10.1016/j.tecto.2003.07.002
    Boulin, J., 1991. Structures in Southwest Asia and Evolution of the Eastern Tethys. Tectonophysics, 196(3/4): 211–268. https://doi.org/10.1016/0040-1951(91)90325-m
    DeMets, C., Gordon, R. G., Argus, D. F., et al., 1990. Current Plate Motions. Geophysical Journal International, 101(2): 425–478. https://doi.org/10.1111/j.1365-246x.1990.tb06579.x
    England, P., McKenzie, D., 1982. A Thin Viscous Sheet Model for Continental Deformation. Geophysical Journal International, 70(2): 295–321. https://doi.org/10.1111/j.1365-246x.1982.tb04969.x
    Houshmandzadeh, A. R., Ohanian, T., Sahandi, M. R., et al., 1975. Geological Map of Eghlid Quadrangle G10, 1 : 250 000. Geological Survey of Iran, Tehran, Iran
    Jackson, J., Haines, J., Holt, W., 1995. The Accommodation of Arabia-Eurasia Plate Convergence in Iran. Journal of Geophysical Research: Solid Earth, 100(B8): 15205–15219. https://doi.org/10.1029/95jb01294
    Jackson, J., McKenzie, D., 1984. Active Tectonics of the Alpine-Himalayan Belt between Western Turkey and Pakistan. Geophysical Journal International, 77(1): 185–264. https://doi.org/10.1111/j.1365-246x.1984.tb01931.x
    Ježek, J., Schulmann, K., Thompson, A. B., 2001. Strain Partitioning in Front of an Obliquely Convergent Indenter. Stephan Mueller Special Publication Series, 1: 93–104. doi: 10.5194/smsps-1-93-2002
    Kadinsky-Cade, K., Barazangi, M., 1982. Seismotectonics of Southern Iran: The Oman Line. Tectonics, 1(5): 389–412. https://doi.org/10.1029/tc001i005p00389
    Keilis-Borok, V. I., Rotwain, I. M., Soloviev, A. A., 1997. Numerical Modeling of Block Structure Dynamics: Dependence of a Synthetic Earthquake Flow on the Structure Separateness and Boundary Movements. J. Seismol., 1: 151–160 doi: 10.1023/A:1009717607645
    Kreemer, C., Holt, W. E., Haines, A. J., 2003. An Integrated Global Model of Present-Day Plate Motions and Plate Boundary Deformation. Geophysical Journal International, 154(1): 8–34. https://doi.org/10.1046/j.1365-246x.2003.01917.x
    Kronberg, P., 1983. Patterns and Principles of Crustal Fracturing as Deduced from a Landsat-Mosaic Covering Central and Eastern Iran. GSI, 51: 37–50 doi: 10.1007/s12583-017-0682-3
    Masson, F., Chéry, J., Hatzfeld, D., et al., 2005. Seismic versus Aseismic Deformation in Iran Inferred from Earthquakes and Geodetic Data. Geophysical Journal International, 160(1): 217–226. https://doi.org/10.1111/j.1365-246x.2004.02465.x
    McKenzie, D., Jackson, J., 1983. The Relationship between Strain Rates, Crustal Thickening, Palaeomagnetism, Finite Strain and Fault Movements within a Deforming Zone. Earth and Planetary Science Letters, 65(1): 182–202. https://doi.org/10.1016/0012-821x(83)90198-x
    McQuarrie, N., 2004. Crustal Scale Geometry of the Zagros Fold-Thrust Belt, Iran. Journal of Structural Geology, 26(3): 519–535. https://doi.org/10.1016/j.jsg.2003.08.009
    McQuarrie, N., Stock, J. M., Verdel, C., et al., 2003. Cenozoic Evolution of Neotethys and Implications for the Causes of Plate Motions. Geophysical Research Letters, 30(20): 2036. https://doi.org/10.1029/2003gl017992
    McQuillan, H., 1991. The Role of Basement Tectonics in the Control of Sedimentary Facies, Structural Patterns and Salt Plug Emplacements in the Zagros Fold Belt of Southwest Iran. Journal of Southeast Asian Earth Sciences, 5(1/2/3/4): 453–463. https://doi.org/10.1016/0743-9547(91)90061-2
    Melosh, H. J., Raefsky, A., 1980. The Dynamical Origin of Subduction Zone Topography. Geophysical Journal International, 60(3): 333–354. https://doi.org/10.1111/j.1365-246x.1980.tb04812.x
    Melosh, H. J., Williams, C. A. Jr., 1989. Mechanics of Graben Formation in Crustal Rocks: A Finite Element Analysis. Journal of Geophysical Research: Solid Earth, 94(B10): 13961–13973. https://doi.org/10.1029/jb094ib10p13961
    Meyer, B., Mouthereau, F., Lacombe, O., et al., 2006. Evidence of Quaternary Activity along the Deshir Fault: Implication for the Tertiary Tectonics of Central Iran. Geophysical Journal International, 164(1): 192–201. https://doi.org/10.1111/j.1365-246x.2005.02784.x
    Mohajjel, M., Fergusson, C. L., 2000. Dextral Transpression in Late Cretaceous Continental Collision, Sanandaj-Sirjan Zone, Western Iran. Journal of Structural Geology, 22(8): 1125–1139. https://doi.org/10.1016/s0191-8141(00)00023-7
    Mohajjel, M., Fergusson, C. L., Sahandi, M. R., 2003. Cretaceous–Tertiary Convergence and Continental Collision, Sanandaj-Sirjan Zone, Western Iran. Journal of Asian Earth Sciences, 21(4): 397–412. https://doi.org/10.1016/s1367-9120(02)00035-4
    NIOC (National Iranian Oil Company), 1975. Tectonic map of South-Central Iran, Scale 1/2 500 000. Tehran
    Reilinger, R., McClusky, S., Vernant, P., et al., 2006. GPS Constraints on Continental Deformation in the Africa-Arabia-Eurasia Continental Collision Zone and Implications for the Dynamics of Plate Interactions. Journal of Geophysical Research: Solid Earth, 111(B5): B05411. https://doi.org/10.1029/2005jb004051
    Sargent, M. T., 2004. Dynamics of the Eurasian Plate: [Dissertation]. Swiss Federal Institute of Technology, Zurich. 81
    Sarkarinejad, K., 2003. Structural and Microstructural Analysis of a Palaeo-Transform Fault Zone in the Neyriz Ophiolite, Iran. Geological Society, London, Special Publications, 218(1): 129–145. https://doi.org/10.1144/gsl.sp.2003.218.01.08
    Sarkarinejad, K., 2005. Structures and Microstructures Related to Steady-State Mantle Flow in the Neyriz Ophiolite, Iran. Journal of Asian Earth Sciences, 25(6): 859–881. https://doi.org/10.1016/j.jseaes.2004.08.007
    Sarkarinejad, K., Azizi, A., 2008. Slip Partitioning and Inclined Dextral Transpression along the Zagros Thrust System, Iran. Journal of Structural Geology, 30(1): 116–136. https://doi.org/10.1016/j.jsg.2007.10.001
    Sarkarinejad, K., Barjasteh, A., 2008. Modeling of Deformation Pattern in Eghlid-Deh-Bid Shear Zone of the Zagros Fold-Thrust Belt, Iran. Third International Geomodelling Conference, 22–24 Sept., 2008, Florance. 289–292
    Sarkarinejad, K., Barjasteh, A., 2010. The Role of the Zagros Suture on Three Dimensional Deformation Pattern in Eghlid-Deh Bid Area of Iran. J. Sciences, Islamic Republic of Iran, 21: 155–167 http://www.researchgate.net/publication/228979301_The_Role_of_the_Zagros_Suture_on_Three_Dimensional_Deformation_Pattern_in_Eghlid-Deh_Bid_Area_of_Iran
    Sarkarinejad, K., Ghanbarian, M. A., 2014. The Zagros Hinterland Fold-and-Thrust Belt in-Sequence Thrusting, Iran. Journal of Asian Earth Sciences, 85: 66–79. https://doi.org/10.1016/j.jseaes.2014.01.017
    Seyferth, M., Henk, A., 2004. Syn-Convergent Exhumation and Lateral Extrusion in Continental Collision Zones—insights from Three-Dimensional Numerical Models. Tectonophysics, 382(1/2): 1–29. https://doi.org/10.1016/j.tecto.2003.12.004
    Shafiei, S., Alavi, S. A., Mohajjel, M., 2011. Calcite Twinning Constraints on Paleostress Patterns and Tectonic Evolution of the Zagros Hinterland: The Sargaz Complex, Sanandaj-Sirjan Zone, SE Iran. Arabian Journal of Geosciences, 4(7/8): 1189–1205. https://doi.org/10.1007/s12517-010-0140-3
    Sobouti, F., Arkani-Hamed, J., 1996. Numerical Modelling of the Deformation of the Iranian Plateau. Geophysical Journal International, 126(3): 805–818. https://doi.org/10.1111/j.1365-246x.1996.tb04704.x
    Sokoutis, D., Bonini, M., Medvedev, S., et al., 2000. Indentation of a Continent with a Built-in Thickness Change: Experiment and Nature. Tectonophysics, 320(3/4): 243–270. https://doi.org/10.1016/s0040-1951(00)00043-3
    Soofi, M. A., King, S. D., 2002. Oblique Convergence between India and Eurasia. Journal of Geophysical Research, 107(B5): ETG 3-1–ETG 3-8. https://doi.org/10.1029/2001jb000636
    Stocklin, J., 1968. Structural History and Tectonics of Iran: A Review. AAPG Bulletin, 52: 1229–1258. https://doi.org/10.1306/5d25c4a5-16c1-11d7-8645000102c1865d
    Tecplot Inc., 2005. Tecplot User's Manual Version 10. Bellevue, Washington
    Vernant, P., Chéry, J., 2006a. Mechanical Modelling of Oblique Convergence in the Zagros, Iran. Geophysical Journal International, 165(3): 991–1002. https://doi.org/10.1111/j.1365-246x.2006.02900.x
    Vernant, P., Chéry, J., 2006b. Low Fault Friction in Iran Implies Localized Deformation for the Arabia-Eurasia Collision Zone. Earth and Planetary Science Letters, 246(3/4): 197–206. https://doi.org/10.1016/j.epsl.2006.04.021
    Walker, R., Jackson, J., 2004. Active Tectonics and Late Cenozoic Strain Distribution in Central and Eastern Iran. Tectonics, 23(5): TC5010. https://doi.org/10.1029/2003tc001529
    Wallace, M. H., Melosh, H. J., 1994. Buckling of a Pervasively Faulted Lithosphere. Pure and Applied Geophysics PAGEOPH, 142(2): 239–261. https://doi.org/10.1007/bf00879302
    Walpersdorf, A., Hatzfeld, D., Nankali, H., et al., 2006. Difference in the GPS Deformation Pattern of North and Central Zagros (Iran). Geophysical Journal International, 167(3): 1077–1088. https://doi.org/10.1111/j.1365-246x.2006.03147.x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views(635) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return