Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 28 Issue 2
Apr 2017
Turn off MathJax
Article Contents
Harpreet Singh. Representative Elementary Volume (REV) in Spatio-Temporal Domain: A Method to Find REVfor Dynamic Pores. Journal of Earth Science, 2017, 28(2): 391-403. doi: 10.1007/s12583-017-0726-8
Citation: Harpreet Singh. Representative Elementary Volume (REV) in Spatio-Temporal Domain: A Method to Find REVfor Dynamic Pores. Journal of Earth Science, 2017, 28(2): 391-403. doi: 10.1007/s12583-017-0726-8

Representative Elementary Volume (REV) in Spatio-Temporal Domain: A Method to Find REVfor Dynamic Pores

doi: 10.1007/s12583-017-0726-8
More Information
  • One of the potential risks associated with subsurface storage of CO2 is the seepage of CO2 through existing faults and fractures. There have been a number of studies devoted to this topic. Some of these studies show that geochemistry, especially mineralization, plays an important role in rendering the faults as conduits for CO2 movement while others show that mineralization due to CO2 injection can result in seep migration and flow diversion. Therefore, understanding the changes in reservoir properties due to pore alterations is important to ensure safe long term CO2 storage in the subsurface. We study the changes in the Representative Elementary Volume (REV) of a rock due to reactive kinetics over a time, using a statistical approach and pore-scale CO2-rock interactiondata.The goal of this study is to obtain the REV of a rock property that accounts for pore-scale changes over time due to reactive kinetics, and we call this as spatiotemporal REV. Scale-up results suggest that the REV changes with time when CO2-rock interaction is considered. It is hypothesized that the alteration in pore structure introduces more heterogeneity in the rock, and because of this the magnitude of REV increases. It is possible that these noticeable changes in REV at pore-scale may have an impact when analyzed at the reservoir scale.

     

  • loading
  • Arsyad, A., Mitani, Y., Babadagli, T., 2013. Comparative Assessment of Potential Ground Uplift Induced by Injection of CO2 into Ainoura, and Berea Sandstone Formations. Procedia Earth and Planetary Science, 6:278-286. https://doi.org/10.1016/j.proeps.2013.01.037
    Arvidson, R. S., Luttge, A., 2010. Mineral Dissolution Kinetics as a Function of Distance from Equilibrium-New Experimental Results. Chemical Geology, 269(1-2):79-88. https://doi.org/10.1016/j.chemgeo.2009.06.009
    Bear, J., 1972.Dynamics of Fluids in Porous Media. American Elsevier Pub. Co.
    Blumenfeld, R., Blunt, M., Bijeljic, B., et al., 2013. Imperial College Consortium on Pore-Scale Modeling (Yearly Progress Report). London, UK: Imperial College.
    Chou, L., Garrels, R. M., Wollast, R., 1989. Comparative Study of the Kinetics and Mechanisms of Dissolution of Carbonate Minerals. Chemical Geology, 78(3-4):269-282. https://doi.org/10.1016/0009-2541(89)90063-6
    Davis, M. C., Wesolowski, D. J., Rosenqvist, J., et al., 2011. Solubility and Near-Equilibrium Dissolution Rates of Quartz in Dilute NaCl Solutions at 398-473 K under Alkaline Conditions. Geochimica et Cosmochimica Acta, 75(2): 401-415. https://doi.org/10.1016/j.gca.2010.10.023
    Deutsch, C. V., Journel, A. G., 1997. GSLIB: Geostatistical Software Library and User's Guide (2nd ed.). Oxford University Press, U.S.A..
    Dong, H., 2007.Micro CT Imaging and Pore Network Extraction:[Dissertation]. Imperial College, London.
    Ellis, B. R., Crandell, L. E., Peters, C. A., 2010. Limitations for Brine Acidification due to SO2 Co-Injection in Geologic Carbon Sequestration. International Journal of Greenhouse Gas Control, 4(3): 575-582. https://doi.org/10.1016/j.ijggc.2009.11.006
    Gunter, W. D., Wiwehar, B., Perkins, E. H., 1997. Aquifer Disposal of CO2-Rich Greenhouse Gases: Extension of the Time Scale of Experiment for CO2-Sequestering Reactions by Geochemical Modelling. Mineralogy and Petrology, 59(1-2):121-140. https://doi.org/10.1007/BF01163065
    Izgec, O., Demiral, B., Bertin, H., et al., 2007. CO2 Injection into Saline Carbonate Aquifer Formations Ⅱ: Comparison of Numerical Simulations to Experiments. Transport in Porous Media, 73(1): 57-74. https://doi.org/10.1007/s11242-007-9160-1
    Johnson, J. W., Nitao, J. J., Knauss, K. G., 2004. Reactive Transport Modelling of CO2 Storage in Saline Aquifers to Elucidate Fundamental Processes, Trapping Mechanisms and Sequestration Partitioning. Geological Society, London, Special Publications, 233(1):107-128. https://doi.org/10.1144/GSL.SP.2004.233.01.08
    Kim, E., 2012. Investigation of CO 2 Seeps at the Crystal Geyser Site Using Numerical Modeling with Geochemistry:[Dissertation]. The University of Texas at Austin, Austin.
    Knauss, K. G., Wolery, T. J., 1988. The Dissolution Kinetics of Quartz as a Function of PH and Time at 70 °C. Geochimica et Cosmochimica Acta, 52(1): 43-53. https://doi.org/10.1016/0016-7037(88)90055-5
    Lake, L. W., Bryant, S. L., Araque-Martinez, A. N., 2002.Geochemistry and Fluid Flow. Elsevier.
    Lake, L. W., Srinivasan, S., 2004. Statistical Scale-Up of Reservoir Properties: Concepts and Applications. Journal of Petroleum Science and Engineering, 44(1-2):27-39. https://doi.org/10.1016/j.petrol.2004.02.003
    Lasaga, A. C., 1998.Kinetic Theory in the Earth Sciences. Princeton University Press.
    Le Borgne, T., Gouze, P., 2008. Non-Fickian Dispersion in Porous Media: 2. Model Validation from Measurements at Different Scales. Water Resources Research, 44(6):W06427. https://doi.org/10.1029/2007WR006279
    Leung, J., Srinivasan, S., 2011. Analysis of Uncertainty Introduced by Scaleup of Reservoir Attributes and Flow Response in Heterogeneous Reservoirs. SPE Journal. https://doi.org/10.2118/145678-PA
    Li, L., Steefel, C. I., Yang, L., 2008. Scale Dependence of Mineral Dissolution Rates within Single Pores and Fractures. Geochimica et Cosmochimica Acta, 72(2):360-377. https://doi.org/16/j.gca.2007.10.027
    Lichtner, P. C., Steefel, C. I., Oelkers, E. H., 1996. Reactive Transport in Porous Media. Washington, DC: Mineralogical Society of America.
    Liu, Q., Maroto-Valer, M. M., 2011. Parameters Affecting Mineral Trapping of CO2 Sequestration in Brines. Greenhouse Gases: Science and Technology, 1(3):211-222. https://doi.org/10.1002/ghg.29
    Miri, R., van Noort, R., Aagaard, P., et al., 2015. New Insights on the Physics of Salt Precipitation during Injection of CO2 into Saline Aquifers. International Journal of Greenhouse Gas Control, 43: 10-21. https://doi.org/10.1016/j.ijggc.2015.10.004
    Morse, J. W., Arvidson, R. S., Lüttge, A., 2007. Calcium Carbonate Formation and Dissolution. Chemical Reviews, 107(2): 342-381. https://doi.org/10.1021/cr050358j
    Øren, P.-E., Bakke, S., 2003. Reconstruction of Berea Sandstone and Pore-Scale Modelling of Wettability Effects. Journal of Petroleum Science and Engineering, 39(3-4):177-199. https://doi.org/10.1016/S0920-4105(03)00062-7
    Ovaysi, S., Piri, M., 2010. Direct Pore-Level Modeling of in Compressible Fluid Flow in Porous Media. Journal of Computational Physics, 229(19):7456-7476. https://doi.org/10.1016/j.jcp.2010.06.028
    Ovaysi, S., Piri, M., 2011. Pore-Scale Modeling of Dispersion in Disordered Porous Media. Journal of Contaminant Hydrology, 124(1-4): 68-81. https://doi.org/10.1016/j.jconhyd.2011.02.004
    Ovaysi, S., Piri, M., 2013. Pore-Scale Dissolution of CO2+SO2 in Deep Saline Aquifers. International Journal of Greenhouse Gas Control, 15:119-133. https://doi.org/10.1016/j.ijggc.2013.02.009
    Ovaysi, S., Piri, M., 2014. Pore-Space Alteration Induced by Brine Acidification in Subsurface Geologic Formations. Water Resources Research, 50(1): 440-452. https://doi.org/10.1002/2013WR014289
    Pham, T., Aagaard, P., Hellevang, H., 2012. On the Potential for CO2 Mineral Storage in Continental Flood Basalts-PHREEQC Batch- and 1D Diffusion-Reaction Simulations. Geochemical Transactions, 13(1): 5. https://doi.org/10.1186/1467-4866-13-5
    Pham, V. T. H., Lu, P., Aagaard, P., Zhu, C., Hellevang, H., 2011. On the Potential of CO2-Water-Rock Interactions for CO2 Storage Using a Modified Kinetic Model. International Journal of Greenhouse Gas Control, 5(4):1002-1015. https://doi.org/10.1016/j.ijggc.2010.12.002
    Rathnaweera, T. D., Ranjith, P. G., Perera, M. S. A., 2016. Experimental Investigation of Geochemical and Mineralogical Effects of CO2 Sequestration on Flow Characteristics of Reservoir Rock in Deep Saline Aquifers. Scientific Reports, 6:19362. https://doi.org/10.1038/srep19362
    Rochelle, C. A., Czernichowski-Lauriol, I., Milodowski, A. E., 2004. The Impact of Chemical Reactions on CO2 Storage in Geological Formations: A Brief Review. Geological Society, London, Special Publications, 233(1):87-106. https://doi.org/10.1144/GSL.SP.2004.233.01.07
    Shipton, Z. K., Evans, J. P., Kirschner, D., et al., 2004. Analysis of CO2 Leakage Through "Low-Permeability" Faults from Natural Reservoirs in the Colorado Plateau, East-Central Utah. Geological Society, London, Special Publications, 233(1):43-58. https://doi.org/10.1144/GSL.SP.2004.233.01.05
    Singh, H., 2014. Scale-Up of Reactive Processes in Heterogeneous Media: [Dissertation]. The University of Texas at Austin, Austin.
    Singh, H., Srinivasan, S., 2014a. Scale-Up of Reactive Processes in Heterogeneous Media-Numerical Experiments and Semi-Analytical Modeling. Presented at the SPE Improved Oil Recovery Symposium, Tulsa, Oklahoma, USA: Society of Petroleum Engineers. https://doi.org/10.2118/169133-MS
    Singh, H., Srinivasan, S., 2014b. Some Perspectives on Scale-Up of Flow and Transport in Heterogeneous Media. Bulletin of Canadian Petroleum Geology.
    Sund, N. L., Bolster, D., Dawson, C., 2015. Upscaling Transport of a Reacting Solute through a Peridocially Converging-Diverging Channel at Pre-Asymptotic Times. Journal of Contaminant Hydrology, 182: 1-15. https://doi.org/10.1016/j.jconhyd.2015.08.003
    TriScattered Interp., R. 2013b. MathWorks. Retrieved from http://www.mathworks.com/help/matlab/ref/triscatteredinterp.html
    Vishal, V., Leung, J. Y., 2015. Modeling Impacts of Subscale Heterogeneities on Dispersive Solute Transport in Subsurface Systems. Journal of Contaminant Hydrology, 182:63-77. https://doi.org/10.1016/j.jconhyd.2015.08.006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)  / Tables(1)

    Article Metrics

    Article views(606) PDF downloads(183) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return