Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 28 Issue 3
Jun 2017
Turn off MathJax
Article Contents
Naijing Liu, Yamin Deng, Ya Wu. Arsenic, Iron and Organic Matter in Quaternary Aquifer Sediments from Western Hetao Basin, Inner Mongolia. Journal of Earth Science, 2017, 28(3): 473-483. doi: 10.1007/s12583-017-0727-7
Citation: Naijing Liu, Yamin Deng, Ya Wu. Arsenic, Iron and Organic Matter in Quaternary Aquifer Sediments from Western Hetao Basin, Inner Mongolia. Journal of Earth Science, 2017, 28(3): 473-483. doi: 10.1007/s12583-017-0727-7

Arsenic, Iron and Organic Matter in Quaternary Aquifer Sediments from Western Hetao Basin, Inner Mongolia

doi: 10.1007/s12583-017-0727-7
More Information
  • To investigate geochemical and mineralogical features of sediments from aquifers containing high levels of dissolved arsenic (As) in western Hetao Basin, Inner Mongolia, sediment samples were collected for XRD (X-ray diffraction), amorphous Fe/Mn oxides, and humic/fulvic acid analyses, in addition to As determination. In the study area, the total As contents in the sediments were in the range 5.3–28.8 mg/kg; while that associated with humic substances in the range 4–9 mg/kg, accounting for 26%–47% of the total As. The results of XRD analysis suggest that clay and silt contain certain small amounts of iron oxides minerals, such as ferrihydrite, hematite and goethite, whereas have higher As and Fe2O3 contents. Up to one third of As in the sediments could be extracted by ammonium oxalate, and high As contents were generally found in organic-rich clay or silty clay samples with high FA/HA ratio. As is strongly associated with humic substances and Fe oxyhydroxides, which may be the major sink and source of As in the aquifer sediments.

     

  • loading
  • Anawar, H. M., Tareq, S. M., Ahmed, G., 2013. Is Organic Matter a Source or Redox Driver or both for Arsenic Release in Groundwater?. Physics and Chemistry of the Earth, Parts A/B/C, 58–60: 49–56. doi: 10.1016/j.pce.2013.04.009
    Bauer, M., Blodau, C., 2006. Mobilization of Arsenic by Dissolved Organic Matter from Iron Oxides, Soils and Sediments. Science of The Total Environment, 354(2/3): 179–190. doi: 10.1016/j.scitotenv.2005.01.027
    Berg, M., Trang, P. T. K., Stengel, C., et al., 2008. Hydrological and Sedimentary Controls Leading to Arsenic Contamination of Groundwater in the Hanoi Area, Vietnam: The Impact of Iron-Arsenic Ratios, Peat, River Bank Deposits, and Excessive Groundwater Abstraction. Chemical Geology, 249(1/2): 91–112. doi: 10.1016/j.chemgeo.2007.12.007
    Buschmann, J., Canonica, S., Lindauer, U., et al., 2005. Photoirradiation of Dissolved Humic Acid Induces Arsenic(Ⅲ) Oxidation. Environmental Science & Technology, 39(24): 9541–9546. doi: 10.1021/es051597r
    Charlet, L., Polya, D. A., 2006. Arsenic in Shallow, Reducing Groundwaters in Southern Asia: An Environmental Health Disaster. Elements, 2(2): 91–96. doi: 10.2113/gselements.2.2.91
    Cheng, D., Liao, P., Yuan, S. H., 2016. Effect of FeS Colloids on Desorption of As(Ⅴ) Adsorbed on Ferric Iron. Earth Science––Journal of China University of Geosciences, 41(2): 325–330. doi: 10.3799/dqkx.2016.024 (in Chinese with English Abstract)
    Davis, C. C., Knocke, W. R., Edwards, M., 2001. Implications of Aqueous Silica Sorption to Iron Hydroxide: Mobilization of Iron Colloids and Interference with Sorption of Arsenate and Humic Substances. Environmental Science & Technology, 35(15): 3158–3162. doi: 10.1021/es0018421
    Davranche, M., Dia, A., Fakih, M., et al., 2013. Organic Matter Control on the Reactivity of Fe(Ⅲ)-Oxyhydroxides and Associated as in Wetland Soils: A Kinetic Modeling Study. Chemical Geology, 335(1): 24–35. doi: 10.1016/j.chemgeo.2012.10.040
    Deng, Y. M., Wang, Y. X., Ma, T., 2009. Isotope and Minor Element Geochemistry of High Arsenic Groundwater from Hangjinhouqi, the Hetao Plain, Inner Mongolia. Applied Geochemistry, 24(4): 587–599. doi: 10.1016/j.apgeochem.2008.12.018
    Deng, Y. M., Wang, Y. X., Li, H., 2015. Seasonal Variation of Arsenic Speciation in Shallow Groundwater from Endemic Arsenicosis Area in Jianghan Plain. Earth Science––Journal of China University of Geosciences, 40(11): 1876–1886. doi: 10.3799/dqkx.2015.168 (in Chinese with English Abstract)
    Dixit, S., Hering, J. G., 2003. Comparison of Arsenic(Ⅴ) and Arsenic(Ⅲ) Sorption onto Iron Oxide Minerals: Implications for Arsenic Mobility. Environmental Science & Technology, 37(18): 4182–4189. doi: 10.1021/es030309t
    Eberl, D. D. , 2003. User's Guide to Rockjock––A Program for Determining Quantitative Mineralogy from Powder X-Ray Diffraction Data. US Geological Survey Open-File Report 03-78
    Farooqi, A., Masuda, H., Firdous, N., 2007. Toxic Fluoride and Arsenic Contaminated Groundwater in the Lahore and Kasur Districts, Punjab, Pakistan and Possible Contaminant Sources. Environmental Pollution, 145(3): 839–849. doi: 10.1016/j.envpol.2006.05.007
    Gao, C. R., 1999. Research on the Mechanism of Arsenic Pollution in Groundwater in the Hetao Plain, Inner Mongolia, China. Chin. J. Geol Hazard Control, 10(2): 25–32 (in Chinese with English Abstract)
    Grafe, M., Eick, M. J., Grossl, P. R., 2001. Adsorption of Arsenate (Ⅴ) and Arsenite (Ⅲ) on Goethite in the Presence and Absence of Dissolved Organic Carbon. Soil Science Society of America Journal, 65(6): 1680–1687. doi: 10.2136/sssaj2001.1680
    Grafe, M., Eick, M. J., Grossl, P. R., et al., 2002. Adsorption of Arsenate and Arsenite on Ferrihydrite in the Presence and Absence of Dissolved Organic Carbon. Journal of Environment Quality, 31(4): 1115–1123. doi: 10.2134/jeq2002.1115
    Guo, H. M., Liu, C., Lu, H., et al., 2013a. Pathways of Coupled Arsenic and Iron Cycling in High Arsenic Groundwater of the Hetao Basin, Inner Mongolia, China: An Iron Isotope Approach. Geochimica et Cosmochimica Acta, 112(3): 130–145. doi: 10.1016/j.gca.2013.02.031
    Guo, H. M., Zhang, Y., Jia, Y. F., et al., 2013b. Dynamic Behaviors of Water Levels and Arsenic Concentration in Shallow Groundwater from the Hetao Basin, Inner Mongolia. Journal of Geochemical Exploration, 135(6): 130–140. doi: 10.13039/501100001809
    Guo, H. M., Ren, Y., Liu, Q., et al., 2013c. Enhancement of Arsenic Adsorption during Mineral Transformation from Siderite to Goethite: Mechanism and Application. Environmental Science & Technology, 47(2): 1009–1016. doi: 10.1021/es303503m
    Guo, H. M., Stüben, D., Berner, Z., 2007. Arsenic Removal from Water Using Natural Iron Mineral–Quartz Sand Columns. Science of the Total Environment, 377(2/3): 142–151. doi: 10.1016/j.scitotenv.2007.02.001
    Guo, H. M., Yang, S. Z., Tang, X. H., et al., 2008. Groundwater Geochemistry and Its Implications for Arsenic Mobilization in Shallow Aquifers of the Hetao Basin, Inner Mongolia. Science of the Total Environment, 393(1): 131–144. doi: 10.1016/j.scitotenv.2007.12.025
    Guo, H. M., Zhang, Y., Xing, L. N., et al., 2012. Spatial Variation in Arsenic and Fluoride Concentrations of Shallow Groundwater from the Town of Shahai in the Hetao Basin, Inner Mongolia. Applied Geochemistry, 27(11): 2187–2196. doi: 10.1016/j.apgeochem.2012.01.016
    Guo, H. M., Zhang, B., Zhang, Y., 2011. Control of Organic and Iron Colloids on Arsenic Partition and Transport in High Arsenic Groundwaters in the Hetao Basin, Inner Mongolia. Applied Geochemistry, 26(3): 360–370. doi: 10.1016/j.apgeochem.2010.12.009
    Guo, J. X., Hu, L., Yand, P. Z., et al., 2007. Chronic Arsenic Poisoning in Drinking Water in Inner Mongolia and Its Associated Health Effects. Journal of Environmental Science and Health, Part A, 42(12): 1853–1858. doi: 10.1080/10934520701566918
    Guo, X. J., Fujino, Y., Kaneko, S., et al., 2001. Arsenic Contamination of Groundwater and Prevalence of Arsenical Dermatosis in the Hetao Plain Area, Inner Mongolia, China. Molecular Mechanisms of Metal Toxicity and Carcinogenesis, 222: 137–140. doi: 10.1007/978-1-4615-0793-2_16
    Gurung, J. K., Ishiga, H., Khadka, M. S., 2005. Geological and Geochemical Examination of Arsenic Contamination in Groundwater in the Holocene Terai Basin, Nepal. Environmental Geology, 49(1): 98–113. doi: 10.1007/s00254-005-0063-6
    Harvey, C. F., Ashfaque, K. N., Yu, W., et al., 2006. Groundwater Dynamics and Arsenic Contamination in Bangladesh. Chemical Geology, 228(1/2/3): 112–136. doi: 10.1016/j.chemgeo.2005.11.025
    Harvey, C. F., Swartz, C. H., Badruzzaman, A. B. M., et al., 2002. Arsenic Mobility and Groundwater Extraction in Bangladesh. Science, 298(5598): 1602–1606. doi: 10.1126/science.1076978
    Jessen, S., Larsen, F., Koch, C. B., et al., 2005. Sorption and Desorption of Arsenic to Ferrihydrite in a Sand Filter. Environmental Science & Technology, 39(20): 8045–8051. doi: 10.1021/es050692x
    Jiang, J., Bauer, I., Paul, A., et al., 2009. Arsenic Redox Changes by Microbially and Chemically Formed Semiquinone Radicals and Hydroquinones in a Humic Substance Model Quinone. Environmental Science & Technology, 43(10): 3639–3645. doi: 10.1021/es803112a
    Lin, N. F., Tang, J., Bian, J. M., 2002. Characteristics of Environmental Geochemistry in the Arseniasis Area of The Inner Mongolia of China. Environ. Geochem. Health, 24(3): 249–259. doi: 10.1023/A:1016079216654
    Ma, H. Z. , Xia, Y. J. , Wu, K. G. , 1999. Human Exposure to Arsenic and Health Effects in Bayingnormen, Inner Mongolia. In: Chappell, W. R. , Abernathy, C. O. , Calderon, R. L. , eds. , Arsenic Exposure and Health Effects. Elsevier, Amsterdam. 127–131. doi: 10.1016/B978-008043648-7/50016-9
    McArthur, J. M., Banerjee, D. M., Hudson-Edwards, K. A., et al., 2004. Natural Organic Matter in Sedimentary Basins and Its Relation to Arsenic in Anoxic Ground Water: The Example of West Bengal and Its Worldwide Implications. Applied Geochemistry, 19(8): 1255–1293. doi: 10.1016/j.apgeochem.2004.02.001
    Maldenov, N., Zheng, Y., Miller, M. P., et al., 2010. Dissolved Organic Matter Sources and Consequences for Iron and Arsenic Mobilization in Bangladesh Aquifers. Environmental Science & Technology, 44(1): 123–128. doi: 10.1021/es901472g
    Mukherjee, A., Bhattacharya, P., Shi, F., et al., 2009. Chemical Evolution in the High Arsenic Groundwater of the Huhhot Basin (Inner Mongolia, PR China) and Its Difference from the Western Bengal Basin (India). Applied Geochemistry, 24(10): 1835–1851. doi: 10.1016/j.apgeochem.2009.06.005
    Neidhardt, H., Norra, S., Tang, X., et al., 2012. Impact of Irrigation with High Arsenic Burdened Groundwater on the Soil-Plant System: Results from a Case Study in the Inner Mongolia, China. Environmental Pollution, 163(4): 8–13. doi: 10.13039/501100001809
    Neumann, R. B., Ashfaque, K. N., Badruzzaman, A. B. M., et al., 2010. Anthropogenic Influences on Groundwater Arsenic Concentrations in Bangladesh. Nature Geoscience, 3(1): 46–52. doi: 10.1038/ngeo685
    Polizzotto, M. L., Harvey, C. F., Sutton, S. R., et al., 2005. Processes Conducive to the Release and Transport of Arsenic into Aquifers of Bangladesh. Proceedings of the National Academy of Sciences, 102(52): 18819–18823. doi: 10.1073/pnas.0509539103
    Polya, D. A., Gault, A. G., Diebe, N., et al., 2005. Arsenic Hazard in Shallow Cambodian Groundwaters. Mineralogical Magazine, 69(5): 807–823. doi: 10.1180/0026461056950290
    Postma, D., Jessen, S., Hue, N. T. M., et al., 2010. Mobilization of Arsenic and Iron from Red River Floodplain Sediments, Vietnam. Geochimica et Cosmochimica Acta, 74(12): 3367–3381. doi: 10.1016/j.gca.2010.03.024
    Raven, K. P., Jain, A., Loeppert, R. H., 1998. Arsenite and Arsenate Adsorption on Ferrihydrite: Kinetics, Equilibrium, and Adsorption Envelopes. Environmental Science & Technology, 32(3): 344–349. doi: 10.1021/es970421p
    Redman, A. D., Macalady, D. L., Ahmann, D., 2002. Natural Organic Matter Affects Arsenic Speciation and Sorption onto Hematite. Environmental Science & Technology, 36(13): 2889–2896. doi: 10.1021/es0112801
    Root, R. A., Dixit, S., Campbell, K. M., et al., 2007. Arsenic Sequestration by Sorption Processes in High-Iron Sediments. Geochimica et Cosmochimica Acta, 71(23): 5782–5803. doi: 10.1016/j.gca.2007.04.038
    Rowland, H. A. L., Pederick, R. L., Polya, D. A., et al., 2007. The Control of Organic Matter on Microbially Mediated Iron Reduction and Arsenic Release in Shallow Alluvial Aquifers, Cambodia. Geobiology, 5(3): 281–292. doi: 10.1111/j.1472-4669.2007.00100.x
    Simeoni, M. A., Batts, B. D., McRae, C., 2003. Effect of Groundwater Fulvic Acid on the Adsorption of Arsenate by Ferrihydrite and Gibbsite. Applied Geochemistry, 18(10): 1507–1515. doi: 10.1016/s0883-2927(03)00074-x
    Smedley, P. L., Kinniburgh, D. G., 2002. A Review of the Source, Behaviour and Distribution of Arsenic in Natural Waters. Applied Geochemistry, 17(5): 517–568. doi: 10.1016/s0883-2927(02)00018-5
    Smedley, P. L., Kinniburgh, D. G., Macdonald, D. M. J., et al., 2005. Arsenic Associations in Sediments from the Loess Aquifer of La Pampa, Argentina. Applied Geochemistry, 20(5): 989–1016. doi: 10.1016/j.apgeochem.2004.10.005
    Smedley, P. L., Zhang, M., Zhang, G., et al., 2003. Mobilisation of Arsenic and Other Trace Elements in Fluviolacustrine Aquifers of the Huhhot Basin, Inner Mongolia. Applied Geochemistry, 18(9): 1453–1477. doi: 10.1016/s0883-2927(03)00062-3
    Sun, X. H., Doner, H. E., 1998. Adsorption and Oxidation of Arsenite on Goethite. Soil Science, 163(4): 278–287. doi: 10.1097/00010694-199804000-00003
    Tadanier, C. J., Schreiber, M. E., Roller, J. W., 2005. Arsenic Mobilization through Microbially Mediated Deflocculation of Ferrihydrite. Environmental Science & Technology, 39(9): 3061–3068. doi: 10.1021/es048206d
    Wang, H. C., Wang, H. P., Peng, C. Y., et al., 2003. X-Ray Absorption Spectroscopic Studies of As-Humic Substances in the Ground Water of the Taiwan Blackfoot Disease Area. Bulletin of Environmental Contamination and Toxicology, 71(4): 798–803. doi: 10.1007/s00128-003-0204-0
    Wang, S. L., Mulligan, C. N., 2009. Enhanced Mobilization of Arsenic and Heavy Metals from Mine Tailings by Humic Acid. Chemosphere, 74(2): 274–279. doi: 10.1016/j.chemosphere.2008.09.040
    Wang, S. L., Mulligan, C. N., 2006. Effect of Natural Organic Matter on Arsenic Release from Soils and Sediments into Groundwater. Environmental Geochemistry and Health, 28(3): 197–214. doi: 10.1007/s10653-005-9032-y
    Warwick, P., Inam, E., Evans, N., 2005. Arsenic's Interaction with Humic Acid. Environmental Chemistry, 2(2): 119–124. doi: 10.1071/en05025
    Wen, D. G., Zhang, F. C., Zhang, E. Y., et al., 2013. Arsenic, Fluoride and Iodine in Groundwater of China. Journal of Geochemical Exploration, 135(6): 1–21. doi: 10.13039/501100004613
    Winkel, L., Berg, M., Stengel, C., et al., 2008. Hydrogeological Survey Assessing Arsenic and Other Groundwater Contaminants in the Lowlands of Sumatra, Indonesia. Applied Geochemistry, 23(11): 3019–3028. doi: 10.1016/j.apgeochem.2008.06.021
    Yu, G. Q., Sun, D. J., Zheng, Y., 2007. Health Effects of Exposure to Natural Arsenic in Groundwater and Coal in China: An Overview of Occurrence. Environmental Health Perspectives, 115(4): 636–642. doi: 10.1289/ehp.9268
    Zhang, H., Ma, D., Hu, X., 2002. Arsenic Pollution in Groundwater from Hetao Area, China. EnvironmentalGeology, 41(6): 638–643. doi: 10.1007/s002540100442
    Zhang, Y. L., Cao, W. G., Wang, W. Z., et al., 2013. Distribution of Groundwater Arsenic and Hydraulic Gradient along the Shallow Groundwater Flow-Path in Hetao Plain, Northern China. Journal of Geochemical Exploration, 135: 31–39. doi: 10.1016/j.gexplo.2012.12.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views(1300) PDF downloads(385) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return