Akinlua, A., Smith, R. M., 2010. Subcritical Water Extraction of Trace Metals from Petroleum Source Rock. Talanta, 81(4/5): 1346-1349. doi: 10.1016/j.talanta.2010.02.029 |
Algeo, T. J., Rowe, H., 2012. Paleoceanographic Applications of Trace-Metal Concentration Data. Chemical Geology, 324/325: 6-18. doi: 10.1016/j.chemgeo.2011.09.002 |
American Society for Testing and Materials (ASTM), 2015a. Standard Test Method for Microscopical Determination of the Reflectance of Vitrinite Dispersed in Sedimentary Rocks. Annual Book of ASTM Standards: Petroleum Products, Lubricants, and Fossil Fuels; Gaseous Fuels; Coal and Coke Sec. 5, V. 5. 06: ASTM International, West Conshohocken, PA. [2016-02-14]. http://www.astm.org/Standards/D7708.htm |
American Society for Testing and Materials (ASTM), 2015b. Standard Test Method for Microscopical Determination of the Reflectance of the Vitrinite Reflectance of Coal. Annual Book of ASTM Standards: Petroleum Products, Lubricants, and Fossil Fuels; Gaseous Fuels; Coal and Coke Sec. 5, V. 5. 06 ASTM International, West Conshohocken, PA. [2016-04-06]. http://www.astm.org/Standards/D2798.htm |
Baldock, J. A., Skjemstad, J. O., 2000. Role of the Soil Matrix and Minerals in Protecting Natural Organic Materials against Biological Attack. Organic Geochemistry, 31(7/8): 697-710. doi: 10.1016/s0146-6380(00)00049-8 |
Barker, C. E., 1991. An Update on the Suppression of Vitrinite Reflectance. TSOP Newsletter, 8(4): 8-11 |
Behar, F., Beaumont, V., De B. Penteado, H. L., 2001. Rock-Eval 6 Technology: Performances and Developments. Oil & Gas Science and Technology, 56(2): 111-134. doi: 10.2516/ogst:2001013 |
Behar, F., Kressmann, S., Rudkiewicz, J. L., et al., 1992. Experimental Simulation in a Confined System and Kinetic Modelling of Kerogen and Oil Cracking. Organic Geochemistry, 19(1/2/3): 173-189. doi: 10.1016/0146-6380(92)90035-v |
Behar, F., Vandenbroucke, M., 1987. Chemical Modelling of Kerogens. Organic Geochemistry, 11(1): 15-24. doi: 10.1016/0146-6380(87)90047-7 |
Bergamaschi, B. A., Tsamakis, E., Keil, R. G., et al., 1997. The Effect of Grain Size and Surface Area on Organic Matter, Lignin and Carbohydrate Concentration, and Molecular Compositions in Peru Margin Sediments. Geochimica et Cosmochimica Acta, 61(6): 1247-1260. doi: 10.1016/s0016-7037(96)00394-8 |
Berrocoso, A. J., MacLeod, K. G., Calvert, S. E., et al., 2008. Bottom Water Anoxia, Inoceramid Colonization, and Benthopelagic Coupling during Black Shale Deposition on Demerara Rise (Late Cretaceous Western Tropical North Atlantic). Paleoceanography, 23(3): 1-20. doi: 10.1029/2007pa001545 |
Bertrand, P., Béhar, F., Durand, B., 1986. Composition of Potential Oil from Humic Coals in Relation to Their Petrographic Nature. Organic Geochemistry, 10(1/2/3): 601-608. doi: 10.1016/0146-6380(86)90056-2 |
Bock, M. J., Mayer, L. M., 2000. Mesodensity Organo-Clay Associations in a Near-Shore Sediment. Marine Geology, 163(1/2/3/4): 65-75. doi: 10.1016/s0025-3227(99)00105-x |
Bostick, N. H. , Foster, J. N. , 1975. Comparison of Vitrinite Reflectance in Coal Seams and in Kerogen of Sandstones, Shales, and Limestones in the Same Part of a Sedimentary Section. In: Alpern, B. , ed. , Petrographie de la Matiereorganique des Sediments, Relations Avec la Paleotemperature et le Potential Petrolier, Paris, CNRS. 13-25 |
Bowker, K. A., 2007. Barnett Shale Gas Production, Fort Worth Basin: Issues and Discussion. AAPG Bulletin, 91(4): 523-533. doi: 10.1306/06190606018 |
Burnaman, M. D., Xia, W. W., Shelton, J., 2009. Shale Gas Play Screening and Evaluation Criteria. China Pet. Explor., 14(3): 51-64 |
Burruss, R. C., Laughrey, C. D., 2010. Carbon and Hydrogen Isotopic Reversals in Deep Basin Gas: Evidence for Limits to the Stability of Hydrocarbons. Organic Geochemistry, 41(12): 1285-1296. doi: 10.1016/j.orggeochem.2010.09.008 |
Carpentier, B. , Huc, A. -Y. , Hamou, P. , et al. , 1995. Detection, Distribution and Origin of Thin Tar Mats in the Miller Field (North Sea, UK). 17th International Meeting on Organic Geochemistry, San Sebastian, Spain. 388-390 |
Carpentier, B. , Huc, A. -Y. , Marquis, F. , et al. , 1998. Distribution and Origin of a Tar Mat in the S. Field (Abu Dhabi, A. E. U. ). The 8th Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, U. A. E. , SPE 49472: 1-10 |
Carr, A. D., 2000. Suppression and Retardation of Vitrinite Reflectance, Part 1. Formation and Significance for Hydrocarbon Generation. Journal of Petroleum Geology, 23(3): 313-343. doi: 10.1111/j.1747-5457.2000.tb01022.x |
Carvajal-Ortiz, H., Gentzis, T., 2015. Critical Considerations when Assessing Hydrocarbon Plays Using Rock-Eval Pyrolysis and Organic Petrology Data: Data Quality Revisited. International Journal of Coal Geology, 152: 113-122. doi: 10.1016/j.coal.2015.06.001 |
Chen, G. J., Yen, M. C., Wang, J. M., et al., 2008. Layered Inorganic/ Enzyme Nanohybrids with Selectivity and Structural Stability upon Interacting with Biomolecules. Bioconjugate Chemistry, 19(1): 138-144. doi: 10.1021/bc700224q |
Chen, J. P., Qin, Y., Huff, B. G., et al., 2001. Geochemical Evidence for Mudstone as the Possible Major Oil Source Rock in the Jurassic Turpan Basin, Northwest China. Organic Geochemistry, 32(9): 1103-1125. doi: 10.1016/s0146-6380(01)00076-6 |
Chen, Z. H., Liu, X. J., Guo, Q. L., et al., 2017. Inversion of Source Rock Hydrocarbon Generation Kinetics from Rock-Eval Data. Fuel, 194: 91-101. doi: 10.1016/j.fuel.2016.12.052 |
Chung, H. M., Gormly, J. R., Squires, R. M., 1988. Origin of Gaseous Hydrocarbons in Subsurface Environments: Theoretical Considerations of Carbon Isotope Distribution. Chemical Geology, 71(1/2/3): 97-104. doi: 10.1016/0009-2541(88)90108-8 |
Clayton, C., 1991. Carbon Isotope Fractionation during Natural Gas Generation from Kerogen. Marine and Petroleum Geology, 8(2): 232-240. doi: 10.1016/0264-8172(91)90010-x |
Clayton, J. L., 1998. Geochemistry of Coalbed Gas--A Review. International Journal of Coal Geology, 35(1/2/3/4): 159-173. doi: 10.1016/s0166-5162(97)00017-7 |
Coleman, D., Liu, C.-L., Hackley, K. C., et al., 1993. Isotopic Identification of Landfill Methane. Environmental Geosciences, 2(2): 95-103 |
Cooles, G. P., MacKenzie, A. S., Quigley, T. M., 1986. Calculation of Petroleum Masses Generated and Expelled from Source Rocks. Organic Geochemistry, 10(1/2/3): 235-245. doi: 10.1016/0146-6380(86)90026-4 |
Cornelius, C. D., 1978. Muttergesteinfaziesals Parameter der Erd lbildung. Erd l-ErdgasZeitschrift, 3: 90-94 |
Cornford, C. , 2009. Source Rocks and Hydrocarbons of the North Sea, Chapter 11. In: Glennie, K. W. , ed. , Petroleum Geology of the North Sea, Basic Concepts and Recent Advances: Fourth Edition. Blackwell Science Ltd, Oxford. 376-462. doi: 10.1002/9781444313413.ch11 |
Curtis, J. B., 2002. Fractured Shale-Gas Systems. AAPG Bulletin, 86(11): 1921-1938. doi: 10.1306/61eeddbe-173e-11d7-8645000102c1865d |
Dai, J. X., Zou, C. N., Dong, D. Z., et al., 2016. Geochemical Characteristics of Marine and Terrestrial Shale Gas in China. Marine and Petroleum Geology, 76(9): 444-463. doi: 10.1016/j.marpetgeo.2016.04.027 |
Darrah, T. H., Vengosh, A., Jackson, R. B., et al., 2014. Noble Gases Identify the Mechanisms of Fugitive Gas Contamination in Drinking-Water Wells Overlying the Marcellus and Barnett Shales. Proceedings of the National Academy of Sciences, 111(39): 14076-14081. doi: 10.1073/pnas.1322107111 |
Delvaux, D., Martin, H., Leplat, P., et al., 1990. Comparative Rock-Eval Pyrolysis as an Improved Tool for Sedimentary Organic Matter Analysis. Organic Geochemistry, 16(4/5/6): 1221-1229. doi: 10.1016/0146-6380(90)90157-u |
Dembicki, H. Jr., Horsfield, B., Ho, T. T. Y., 1983. Source Rock Evaluation by Pyrolysis-Gas Chromatography. AAPG Bulletin, 67: 1094-1103. doi: 10.1306/03b5b709-16d1-11d7-8645000102c1865d |
Du, J. G., Jin, Z. J., Xie, H. S., et al., 2003. Stable Carbon Isotope Compositions of Gaseous Hydrocarbons Produced from High Pressure and High Temperature Pyrolysis of Lignite. Organic Geochemistry, 34(1): 97-104. doi: 10.1016/s0146-6380(02)00158-4 |
Espitalié, J., Deroo, G., Marquis, F., 1986. La Pyrolyse Rock-Eval et Ses Applications. Troisième Partie. Revue de l'Institut Fran ais du Pétrole, 41(1): 73-89. doi: 10.2516/ogst:1986003 |
Espitalié, J., Laporte, J. L., Madec, M., et al., 1977. Méthode Rapide de Caractérisation des Roches Mètres, de Leur Potentiel Pétrolier et de Leur Degré D'évolution.Revue de l'Institut Fran ais du Pétrole, 32(1): 23-42. doi: 10.2516/ogst:1977002 |
Espitalié, J., Madec, M., Tissot, B., 1980. Role of Mineral Matrix in Kerogen Pyrolysis: Influence on Petroleum Generation and Migration. AAPG Bulletin, 64: 59-66. doi: 10.1306/2f918928-16ce-11d7-8645000102c1865d |
Espitalié, J. , Madec, M. , Tissot, B. , 1984. Geochemical Logging. In: Voorhees, K. J. ed. , Analytical Pyrolysis-Techniques and Applications. Boston, Butterworth. 276-304 |
Espitalié, J. , Marquis, F. , Sage, L. , 1987. Organic Geochemistry of the Paris Basin. In: Brooks, J. , Glennie, K. eds. , Petroleum Geology of North-West Europe, Graham and Totman, London. 71-86 |
Feng, Z. Q., Liu, D., Huang, S. P., et al., 2016. Carbon Isotopic Composition of Shale Gas in the Silurian Longmaxi Formation of the Changning Area, Sichuan Basin. Petroleum Exploration and Development, 43(5): 769-777. doi: 10.1016/s1876-3804(16)30092-1 |
Filby, R. H. , van Berkel, G. J. , 1987. Geochemistry of Metal Complexes in Petroleum, Source Rocks and Coals: An Overview. In: Filby, R. H. , ed. , Metal Complexes in Fossil Fuels. American Chemical Society, Washington DC. 2-39 |
Forsman, J. P. , 1963. Geochemistry of Kerogen. Organic Geochemistry. Breger, I. A. , ed. , Pergamon Press, New York. 148-182 |
Gallegos, E. J., 1975. Terpane-Sterane Release from Kerogen by Pyrolysis Gas Chromatography-Mass Spectrometry. Analytical Chemistry, 47(9): 1524-1528. doi: 10.1021/ac60359a053 |
Gentzis, T. , Goodarzi, F. , 1994. Reflectance Suppression in Some Cretaceous Coals from Alberta, Canada. In: Mukhopadhyay, P. K. , Dow, W. G. , eds. , Vitrinite Reflectance as a Maturity Parameter: Applications and Limitations. Symposium Series, ACS, Washington, DC. 570: 93-110 |
Goddard, W. A. , Tang, Y. , Wu, S. , et al. , 2013. Novel Gas Isotope Interpretation Tools to Optimize Gas Shale Production. Research Partnership to Secure Energy for America, Report No. 08122. 15, Washington, DC. 90 |
Golding, S. D., Boreham, C. J., Esterle, J. S., 2013. Stable Isotope Geochemistry of Coal Bed and Shale Gas and Related Production Waters: A Review. International Journal of Coal Geology, 120: 24-40. doi: 10.1016/j.coal.2013.09.001 |
Goodarzi, F., 1985. Organic Petrology of Hat Creek Coal Deposit No. 1, British Columbia. International Journal of Coal Geology, 5(4): 377-396. doi: 10.1016/0166-5162(85)90003-5 |
Goodarzi, F., 1987. Comparison of Reflectance Data from Various Macerals from Sub-Bituminous Coals. Journal of Petroleum Geology, 10(2): 219-226. doi: 10.1111/j.1747-5457.1987.tb00211.x |
Goodarzi, F., Gentzis, T., Feinstein, S., et al., 1988. Effect of Maceral Subtypes and Mineral Matrix on Measured Reflectance of Subbituminous Coals and Dispersed Organic Matter. International Journal of Coal Geology, 10(4): 383-398. doi: 10.1016/0166-5162(88)90011-0 |
Gromet, L. P., Haskin, L. A., Korotev, R. L., et al., 1984. The "North American Shale Composite": Its Compilation, Major and Trace Element Characteristics. Geochimica et Cosmochimica Acta, 48(12): 2469-2482. doi: 10.1016/0016-7037(84)90298-9 |
Gurba, L. W., Ward, C. R., 1998. Vitrinite Reflectance Anomalies in the High-Volatile Bituminous Coals of the Gunnedah Basin, New South Wales, Australia. International Journal of Coal Geology, 36(1/2): 111-140. doi: 10.1016/s0166-5162(97)00033-5 |
Hackley, P. C., Araujo, C. V., Borrego, A. G., et al., 2015. Standardization of Reflectance Measurements in Dispersed Organic Matter: Results of an Exercise to Improve Interlaboratory Agreement. Mar. Pet. Geol., 59: 22-34 doi: 10.1016/j.marpetgeo.2014.07.015 |
Hackley, P. C., Cardott, B. J., 2016. Application of Organic Petrography in North American Shale Petroleum Systems: A Review. International Journal of Coal Geology, 163: 8-51. doi: 10.1016/j.coal.2016.06.010 |
Hackley, P. C., Guevara, E. H., Hentz, T. F., et al., 2009. Thermal Maturity and Organic Composition of Pennsylvanian Coals and Carbonaceous Shales, North-Central Texas: Implications for Coalbed Gas Potential. International Journal of Coal Geology, 77(3/4): 294-309. doi: 10.1016/j.coal.2008.05.006 |
Hackley, P. C., Ryder, R. T., Trippi, M. H., et al., 2013. Thermal Maturity of Northern Appalachian Basin Devonian Shales: Insights from Sterane and Terpane Biomarkers. Fuel, 106: 455-462. doi: 10.1016/j.fuel.2012.12.032 |
Hakimi, M. H., Abdullah, W. H., 2014. Biological Markers and Carbon Isotope Composition of Organic Matter in the Upper Cretaceous Coals and Carbonaceous Shale Succession (Jiza-Qamar Basin, Yemen): Origin, Type and Preservation. Palaeogeography, Palaeoclimatology, Palaeoecology, 409: 84-97. doi: 10.1016/j.palaeo.2014.04.022 |
Hakimi, M. H., Abdullah, W. H., Shalaby, M. R., et al., 2014. Geochemistry and Organic Petrology Study of Kimmeridgian Organic-Rich Shales in the Marib-Shabowah Basin, Yemen: Origin and Implication for Depositional Environments and Oil-Generation Potential. Marine and Petroleum Geology, 50: 185-201. doi: 10.1016/j.marpetgeo.2013.09.012 |
Hakimi, M. H. , Ahmed, A. F. , Abdullah, W. H. , 2016. Organic Geochemical and Petrographic Characteristics of the Miocene Salif Organic-Rich Shales in the Tihama Basin, Red Sea of Yemen: Implications for Paleoenvironmental Conditions and Oil-Generation Potential. International Journal of Coal Geology, 154/155: 193-204. doi: 10.1016/j.coal.2016.01.004 |
Hao, F., Chen, J. Y., 1992. The Cause and Mechanism of Vitrinite Reflectance Anomalies. Journal of Petroleum Geology, 15(4): 419-434. doi: 10.1111/j.1747-5457.1992.tb01043.x |
Harrington, J. , Whyte, C. , Muehlenbachs, K. , et al. , 2015. Using Noble Gas and Hydrocarbon Gas Geochemistry to Source the Origin of Fluids in the Eagle Ford Shale of Texas, USA. Presented at AAPG Annual Convention & Exhibition, May 31-June 3, 2015, Denver, Colorado. 1-31 |
Hartkopf-Fröder, C., K nigshof, P., Littke, R., et al., 2015. Optical Thermal Maturity Parameters and Organic Geochemical Alteration at Low Grade Diagenesis to Anchimetamorphism: A Review. International Journal of Coal Geology, 150/151: 74-119. doi: 10.1016/j.coal.2015.06.005 |
Hazra, B., Dutta, S., Kumar, S., 2017. TOC Calculation of Organic Matter Rich Sediments Using Rock-Eval Pyrolysis: Critical Consideration and Insights. International Journal of Coal Geology, 169: 106-115. doi: 10.1016/j.coal.2016.11.012 |
Hazra, B., Varma, A. K., Bandopadhyay, A. K., et al., 2015. Petrographic Insights of Organic Matter Conversion of Raniganj Basin Shales, India. International Journal of Coal Geology, 150/151: 193-209. doi: 10.1016/j.coal.2015.09.001 |
Hunt, J. M., 1972. Distribution of Carbon in Crust of Earth: Geological Notes. AAPG Bulletin, 56: 2273-2277. doi: 10.1306/819a4206-16c5-11d7-8645000102c1865d |
Hunt, J. M. , 1996. Petroleum Geochemistry and Geology. W. H. Freeman and Company, New York |
Hutton, A. C., Cook, A. C., 1980. Influence of Alginite on the Reflectance of Vitrinite from Joadja, NSW, and some other Coals and Oil Shales Containing Alginite. Fuel, 59(10): 711-714. doi: 10.1016/0016-2361(80)90025-3 |
Iglesias, M. J., del Rı́o, J. C., Laggoun-Défarge, F., et al., 2002. Control of the Chemical Structure of Perhydrous Coals; FTIR and Py-GC/MS Investigation. Journal of Analytical and Applied Pyrolysis, 62(1): 1-34. doi: 10.1016/s0165-2370(00)00209-6 |
International Committee for Coal Petrology (ICCP), 1971. International Handbook of Coal Petrography, 1st Supplement to 2nd Edition. CNRS, Paris |
Jarvie, D. M. , 2012a. Shale Resource Systems for Oil and Gas: Part 1—Shale-Gas Resource Systems. In: Breyer, J. A. , ed. , Shale Reservoirs—Giant Resources for the 21st Century. AAPG Memoir, 97: 69-87 |
Jarvie, D. M. , 2012b. Shale Resource Systems for Oil and Gas: Part 2—Shale-Oil Resource Systems. In: Breyer, J. A. , ed. , Shale Reservoirs—Giant Resources for the 21st Century. AAPG Memoir, 97: 89-119 |
Jarvie, D. M., 2014. Components and Processes Affecting Producibility and Commerciality of Shale Resource Systems. Geologica Acta, Alago Special Publicatio, 12(4): 307-325. doi:10.1344/GeologicaActa 2014.12.4.3 |
Jarvie, D. M. , Claxton, B. L. , Henk, F. , et al. , 2001. Oil and Shale Gas from the Barnett Shale, Ft. Worth Basin, Texas. In: Abstract, AAPG Annual Meeting Program, June 3-6, 2001. Denver. 10: A100 |
Jarvie, D. M. , Hill, R. J. , Pollastro, R. M. , 2005. Assessment of the Gas Potential and Yields from Shales: The Barnett Shale Model. In: Cardott, B. J. , ed. , Unconventional Energy Resources in the Southern Midcontinent, 2004 Symposium. Oklahoma Geological Survey Circular, 110: 37-50 |
Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as one Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 91(4): 475-499. doi: 10.1306/12190606068 |
Jarvie, D. M. , Lundell, L. L. , 1991. Hydrocarbon Generation Modeling of Naturally and Artificially Matured Barnett Shale, Fort Worth Basin, Texas. Southwest Regional Geochemistry Meeting, September 8-9, 1991, the Woodlands, Texas. [2016-02-14]. http://www.humble-inc.com/Jarvie_Lundell_1991.pdf |
Jia, W., Segal, E., Kornemandel, D., et al., 2002. Polyaniline-DBSA/Organophilic Clay Nanocomposites: Synthesis and Characterization. Synthetic Metals, 128(1): 115-120. doi: 10.1016/s0379-6779(01)00672-5 |
Jones, J. , Murchison, D. G. , Saleh, S. , 1972. Variation of Vitrinite Reflectivity in Relation to Lithology. In: Gaertner, H. W. , Wehner, H. , eds. , Advances in Organic Geochemistry 1971. Pergamon Press, Oxford. 601-612 |
Kalkreuth, W. D., 1982. Rank and Petrographic Composition of Selected Jurassic-Lower Cretaceous Coals of British Columbia, Canada. Can. Petrol. Geol.Bull., 30: 112-139 |
Kalkreuth, W., Macauley, G., 1984. The Organic Petrology of Selected Oil Shale Samples from the Lower Carboniferous Albert Formation, New Brunswick, Canada. Bulletin of Canadian Petroleum Geology, 32(1): 38-51 |
Kalkreuth, W., Macauley, G., 1987. Organic Petrology and Geochemical (Rock-Eval) Studies on Oil Shales and Coals from the Pictou and Antigonish Areas, Nova Scotia, Canada. Bull. Can. Petrol. Geol., 35: 263-295 |
Keil, R. G., Cowie, G. L., 1999. Organic Matter Preservation through the Oxygen-Deficient Zone of the NE Arabian Sea as Discerned by Organic Carbon: Mineral Surface Area Ratios. Marine Geology, 161(1): 13-22. doi: 10.1016/s0025-3227(99)00052-3 |
Keil, R. G., Montlu on, D. B., Prahl, F. G., et al., 1994. Sorptive Preservation of Labile Organic Matter in Marine Sediments. Nature, 370(6490): 549-552. doi: 10.1038/370549a0 |
Kelley, K. D. , Graham, G. E. , Benzel, W. M. , 2015. Extent of Metalliferous Intervals and Principal Hosts of Mo, Ni, V, and Zn in Oil Shale of the Mississippian Heath Formation, Montana, USA. In: André-Mayer, A. -S. , Cathelineau, M. , Muehez, P. , et al. , eds. , Mineral Resources in a Sustainable World. Proceedings of 13th Biennial Mtg. , Society for Geology Applied to Mineral Deposits (SGA), August 24-27, 2015, Nancy, France. 4: 1937-1940 |
Kennedy, M. J., L hr, S. C., Fraser, S. A., et al., 2014. Direct Evidence for Organic Carbon Preservation as Clay-Organic Nanocomposites in a Devonian Black Shale: From Deposition to Diagenesis. Earth and Planetary Science Letters, 388: 59-70. doi: 10.1016/j.epsl.2013.11.044 |
Kennedy, M. J., Pevear, D., Hill, R., 2002. Mineral Surface Control of Organic Carbon in Black Shale. Science, 295(5555): 657-660. doi: 10.1126/science.1066611 |
Kennedy, M. J., Wagner, T., 2011. Clay Mineral Continental Amplifier for Marine Carbon Sequestration in a Greenhouse Ocean. Proceedings of the National Academy of Sciences, 108(24): 9776-9781. doi: 10.1073/pnas.1018670108 |
Ketris, M. P., Yudovich, Y. E., 2009. Estimations of Clarkes for Carbonaceous Biolithes: World Averages for Trace Element Contents in Black Shales and Coals. International Journal of Coal Geology, 78(2): 135-148. doi: 10.1016/j.coal.2009.01.002 |
Khorasani, G. K., Michelsen, J. K., 1994. The Effects of Overpressure, Lithology, Chemistry and Heating Rate on Vitrinite Reflectance Evolution, and Its Relationship with Oil Generation. APEA J., 34 (Pt. 1): 418-434 |
Kimble, B. J., Maxwell, J. R., Philp, R. P., et al., 1974. Tri-and Tetraterpenoid Hydrocarbons in the Messel Oil Shale. Geochimica et Cosmochimica Acta, 38(7): 1165-1181. doi: 10.1016/0016-7037(74)90011-8 |
Klaja, J., Dudek, L., 2016. Geological Interpretation of Spectral Gamma Ray (SGR) Logging in Selected Boreholes. Nafta-Gaz, 72(1): 3-14. doi: 10.18668/ng2016.01.01 |
Koŝina, M., Heppner, P., 1985. Macerals in Bituminous Coals and the Coking Process, 2. Coal Mass Properties and the Coke Mechanical Properties. Fuel, 64: 53-58 |
Lafargue, E., Marquis, F., Pillot, D., 1998. Rock-Eval 6 Applications in Hydrocarbon Exploration, Production, and Soil Contamination Studies. Revue de l'Institut Fran ais du Pétrole, 53(4): 421-437. doi: 10.2516/ogst:1998036 |
Laughrey, C. D. , 2014. Introductory Geochemistry for Shale Gas, Condensate-Rich Shales and Tight Oil Reservoirs. URTeC Annual Meeting Short Course, Colorado Convention Center, August 2014, Denver, Colorado. 325 |
Leischner, K. , Welte, D. H. , Littke, R. , 1993. Fluid Inclusions and Organic Maturity Parameters as Calibration Tools in Basin Modeling. In: Dore, A. G. , ed. , Basin Modeling: Advances and Applications: NPF Special Publication, 3. Elsevier, Amsterdam. 161-172 |
Leventhal, J. S. , 1998. Metal-Rich Black Shales: Formation, Economic Geology and Environmental Considerations. In: Schieber, J. , Zimmerle, W. , Sethi, P. , eds. , Shales and Mudstones Ⅱ. E. Schweizerbart'sche Verlagsbuchhandlung Stuttgart |
Lewan, M. D., Henry, M. E., Higley, D. K., et al., 2002. Material-Balance Assessment of the New Albany-Chesterian Petroleum System of the Illinois Basin. AAPG Bulletin, 86: 745-777. doi: 10.1306/61eedb8e-173e-11d7-8645000102c1865d |
Little, S. H., Vance, D., Lyons, T. W., et al., 2015. Controls on Trace Metal Authigenic Enrichment in Reducing Sediments: Insights from Modern Oxygen-Deficient Settings. American Journal of Science, 315(2): 77-119. doi: 10.2475/02.2015.01 |
Martini, A. M., Walter, L. M., Ku, T. C. W., et al., 2003. Microbial Production and Modification of Gases in Sedimentary Basins: A Geochemical Case Study from a Devonian Shale Gas Play, Michigan Basin. AAPG Bulletin, 87(8): 1355-1375. doi: 10.1306/031903200184 |
Mayer, L. M., 1994. Surface Area Control of Organic Carbon Accumulation in Continental Shelf Sediments. Geochimica et Cosmochimica Acta, 58(4): 1271-1284. doi: 10.1016/0016-7037(94)90381-6 |
McCarthy, K. R., Niemann, M., Palmowski, D., et al., 2011. Basic Petroleum Geochemistry for Source Rock Evaluation. Oilfield Review, 23(2): 32-43 |
Moore, T. A., Bowe, M., Nas, C., 2014. High Heat Flow Effects on a Coalbed Methane Reservoir, East Kalimantan (Borneo), Indonesia. International Journal of Coal Geology, 131: 7-31. doi: 10.1016/j.coal.2014.05.012 |
Mukhopadhyay, P. K., 1994. Vitrinite Reflectance as Maturity Parameter: Petrographic and Molecular Characterization and Its Applications to Basin Modeling. In: Mukhopadhyay, P. K., Dow, W. G., eds., Vitrinite Reflectance as a Maturity Parameter. ACS Symposium Series, 570: 1-25 doi: 10.1021/symposium |
Mukhopadhyay, P. K., Dow, W. G., 1994. A Review of "Vitrinite Reflectance as a Maturity Parameter: Applications and Limitations". ACS Symposium Series, 570: 294 |
Newman, J., Newman, N. A., 1982. Reflectance Anomalies in Pike River Coals: Evidence of Variability in Vitrinite Type, with Implications for Maturation Studies and "Suggate Rank". New Zealand Journal of Geology and Geophysics, 25(2): 233-243. doi: 10.1080/00288306.1982.10421412 |
Obermajer, M., Fowler, M. G., Snowdon, L. R., 1999. Depositional Environment and Oil Generation in Ordovician Source Rocks from Southwestern Ontario, Canada: Organic Geochemical and Petrological Approach. AAPG Bulletin, 83: 1426-1453. doi: 10.1306/e4fd41d9-1732-11d7-8645000102c1865d |
Ocampo, R. , Callot, H. J. , Albrecht, P. , 1987. Evidence for Porphyrins of Bacterial and Algal Origin in Oil Shale. In: Filby, R. H. , ed. , Metal Complexes in Fossil Fuels. American Chemical Society, Washington DC |
Ohkouchi, N., Kuroda, J., Taira, A., 2015. The Origin of Cretaceous Black Shales: A Change in the Surface Ocean Ecosystem and Its Triggers. Proceedings of the Japan Academy, Series B, 91(7): 273-291. doi: 10.2183/pjab.91.273 |
Osborn, S. G., McIntosh, J. C., 2010. Chemical and Isotopic Tracers of the Contribution of Microbial Gas in Devonian Organic-Rich Shales and Reservoir Sandstones, Northern Appalachian Basin. Applied Geochemistry, 25(3): 456-471. doi: 10.1016/j.apgeochem.2010.01.001 |
Ostera, H. A., García, R., Malizia, D., et al., 2016. Shale Gas Plays, Neuquén Basin, Argentina: Chemostratigraphy and Mud Gas Carbon Isotopes Insights. Brazilian Journal of Geology, 46(Suppl. 1): 181-196. doi: 10.1590/2317-4889201620150001 |
Othman, R., Ward, C. R., 2002. Thermal Maturation Pattern in the Southern Bowen, Northern Gunnedah and Surat Basins, Northern New South Wales, Australia. International Journal of Coal Geology, 51(3): 145-167. doi: 10.1016/s0166-5162(02)00082-4 |
Peters, K. E., 1986. Guidelines for Evaluating Petroleum Source Rock Using Programmed Pyrolysis. AAPG Bulletin, 70: 318-329. doi: 10.1306/94885688-1704-11d7-8645000102c1865d |
Peters, K. E., Cassa, M. R., 1994. Applied Source Rock Geochemistry. In: Magoon, L. B., Dow, W. G., eds., The Petroleum System from Source to Trap. AAPG Memoir, 60: 93-120 |
Peters, K. E. , Walters, C. C. , Moldowan, J. M. , 2005. The Biomarker Guide, 2nd Ed. , Vol. 2. Cambridge University Press, Cambridge |
Petersen, H. I., Vosgerau, H., 1999. Composition and Organic Maturity of Middle Jurassic Coals, North-East Greenland: Evidence for Liptinite-Induced Suppression of Huminite Reflectance. International Journal of Coal Geology, 41(3): 257-274. doi: 10.1016/s0166-5162(99)00022-1 |
Pillot, D. , Letort, G. , Romero-Sarmiento, M. F. , et al. , 2014. Procédé Pour l' valuation d'Aumoins unecaractéristiquepétrolière d'un échantillon de Roche. Patent 14/55. 009 |
Pittion, J. L. , Gouadain, J. , 1985. Maturity Studies of the Jurassic 'Coal Unit' in Three Wells from the Haltenbanken Area. In: Thomas, B. M. , ed. , Petroleum Geochemistry in Exploration of the Norwegian Shelf. Graham and Trotman, London. 205-211 |
Price, L. C., Baker, C. E., 1985. Suppression of Vtrinite Reflectance in Amorphous Rich Kerogen--A Major Unrecognized Problem. Journal of Petroleum Geology, 8(1): 59-84. doi: 10.1111/j.1747-5457.1985.tb00191.x |
Prinzhofer, A. , 2012. Noble Gases in Oil and Gas Accumulations, Chapter 9. In: Burnard, P. , ed. , Noble Gases as Geochemical Tracers. Springer, New York. 225-247 |
Qu, Z. Y., Sun, J. N., Shi, J. T., et al., 2016. Characteristics of Stable Carbon Isotopic Composition of Shale Gas. Journal of Natural Gas Geoscience, 1(2): 147-155. doi: 10.1016/j.jnggs.2016.05.008 |
Quirke, J. M. E. , 1987. Rationalization for the Predominance of Nickel and Vanadium Porphyrins in the Geosphere. In: Filby, R. H. , ed. , Metal Complexes in Fossil Fuels. American Chemical Society, Washington DC |
Ransom, B., Bennett, R. H., Baerwald, R., et al., 1997. TEM Study of in Situ Organic Matter on Continental Margins: Occurrence and the "Monolayer" Hypothesis. Marine Geology, 138(1/2): 1-9. doi: 10.1016/s0025-3227(97)00012-1 |
Ransom, B., Kim, D., Kastner, M., et al., 1998. Organic Matter Preservation on Continental Slopes: Importance of Mineralogy and Surface Area. Geochimica et Cosmochimica Acta, 62(8): 1329-1345. doi: 10.1016/s0016-7037(98)00050-7 |
Ratcliffe, K. T., Wright, A. M., Schmidt, K., 2012. Application of Inorganic Whole-Rock Geochemistry to Shale Resource Plays: An Example from the Eagle Ford Formation, Texas. The Sedimentary Record, 10(2): 4-9. doi: 10.2110/sedred.2012.2.4 |
Raymond, A. C., Murchison, D. G., 1991. Influence of Exinitic Macerals on the Reflectance of Vitrinite in Carboniferous Sediments of the Midland Valley of Scotland. Fuel, 70(2): 155-161. doi: 10.1016/0016-2361(91)90146-2 |
Rice, D. D., 1993. Composition and Origins of Coalbed Gas. In: Law, B. E., Rice, D. D., eds., Hydrocarbons from Coal. Studies in Geology, AAPG, 38: 159-184 |
Rivera, K. , Quan, T. M. , 2014. Thermal Maturation Effects on the Nitrogen Isotopes in Marine Shales: A Case Study of the Woodford Shale. Conference Paper, AAPG Annual Convention and Exhibition, Pittsburgh, Pennsylvania, May 19-22, 2013. Article #50920 |
Robert, P. , 1980. The Optical Evolution of Kerogen and Geothermal Histories Applied to Oil and Gas Exploration. In: Durand, B. , ed. , Kerogen. Technip, Paris. 385-414 |
Robin, P. L. , 1975. Caracterisation des Kerogenes et de Leur Evolution par Spectroscopie in Frarouge: [Dissertation]. University Louvain, Paris |
Romero-Sarmiento, M.-F., Pillot, D., Letort, G., et al., 2016. New Rock-Eval Method for Characterization of Unconventional Shale Resource Systems.Oil & Gas Science and Technology--Revue d'IFP Energies nouvelles, 71(3): 37. doi: 10.2516/ogst/2015007 |
Romero-Sarmiento, M.-F., Rouzaud, J. N., Bernard, S., et al., 2014. Evolution of Barnett Shale Organic Carbon Structure and Nanostructure with Increasing Maturation. Organic Geochemistry, 71: 7-16. doi: 10.1016/j.orggeochem.2014.03.008 |
Salmon, V., Derenne, S., Lallier-Vergès, E., et al., 2000. Protection of Organic Matter by Mineral Matrix in a Cenomanian Black Shale. Organic Geochemistry, 31(5): 463-474. doi: 10.1016/s0146-6380(00)00013-9 |
Satterberg, J., Arnarson, T. S., Lessard, E. J., et al., 2003. Sorption of Organic Matter from Four Phytoplankton Species to Montmorillonite, Chlorite and Kaolinite in Seawater. Marine Chemistry, 81(1/2): 11-18. doi: 10.1016/s0304-4203(02)00136-6 |
Schmoker, J. W. , 1995. Method for Assessing Continuous-Type (Unconventional) Hydrocarbon Accumulations. In: Gautier, D. L. , Dolton, G. L. , Takahashi, K. I. , et al. , eds. , 1995 National Assessment of United States Oil and Gas Resources--Results, Methodology, and Supporting Data. U. S. Geological Survey Digital Data Series 30: CD-ROM |
Schoell, M., 1983. Genetic Characterization of Natural Gases. American Association of Petroleum Geologists Bulletin, 67: 2225-2238 |
Scott, C., Slack, J. F., Kelley, K. D., 2017. The Hyper-Enrichment of V and Zn in Black Shales of the Late Devonian-Early Mississippian Bakken Formation (USA). Chemical Geology, 452: 24-33. doi: 10.1016/j.chemgeo.2017.01.026 |
Seifert, W. K., 1978. Application of Steranes and Terpanes in Kerogen Pyrolysis for Correlation of Oils and Source Rocks. Geochimica et Cosmochimica Acta, 42(5): 473-484. doi: 10.1016/0016-7037(78)90197-7 |
Seifert, W. K. , Moldowan, J. M. , 1986. Use of Biomarkers in Petroleum Exploration. In: Johns, R. B. , ed. , Methods in Geochemistry and Geophysics, Vol. 24. Elsevier, Amsterdam. 261-290 |
Snowdon, L. R., 1995. Rock-Eval Tmax Suppression: Documentation and Amelioration. AAPG Bulletin, 79: 1337-1348. doi: 10.1306/7834d4c2-1721-11d7-8645000102c1865d |
Sposito, G., Skipper, N. T., Sutton, R., et al., 1999. Surface Geochemistry of the Clay Minerals. Proceedings of the National Academy of Sciences, 96(7): 3358-3364. doi: 10.1073/pnas.96.7.3358 |
Stach, E. , Mackowsky, M. -Th. , Teichmüller, M. , et al. , 1982. Stach's Textbook of Coal Petrology: 3rd Ed. Gebrüder Borntraeger, Berlin-Stuttgart. 535 |
Stahl, W. J., 1977. Carbon and Nitrogen Isotopes in Hydrocarbon Research and Exploration. Chemical Geology, 20: 121-149. doi: 10.1016/0009-2541(77)90041-9 |
Strąpoć, D., Mastalerz, M., Schimmelmann, A., et al., 2010. Geochemical Constraints on the Origin and Volume of Gas in the New Albany Shale (Devonian-Mississippian), Eastern Illinois Basin. AAPG Bulletin, 94(11): 1713-1740. doi: 10.1306/06301009197 |
Suárez-Ruiz, I., Flores, D., Mendon a Filho, J. G., et al., 2012. Review and Update of the Applications of Organic Petrology: Part 1, Geological Applications. International Journal of Coal Geology, 99: 54-112. doi: 10.1016/j.coal.2012.02.004 |
Suárez-Ruiz, I. , Iglesias, M. J. , Jiménez Bautista, A. , et al. , 1994a. Petrographic and Geochemical Anomalies Detected in the Spanish Jurassic Jet. In: Mukhopadhyay, P. K. , Dow, W. G. , eds. , Vitrinite Reflectance as a Maturity Parameter. Applications and Limitations. American Chemical Society Symposium Series, 570, Chapter 6. ACS Books. 76-92 |
Suárez-Ruiz, I., Jimenez, A., Iglesias, M. J., et al., 1994b. Influence of Resinite on Huminite Properties. Energy & Fuels, 8(6): 1417-1424. doi: 10.1021/ef00048a033 |
Sun, X., Zhang, T. W., Sun, Y. G., et al., 2016. Geochemical Evidence of Organic Matter Source Input and Depositional Environments in the Lower and Upper Eagle Ford Formation, South Texas. Organic Geochemistry, 98: 66-81. doi: 10.1016/j.orggeochem.2016.05.018 |
Sweeney, J. J., Burnham, A.K., 1990. Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics (1). AAPG Bulletin, 74(10): 1559-1570. doi: 10.1306/0c9b251f-1710-11d7-8645000102c1865d |
Sykes, R., Snowdon, L. R., 2002. Guidelines for Assessing the Petroleum Potential of Coaly Source Rocks Using Rock-Eval Pyrolysis. Organic Geochemistry, 33(12): 1441-1455. doi: 10.1016/s0146-6380(02)00183-3 |
Tang, X. L., Jiang, Z. X., Huang, H. X., et al., 2016. Lithofacies Characteristics and Its Effect on Gas Storage of the Silurian Longmaxi Marine Shale in the Southeast Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 28: 338-346. doi: 10.13039/501100001809 |
Tang, Y., Jenden, P. D., Nigrini, A., et al., 1996. Modeling Early Methane Generation in Coal. Energy & Fuels, 10(3): 659-671. doi: 10.1021/ef950153l |
Tang, Y., Perry, J. K., Jenden, P. D., et al., 2000. Mathematical Modeling of Stable Carbon Isotope Ratios in Natural Gases. Geochimica et Cosmochimica Acta, 64(15): 2673-2687. doi: 10.1016/s0016-7037(00)00377-x |
Taylor, G. H. , 1996. The Electron Microscopy of Vitrinites. In: Given, P. H. , ed. , Papers of Conf. Coal Science, Advances in Chemistry Series 55. American Chemical Society, Washington DC. 274-283 |
Taylor, G. H. , Teichmuller, M. , Davis, A. , 1998. Organic Petrology: Chapter 7. Gebrüder Borntraeger, Berlin |
Teichmüller, M., 1987. Recent Advances in Coalification Studies and Their Application to Geology. Geological Society, London, Special Publications, 32(1): 127-169. doi: 10.1144/gsl.sp.1987.032.01.09 |
Tewari, A., Dutta, S., Sarkar, T., 2016. Organic Geochemical Characterization and Shale Gas Potential of the Permian Barren Measures Formation, West Bokaro Sub-Basin, Eastern India. Journal of Petroleum Geology, 39(1): 49-60. doi: 10.1111/jpg.12627 |
Theng, B. K. G., Churchman, G. J., Newman, R. H., 1986. The Occurrence of Interlayer Clay-Organic Complexes in Two New Zealand Soils. Soil Science, 142(5): 262-266. doi: 10.1097/00010694-198611000-00003 |
Tilley, B., Muehlenbachs, K., 2013. Isotope Reversals and Universal Stages and Trends of Gas Maturation in Sealed, Self-Contained Petroleum Systems. Chemical Geology, 339: 194-204. doi: 10.1016/j.chemgeo.2012.08.002 |
Tissot, B. P. , Welte, D. H. , 1984. Petroleum Formation and Occurrence: 2nd Ed. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo |
Tissot, B. P. , Welte, D. H. , 1978. Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration. Springer-Verlag, Berlin, Heidelberg, New York |
Tissot, B. P., Pelet, R., Ungerer, P., 1987. Thermal History of Sedimentary Basins, Maturation Indices, and Kinetics of Oil and Gas Generation. AAPG Bulletin, 71: 1445-1466. doi: 10.1306/703c80e7-1707-11d7-8645000102c1865d |
Trabelsi, K. , Espitalié, J. , Huc, A. -Y. , 1994. Characterization of Extra Heavy Oils and Tar Deposits by Modified Pyrolysis Methods. Proceedings of the "Heavy Oil Technologies in a Wider Europe", Thermie EC Symposium, Berlin. 30-40 |
Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1/2): 12-32. doi: 10.1016/j.chemgeo.2006.02.012 |
Tuo, J. C., Wu, C. J., Zhang, M. F., 2016. Organic Matter Properties and Shale Gas Potential of Paleozoic Shales in Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 28: 434-446. doi: 10.1016/j.jngse.2015.12.003 |
Turekian, K. K., Wedepohl, K. H., 1961. Distribution of the Elements in some Major Units of the Earth's Crust. Geological Society of America Bulletin, 72(2): 175. doi: 10.1130/0016-7606(1961)72[175:doteis]2.0.co;2 |
van Krevelen, D. W. , 1961. Coal: Typology-Chemistry-Physics-Constitution: 1st Ed. Elsevier, Amsterdam. 514 |
van Krevelen, D. W. , 1993. Coal: Typology-Chemistry-Physics-Constitution: 3rd Ed. Elsevier, Amsterdam. 979 |
Vandenbroucke, M., Largeau, C., 2007. Kerogen Origin, Evolution and Structure. Organic Geochemistry, 38(5): 719-833. doi: 10.1016/j.orggeochem.2007.01.001 |
VanHazebroeck, E., Borrok, D. M., 2016. A New Method for the Inorganic Geochemical Evaluation of Unconventional Resources: An Example from the Eagle Ford Shale. Journal of Natural Gas Science and Engineering, 33: 1233-1243. doi: 10.1016/j.jngse.2016.03.014 |
Varma, A. K., Hazra, B., Mendhe, V. A., et al., 2015. Assessment of Organic Richness and Hydrocarbon Generation Potential of Raniganj Basin Shales, West Bengal, India. Marine and Petroleum Geology, 59: 480-490. doi: 10.1016/j.marpetgeo.2014.10.003 |
Varma, A. K., Hazra, B., Samad, S. K., et al., 2014a. Methane Sorption Dynamics and Hydrocarbon Generation of Shale Samples from West Bokaro and Raniganj Basins, India. Journal of Natural Gas Science and Engineering, 21: 1138-1147. doi: 10.1016/j.jngse.2014.11.011 |
Varma, A. K. , Hazra, B. , Samad, S. K. , et al. , 2014b. Shale Gas Potential of Lower Permian Shales from Raniganj and West Bokaro Basins, India. 66th Annual Meeting and Symposium of the International Committee for Coal and Organic Petrology (ICCP-2014), Stuttgart. 40-41 |
Vengosh, A. , Warner, N. , Osborn, S. , et al. , 2011. Elucidating Water Contamination by Fracturing Fluids and Formation Waters from Gas Wells: Integrating Isotopic and Geochemical Tracers. U. S. Environmental Protection Agency, Workshop on Fracturing Fluid Composition, Feb. 24-25, 2011, Washington DC |
Vinci Technologies, 2003. Rock-Eval 6 Operator Manual. Vinci Technologies, France |
Vine, J. D., Tourtelot, E. B., 1970. Geochemistry of Black Shale Deposits: A Summary Report. Economic Geology, 65(3): 253-272. doi: 10.2113/gsecongeo.65.3.253 |
Wang, X. B., Zhang, B., He, Z. X., et al., 2016. Electrical Properties of Longmaxi Organic-Rich Shale and Its Potential Applications to Shale Gas Exploration and Exploitation. Journal of Natural Gas Science and Engineering, 36: 573-585. doi: 10.13039/501100001809 |
Wanty, R. B., Goldhaber, M. B., 1992. Thermodynamics and Kinetics of Reactions Involving Vanadium in Natural Systems: Accumulation of Vanadium in Sedimentary Rocks. Geochimica et Cosmochimica Acta, 56(4): 1471-1483. doi: 10.1016/0016-7037(92)90217-7 |
Wei, X. F., Guo, T. L., Liu, R. B., 2016. Geochemical Features and Genesis of Shale Gas in the Jiaoshiba Block of Fuling Shale Gas Field, Chongqing, China. Journal of Natural Gas Geoscience, 1(5): 361-371. doi: 10.1016/j.jnggs.2016.11.005 |
Welte, D. H., 1965. Relation between Petroleum and Source Rock. AAPG Bulletin, 49: 2249-2267. doi: 10.1306/a663388c-16c0-11d7-8645000102c1865d |
Whiticar, M. J., 1994. Correlation of Natural Gases with Their Sources. In: Magoon, J., Dow, W. G., eds., The Petroleum System--From Source to Trap. American Association of Petroleum Geologists, Memoir, 60: 261-283 |
Whiticar, M. J., 1996. Stable Isotope Geochemistry of Coals, Humic Kerogens and Related Natural Gases. International Journal of Coal Geology, 32(1/2/3/4): 191-215. doi: 10.1016/s0166-5162(96)00042-0 |
Wilkins, R. W. T., George, S. C., 2002. Coal as a Source Rock for Oil: A Review. International Journal of Coal Geology, 50(1/2/3/4): 317-361. doi: 10.1016/s0166-5162(02)00134-9 |
Wood, D. A., 1988. Relationships between Thermal Maturity Indices Calculated Using Arrhenius Equation and Lopatin Method: Implications for Petroleum Exploration. AAPG Bulletin, 72: 115-135. doi: 10.1306/703c8263-1707-11d7-8645000102c1865d |
Wood, D. A., 2017. Re-establishing the Merits of Thermal Maturity and Petroleum Generation Multi-Dimensional Modelling with an Arrhenius Equation Using a Single Activation Energy. Journal of Earth Science, 28(5): 804-834. doi: 10.1007/s12583-017-0735-7 |
Wüst, R. A. , Hackley, P. C. , Nassichuk, B. R. , et al. , 2013. Vitrinite Reflectance versus Pyrolysis Tmax Data: Assessing Thermal Maturity in Shale Plays with Special Reference to the Duvernay Shale Play of the Western Canadian Sedimentary Basin, Alberta, Canada. Society of Petroleum Engineers Unconventional Resources Conference and Exhibition Paper, Asia Pacific, November 11-13, 2013, Brisbane, Australia, 167013: 11 |
Xia, X. Y., Chen, J., Braun, R., et al., 2013. Isotopic Reversals with Respect to Maturity Trends due to Mixing of Primary and Secondary Products in Source Rocks. Chemical Geology, 339: 205-212. doi: 10.1016/j.chemgeo.2012.07.025 |
Xia, X. Y. , Tang, Y. C. , 2012. Erratum to X. Xia and Y. Tang (2012) "Isotope Fractionation of Methane during Natural Gas Flow with Coupled Diffusion and Adsorption/Desorption" Geochimica et Cosmochimica Acta 77, 489-503. Geochimica et Cosmochimica Acta, 83: 398-399. doi: 10.1016/j.gca.2012.01.005 |
Yang, R., He, S., Hu, Q. H., et al., 2017. Geochemical Characteristics and Origin of Natural Gas from Wufeng-Longmaxi Shales of the Fuling Gas Field, Sichuan Basin (China). International Journal of Coal Geology, 171: 1-11. doi: 10.13039/501100004613 |
Zeng, H. , Li, J. , Liu, W. , 2011. New Insights into Carbon Isotopic Reversals of Deep Gas in Songliao Basin, China. AAPG Hedberg Research Conference—Natural Gas Geochemistry: Recent Developments, Applications and Technologies, May 9-12, 2011, Beijing. 3 |
Zhang, M. J. , Tang, Q. Y. , Cao, C. H. , et al. , 2017. Molecular and Carbon Isotopic Variation in 3. 5 Years Shale Gas Production from Longmaxi Formation in Sichuan Basin, China. Marine and Petroleum Geology. doi: 10.1016/j.marpetgeo.2017.01.023 |
Zhou, Z., Ballentine, C. J., Kipfer, R., et al., 2005. Noble Gas Tracing of Groundwater/Coalbed Methane Interaction in the San Juan Basin, USA. Geochimica et Cosmochimica Acta, 69(23): 5413-5428. doi: 10.1016/j.gca.2005.06.027 |
Zimmerman, A. R., Chorover, J., Goyne, K. W., et al., 2004. Protection of Mesopore-Adsorbed Organic Matter from Enzymatic Degradation. Environmental Science & Technology, 38(17): 4542-4548. doi: 10.1021/es035340+ |
Zou, Y.-R., Cai, Y. L., Zhang, C. C., et al., 2007. Variations of Natural Gas Carbon Isotope-Type Curves and Their Interpretation--A Case Study. Organic Geochemistry, 38(8): 1398-1415. doi: 10.1016/j.orggeochem.2007.03.002 |
Zumberge, J. E., Ferworn, K. A., Curtis, J. B., 2009. Gas Character Anomalies Found in Highly Productive Shale Gas Wells. Geochimica et Cosmochimica Acta, 73: A1539 doi: 10.1016/j.gca.2008.11.041 |
Zumberge, J. E., Ferworn, K., Brown, S., 2012. Isotopic Reversal ('Rollover') in Shale Gases Produced from the Mississippian Barnett and Fayetteville Formations. Marine and Petroleum Geology, 31(1): 43-52. doi: 10.1016/j.marpetgeo.2011.06.009 |