Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 28 Issue 5
Oct 2017
Turn off MathJax
Article Contents
David A. Wood, Bodhisatwa Hazra. Characterization of Organic-Rich Shales for Petroleum Exploration & Exploitation: A Review-Part 2: Geochemistry, Thermal Maturity, Isotopes and Biomarkers. Journal of Earth Science, 2017, 28(5): 758-778. doi: 10.1007/s12583-017-0733-9
Citation: David A. Wood, Bodhisatwa Hazra. Characterization of Organic-Rich Shales for Petroleum Exploration & Exploitation: A Review-Part 2: Geochemistry, Thermal Maturity, Isotopes and Biomarkers. Journal of Earth Science, 2017, 28(5): 758-778. doi: 10.1007/s12583-017-0733-9

Characterization of Organic-Rich Shales for Petroleum Exploration & Exploitation: A Review-Part 2: Geochemistry, Thermal Maturity, Isotopes and Biomarkers

doi: 10.1007/s12583-017-0733-9
More Information
  • As shale exploitation is still in its infancy outside North America much research effort is being channelled into various aspects of geochemical characterization of shales to identify the most prospective basins, formations and map their petroleum generation capabilities across local, regional and basin-wide scales. The measurement of total organic carbon, distinguishing and categorizing the kerogen types in terms oil-prone versus gas-prone, and using vitrinite reflectance and Rock-Eval data to estimate thermal maturity are standard practice in the industry and applied to samples from most wellbores drilled. It is the trends of stable isotopes ratios, particularly those of carbon, the wetness ratio (C1/∑(C2+C3)), and certain chemical biomarkers that have proved to be most informative about the status of shales as a petroleum system. These data make it possible to identify production "sweet-spots", discriminate oil-, gas-liquid-and gas-prone shales from kerogen compositions and thermal maturities. Rollovers and reversals of ethane and propane carbon isotope ratios are particularly indicative of high thermal maturity exposure of an organic-rich shale. Comparisons of hopane, strerane and terpane biomarkers with vitrinite reflectance (Ro) measurements of thermal maturity highlight discrepancies suggesting that Ro is not always a reliable indicator of thermal maturity. Major and trace element inorganic geochemistry data and ratios provides useful information regarding provenance, paleoenvironments, and stratigraphic-layer discrimination. This review considers the data measurement, analysis and interpretation of techniques associated with kerogen typing, thermal maturity, stable and non-stable isotopic ratios for rocks and gases derived from them, production sweet-spot identification, geochemical biomarkers and inorganic chemical indicators. It also highlights uncertainties and discrepancies observed in their practical application, and the numerous outstanding questions associated with them.

     

  • loading
  • Akinlua, A., Smith, R. M., 2010. Subcritical Water Extraction of Trace Metals from Petroleum Source Rock. Talanta, 81(4/5): 1346-1349. doi: 10.1016/j.talanta.2010.02.029
    Algeo, T. J., Rowe, H., 2012. Paleoceanographic Applications of Trace-Metal Concentration Data. Chemical Geology, 324/325: 6-18. doi: 10.1016/j.chemgeo.2011.09.002
    American Society for Testing and Materials (ASTM), 2015a. Standard Test Method for Microscopical Determination of the Reflectance of Vitrinite Dispersed in Sedimentary Rocks. Annual Book of ASTM Standards: Petroleum Products, Lubricants, and Fossil Fuels; Gaseous Fuels; Coal and Coke Sec. 5, V. 5. 06: ASTM International, West Conshohocken, PA. [2016-02-14]. http://www.astm.org/Standards/D7708.htm
    American Society for Testing and Materials (ASTM), 2015b. Standard Test Method for Microscopical Determination of the Reflectance of the Vitrinite Reflectance of Coal. Annual Book of ASTM Standards: Petroleum Products, Lubricants, and Fossil Fuels; Gaseous Fuels; Coal and Coke Sec. 5, V. 5. 06 ASTM International, West Conshohocken, PA. [2016-04-06]. http://www.astm.org/Standards/D2798.htm
    Baldock, J. A., Skjemstad, J. O., 2000. Role of the Soil Matrix and Minerals in Protecting Natural Organic Materials against Biological Attack. Organic Geochemistry, 31(7/8): 697-710. doi: 10.1016/s0146-6380(00)00049-8
    Barker, C. E., 1991. An Update on the Suppression of Vitrinite Reflectance. TSOP Newsletter, 8(4): 8-11
    Behar, F., Beaumont, V., De B. Penteado, H. L., 2001. Rock-Eval 6 Technology: Performances and Developments. Oil & Gas Science and Technology, 56(2): 111-134. doi: 10.2516/ogst:2001013
    Behar, F., Kressmann, S., Rudkiewicz, J. L., et al., 1992. Experimental Simulation in a Confined System and Kinetic Modelling of Kerogen and Oil Cracking. Organic Geochemistry, 19(1/2/3): 173-189. doi: 10.1016/0146-6380(92)90035-v
    Behar, F., Vandenbroucke, M., 1987. Chemical Modelling of Kerogens. Organic Geochemistry, 11(1): 15-24. doi: 10.1016/0146-6380(87)90047-7
    Bergamaschi, B. A., Tsamakis, E., Keil, R. G., et al., 1997. The Effect of Grain Size and Surface Area on Organic Matter, Lignin and Carbohydrate Concentration, and Molecular Compositions in Peru Margin Sediments. Geochimica et Cosmochimica Acta, 61(6): 1247-1260. doi: 10.1016/s0016-7037(96)00394-8
    Berrocoso, A. J., MacLeod, K. G., Calvert, S. E., et al., 2008. Bottom Water Anoxia, Inoceramid Colonization, and Benthopelagic Coupling during Black Shale Deposition on Demerara Rise (Late Cretaceous Western Tropical North Atlantic). Paleoceanography, 23(3): 1-20. doi: 10.1029/2007pa001545
    Bertrand, P., Béhar, F., Durand, B., 1986. Composition of Potential Oil from Humic Coals in Relation to Their Petrographic Nature. Organic Geochemistry, 10(1/2/3): 601-608. doi: 10.1016/0146-6380(86)90056-2
    Bock, M. J., Mayer, L. M., 2000. Mesodensity Organo-Clay Associations in a Near-Shore Sediment. Marine Geology, 163(1/2/3/4): 65-75. doi: 10.1016/s0025-3227(99)00105-x
    Bostick, N. H. , Foster, J. N. , 1975. Comparison of Vitrinite Reflectance in Coal Seams and in Kerogen of Sandstones, Shales, and Limestones in the Same Part of a Sedimentary Section. In: Alpern, B. , ed. , Petrographie de la Matiereorganique des Sediments, Relations Avec la Paleotemperature et le Potential Petrolier, Paris, CNRS. 13-25
    Bowker, K. A., 2007. Barnett Shale Gas Production, Fort Worth Basin: Issues and Discussion. AAPG Bulletin, 91(4): 523-533. doi: 10.1306/06190606018
    Burnaman, M. D., Xia, W. W., Shelton, J., 2009. Shale Gas Play Screening and Evaluation Criteria. China Pet. Explor., 14(3): 51-64
    Burruss, R. C., Laughrey, C. D., 2010. Carbon and Hydrogen Isotopic Reversals in Deep Basin Gas: Evidence for Limits to the Stability of Hydrocarbons. Organic Geochemistry, 41(12): 1285-1296. doi: 10.1016/j.orggeochem.2010.09.008
    Carpentier, B. , Huc, A. -Y. , Hamou, P. , et al. , 1995. Detection, Distribution and Origin of Thin Tar Mats in the Miller Field (North Sea, UK). 17th International Meeting on Organic Geochemistry, San Sebastian, Spain. 388-390
    Carpentier, B. , Huc, A. -Y. , Marquis, F. , et al. , 1998. Distribution and Origin of a Tar Mat in the S. Field (Abu Dhabi, A. E. U. ). The 8th Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, U. A. E. , SPE 49472: 1-10
    Carr, A. D., 2000. Suppression and Retardation of Vitrinite Reflectance, Part 1. Formation and Significance for Hydrocarbon Generation. Journal of Petroleum Geology, 23(3): 313-343. doi: 10.1111/j.1747-5457.2000.tb01022.x
    Carvajal-Ortiz, H., Gentzis, T., 2015. Critical Considerations when Assessing Hydrocarbon Plays Using Rock-Eval Pyrolysis and Organic Petrology Data: Data Quality Revisited. International Journal of Coal Geology, 152: 113-122. doi: 10.1016/j.coal.2015.06.001
    Chen, G. J., Yen, M. C., Wang, J. M., et al., 2008. Layered Inorganic/ Enzyme Nanohybrids with Selectivity and Structural Stability upon Interacting with Biomolecules. Bioconjugate Chemistry, 19(1): 138-144. doi: 10.1021/bc700224q
    Chen, J. P., Qin, Y., Huff, B. G., et al., 2001. Geochemical Evidence for Mudstone as the Possible Major Oil Source Rock in the Jurassic Turpan Basin, Northwest China. Organic Geochemistry, 32(9): 1103-1125. doi: 10.1016/s0146-6380(01)00076-6
    Chen, Z. H., Liu, X. J., Guo, Q. L., et al., 2017. Inversion of Source Rock Hydrocarbon Generation Kinetics from Rock-Eval Data. Fuel, 194: 91-101. doi: 10.1016/j.fuel.2016.12.052
    Chung, H. M., Gormly, J. R., Squires, R. M., 1988. Origin of Gaseous Hydrocarbons in Subsurface Environments: Theoretical Considerations of Carbon Isotope Distribution. Chemical Geology, 71(1/2/3): 97-104. doi: 10.1016/0009-2541(88)90108-8
    Clayton, C., 1991. Carbon Isotope Fractionation during Natural Gas Generation from Kerogen. Marine and Petroleum Geology, 8(2): 232-240. doi: 10.1016/0264-8172(91)90010-x
    Clayton, J. L., 1998. Geochemistry of Coalbed Gas--A Review. International Journal of Coal Geology, 35(1/2/3/4): 159-173. doi: 10.1016/s0166-5162(97)00017-7
    Coleman, D., Liu, C.-L., Hackley, K. C., et al., 1993. Isotopic Identification of Landfill Methane. Environmental Geosciences, 2(2): 95-103
    Cooles, G. P., MacKenzie, A. S., Quigley, T. M., 1986. Calculation of Petroleum Masses Generated and Expelled from Source Rocks. Organic Geochemistry, 10(1/2/3): 235-245. doi: 10.1016/0146-6380(86)90026-4
    Cornelius, C. D., 1978. Muttergesteinfaziesals Parameter der Erd lbildung. Erd l-ErdgasZeitschrift, 3: 90-94
    Cornford, C. , 2009. Source Rocks and Hydrocarbons of the North Sea, Chapter 11. In: Glennie, K. W. , ed. , Petroleum Geology of the North Sea, Basic Concepts and Recent Advances: Fourth Edition. Blackwell Science Ltd, Oxford. 376-462. doi: 10.1002/9781444313413.ch11
    Curtis, J. B., 2002. Fractured Shale-Gas Systems. AAPG Bulletin, 86(11): 1921-1938. doi: 10.1306/61eeddbe-173e-11d7-8645000102c1865d
    Dai, J. X., Zou, C. N., Dong, D. Z., et al., 2016. Geochemical Characteristics of Marine and Terrestrial Shale Gas in China. Marine and Petroleum Geology, 76(9): 444-463. doi: 10.1016/j.marpetgeo.2016.04.027
    Darrah, T. H., Vengosh, A., Jackson, R. B., et al., 2014. Noble Gases Identify the Mechanisms of Fugitive Gas Contamination in Drinking-Water Wells Overlying the Marcellus and Barnett Shales. Proceedings of the National Academy of Sciences, 111(39): 14076-14081. doi: 10.1073/pnas.1322107111
    Delvaux, D., Martin, H., Leplat, P., et al., 1990. Comparative Rock-Eval Pyrolysis as an Improved Tool for Sedimentary Organic Matter Analysis. Organic Geochemistry, 16(4/5/6): 1221-1229. doi: 10.1016/0146-6380(90)90157-u
    Dembicki, H. Jr., Horsfield, B., Ho, T. T. Y., 1983. Source Rock Evaluation by Pyrolysis-Gas Chromatography. AAPG Bulletin, 67: 1094-1103. doi: 10.1306/03b5b709-16d1-11d7-8645000102c1865d
    Du, J. G., Jin, Z. J., Xie, H. S., et al., 2003. Stable Carbon Isotope Compositions of Gaseous Hydrocarbons Produced from High Pressure and High Temperature Pyrolysis of Lignite. Organic Geochemistry, 34(1): 97-104. doi: 10.1016/s0146-6380(02)00158-4
    Espitalié, J., Deroo, G., Marquis, F., 1986. La Pyrolyse Rock-Eval et Ses Applications. Troisième Partie. Revue de l'Institut Fran ais du Pétrole, 41(1): 73-89. doi: 10.2516/ogst:1986003
    Espitalié, J., Laporte, J. L., Madec, M., et al., 1977. Méthode Rapide de Caractérisation des Roches Mètres, de Leur Potentiel Pétrolier et de Leur Degré D'évolution.Revue de l'Institut Fran ais du Pétrole, 32(1): 23-42. doi: 10.2516/ogst:1977002
    Espitalié, J., Madec, M., Tissot, B., 1980. Role of Mineral Matrix in Kerogen Pyrolysis: Influence on Petroleum Generation and Migration. AAPG Bulletin, 64: 59-66. doi: 10.1306/2f918928-16ce-11d7-8645000102c1865d
    Espitalié, J. , Madec, M. , Tissot, B. , 1984. Geochemical Logging. In: Voorhees, K. J. ed. , Analytical Pyrolysis-Techniques and Applications. Boston, Butterworth. 276-304
    Espitalié, J. , Marquis, F. , Sage, L. , 1987. Organic Geochemistry of the Paris Basin. In: Brooks, J. , Glennie, K. eds. , Petroleum Geology of North-West Europe, Graham and Totman, London. 71-86
    Feng, Z. Q., Liu, D., Huang, S. P., et al., 2016. Carbon Isotopic Composition of Shale Gas in the Silurian Longmaxi Formation of the Changning Area, Sichuan Basin. Petroleum Exploration and Development, 43(5): 769-777. doi: 10.1016/s1876-3804(16)30092-1
    Filby, R. H. , van Berkel, G. J. , 1987. Geochemistry of Metal Complexes in Petroleum, Source Rocks and Coals: An Overview. In: Filby, R. H. , ed. , Metal Complexes in Fossil Fuels. American Chemical Society, Washington DC. 2-39
    Forsman, J. P. , 1963. Geochemistry of Kerogen. Organic Geochemistry. Breger, I. A. , ed. , Pergamon Press, New York. 148-182
    Gallegos, E. J., 1975. Terpane-Sterane Release from Kerogen by Pyrolysis Gas Chromatography-Mass Spectrometry. Analytical Chemistry, 47(9): 1524-1528. doi: 10.1021/ac60359a053
    Gentzis, T. , Goodarzi, F. , 1994. Reflectance Suppression in Some Cretaceous Coals from Alberta, Canada. In: Mukhopadhyay, P. K. , Dow, W. G. , eds. , Vitrinite Reflectance as a Maturity Parameter: Applications and Limitations. Symposium Series, ACS, Washington, DC. 570: 93-110
    Goddard, W. A. , Tang, Y. , Wu, S. , et al. , 2013. Novel Gas Isotope Interpretation Tools to Optimize Gas Shale Production. Research Partnership to Secure Energy for America, Report No. 08122. 15, Washington, DC. 90
    Golding, S. D., Boreham, C. J., Esterle, J. S., 2013. Stable Isotope Geochemistry of Coal Bed and Shale Gas and Related Production Waters: A Review. International Journal of Coal Geology, 120: 24-40. doi: 10.1016/j.coal.2013.09.001
    Goodarzi, F., 1985. Organic Petrology of Hat Creek Coal Deposit No. 1, British Columbia. International Journal of Coal Geology, 5(4): 377-396. doi: 10.1016/0166-5162(85)90003-5
    Goodarzi, F., 1987. Comparison of Reflectance Data from Various Macerals from Sub-Bituminous Coals. Journal of Petroleum Geology, 10(2): 219-226. doi: 10.1111/j.1747-5457.1987.tb00211.x
    Goodarzi, F., Gentzis, T., Feinstein, S., et al., 1988. Effect of Maceral Subtypes and Mineral Matrix on Measured Reflectance of Subbituminous Coals and Dispersed Organic Matter. International Journal of Coal Geology, 10(4): 383-398. doi: 10.1016/0166-5162(88)90011-0
    Gromet, L. P., Haskin, L. A., Korotev, R. L., et al., 1984. The "North American Shale Composite": Its Compilation, Major and Trace Element Characteristics. Geochimica et Cosmochimica Acta, 48(12): 2469-2482. doi: 10.1016/0016-7037(84)90298-9
    Gurba, L. W., Ward, C. R., 1998. Vitrinite Reflectance Anomalies in the High-Volatile Bituminous Coals of the Gunnedah Basin, New South Wales, Australia. International Journal of Coal Geology, 36(1/2): 111-140. doi: 10.1016/s0166-5162(97)00033-5
    Hackley, P. C., Araujo, C. V., Borrego, A. G., et al., 2015. Standardization of Reflectance Measurements in Dispersed Organic Matter: Results of an Exercise to Improve Interlaboratory Agreement. Mar. Pet. Geol., 59: 22-34 doi: 10.1016/j.marpetgeo.2014.07.015
    Hackley, P. C., Cardott, B. J., 2016. Application of Organic Petrography in North American Shale Petroleum Systems: A Review. International Journal of Coal Geology, 163: 8-51. doi: 10.1016/j.coal.2016.06.010
    Hackley, P. C., Guevara, E. H., Hentz, T. F., et al., 2009. Thermal Maturity and Organic Composition of Pennsylvanian Coals and Carbonaceous Shales, North-Central Texas: Implications for Coalbed Gas Potential. International Journal of Coal Geology, 77(3/4): 294-309. doi: 10.1016/j.coal.2008.05.006
    Hackley, P. C., Ryder, R. T., Trippi, M. H., et al., 2013. Thermal Maturity of Northern Appalachian Basin Devonian Shales: Insights from Sterane and Terpane Biomarkers. Fuel, 106: 455-462. doi: 10.1016/j.fuel.2012.12.032
    Hakimi, M. H., Abdullah, W. H., 2014. Biological Markers and Carbon Isotope Composition of Organic Matter in the Upper Cretaceous Coals and Carbonaceous Shale Succession (Jiza-Qamar Basin, Yemen): Origin, Type and Preservation. Palaeogeography, Palaeoclimatology, Palaeoecology, 409: 84-97. doi: 10.1016/j.palaeo.2014.04.022
    Hakimi, M. H., Abdullah, W. H., Shalaby, M. R., et al., 2014. Geochemistry and Organic Petrology Study of Kimmeridgian Organic-Rich Shales in the Marib-Shabowah Basin, Yemen: Origin and Implication for Depositional Environments and Oil-Generation Potential. Marine and Petroleum Geology, 50: 185-201. doi: 10.1016/j.marpetgeo.2013.09.012
    Hakimi, M. H. , Ahmed, A. F. , Abdullah, W. H. , 2016. Organic Geochemical and Petrographic Characteristics of the Miocene Salif Organic-Rich Shales in the Tihama Basin, Red Sea of Yemen: Implications for Paleoenvironmental Conditions and Oil-Generation Potential. International Journal of Coal Geology, 154/155: 193-204. doi: 10.1016/j.coal.2016.01.004
    Hao, F., Chen, J. Y., 1992. The Cause and Mechanism of Vitrinite Reflectance Anomalies. Journal of Petroleum Geology, 15(4): 419-434. doi: 10.1111/j.1747-5457.1992.tb01043.x
    Harrington, J. , Whyte, C. , Muehlenbachs, K. , et al. , 2015. Using Noble Gas and Hydrocarbon Gas Geochemistry to Source the Origin of Fluids in the Eagle Ford Shale of Texas, USA. Presented at AAPG Annual Convention & Exhibition, May 31-June 3, 2015, Denver, Colorado. 1-31
    Hartkopf-Fröder, C., K nigshof, P., Littke, R., et al., 2015. Optical Thermal Maturity Parameters and Organic Geochemical Alteration at Low Grade Diagenesis to Anchimetamorphism: A Review. International Journal of Coal Geology, 150/151: 74-119. doi: 10.1016/j.coal.2015.06.005
    Hazra, B., Dutta, S., Kumar, S., 2017. TOC Calculation of Organic Matter Rich Sediments Using Rock-Eval Pyrolysis: Critical Consideration and Insights. International Journal of Coal Geology, 169: 106-115. doi: 10.1016/j.coal.2016.11.012
    Hazra, B., Varma, A. K., Bandopadhyay, A. K., et al., 2015. Petrographic Insights of Organic Matter Conversion of Raniganj Basin Shales, India. International Journal of Coal Geology, 150/151: 193-209. doi: 10.1016/j.coal.2015.09.001
    Hunt, J. M., 1972. Distribution of Carbon in Crust of Earth: Geological Notes. AAPG Bulletin, 56: 2273-2277. doi: 10.1306/819a4206-16c5-11d7-8645000102c1865d
    Hunt, J. M. , 1996. Petroleum Geochemistry and Geology. W. H. Freeman and Company, New York
    Hutton, A. C., Cook, A. C., 1980. Influence of Alginite on the Reflectance of Vitrinite from Joadja, NSW, and some other Coals and Oil Shales Containing Alginite. Fuel, 59(10): 711-714. doi: 10.1016/0016-2361(80)90025-3
    Iglesias, M. J., del Rı́o, J. C., Laggoun-Défarge, F., et al., 2002. Control of the Chemical Structure of Perhydrous Coals; FTIR and Py-GC/MS Investigation. Journal of Analytical and Applied Pyrolysis, 62(1): 1-34. doi: 10.1016/s0165-2370(00)00209-6
    International Committee for Coal Petrology (ICCP), 1971. International Handbook of Coal Petrography, 1st Supplement to 2nd Edition. CNRS, Paris
    Jarvie, D. M. , 2012a. Shale Resource Systems for Oil and Gas: Part 1—Shale-Gas Resource Systems. In: Breyer, J. A. , ed. , Shale Reservoirs—Giant Resources for the 21st Century. AAPG Memoir, 97: 69-87
    Jarvie, D. M. , 2012b. Shale Resource Systems for Oil and Gas: Part 2—Shale-Oil Resource Systems. In: Breyer, J. A. , ed. , Shale Reservoirs—Giant Resources for the 21st Century. AAPG Memoir, 97: 89-119
    Jarvie, D. M., 2014. Components and Processes Affecting Producibility and Commerciality of Shale Resource Systems. Geologica Acta, Alago Special Publicatio, 12(4): 307-325. doi:10.1344/GeologicaActa 2014.12.4.3
    Jarvie, D. M. , Claxton, B. L. , Henk, F. , et al. , 2001. Oil and Shale Gas from the Barnett Shale, Ft. Worth Basin, Texas. In: Abstract, AAPG Annual Meeting Program, June 3-6, 2001. Denver. 10: A100
    Jarvie, D. M. , Hill, R. J. , Pollastro, R. M. , 2005. Assessment of the Gas Potential and Yields from Shales: The Barnett Shale Model. In: Cardott, B. J. , ed. , Unconventional Energy Resources in the Southern Midcontinent, 2004 Symposium. Oklahoma Geological Survey Circular, 110: 37-50
    Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as one Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 91(4): 475-499. doi: 10.1306/12190606068
    Jarvie, D. M. , Lundell, L. L. , 1991. Hydrocarbon Generation Modeling of Naturally and Artificially Matured Barnett Shale, Fort Worth Basin, Texas. Southwest Regional Geochemistry Meeting, September 8-9, 1991, the Woodlands, Texas. [2016-02-14]. http://www.humble-inc.com/Jarvie_Lundell_1991.pdf
    Jia, W., Segal, E., Kornemandel, D., et al., 2002. Polyaniline-DBSA/Organophilic Clay Nanocomposites: Synthesis and Characterization. Synthetic Metals, 128(1): 115-120. doi: 10.1016/s0379-6779(01)00672-5
    Jones, J. , Murchison, D. G. , Saleh, S. , 1972. Variation of Vitrinite Reflectivity in Relation to Lithology. In: Gaertner, H. W. , Wehner, H. , eds. , Advances in Organic Geochemistry 1971. Pergamon Press, Oxford. 601-612
    Kalkreuth, W. D., 1982. Rank and Petrographic Composition of Selected Jurassic-Lower Cretaceous Coals of British Columbia, Canada. Can. Petrol. Geol.Bull., 30: 112-139
    Kalkreuth, W., Macauley, G., 1984. The Organic Petrology of Selected Oil Shale Samples from the Lower Carboniferous Albert Formation, New Brunswick, Canada. Bulletin of Canadian Petroleum Geology, 32(1): 38-51
    Kalkreuth, W., Macauley, G., 1987. Organic Petrology and Geochemical (Rock-Eval) Studies on Oil Shales and Coals from the Pictou and Antigonish Areas, Nova Scotia, Canada. Bull. Can. Petrol. Geol., 35: 263-295
    Keil, R. G., Cowie, G. L., 1999. Organic Matter Preservation through the Oxygen-Deficient Zone of the NE Arabian Sea as Discerned by Organic Carbon: Mineral Surface Area Ratios. Marine Geology, 161(1): 13-22. doi: 10.1016/s0025-3227(99)00052-3
    Keil, R. G., Montlu on, D. B., Prahl, F. G., et al., 1994. Sorptive Preservation of Labile Organic Matter in Marine Sediments. Nature, 370(6490): 549-552. doi: 10.1038/370549a0
    Kelley, K. D. , Graham, G. E. , Benzel, W. M. , 2015. Extent of Metalliferous Intervals and Principal Hosts of Mo, Ni, V, and Zn in Oil Shale of the Mississippian Heath Formation, Montana, USA. In: André-Mayer, A. -S. , Cathelineau, M. , Muehez, P. , et al. , eds. , Mineral Resources in a Sustainable World. Proceedings of 13th Biennial Mtg. , Society for Geology Applied to Mineral Deposits (SGA), August 24-27, 2015, Nancy, France. 4: 1937-1940
    Kennedy, M. J., L hr, S. C., Fraser, S. A., et al., 2014. Direct Evidence for Organic Carbon Preservation as Clay-Organic Nanocomposites in a Devonian Black Shale: From Deposition to Diagenesis. Earth and Planetary Science Letters, 388: 59-70. doi: 10.1016/j.epsl.2013.11.044
    Kennedy, M. J., Pevear, D., Hill, R., 2002. Mineral Surface Control of Organic Carbon in Black Shale. Science, 295(5555): 657-660. doi: 10.1126/science.1066611
    Kennedy, M. J., Wagner, T., 2011. Clay Mineral Continental Amplifier for Marine Carbon Sequestration in a Greenhouse Ocean. Proceedings of the National Academy of Sciences, 108(24): 9776-9781. doi: 10.1073/pnas.1018670108
    Ketris, M. P., Yudovich, Y. E., 2009. Estimations of Clarkes for Carbonaceous Biolithes: World Averages for Trace Element Contents in Black Shales and Coals. International Journal of Coal Geology, 78(2): 135-148. doi: 10.1016/j.coal.2009.01.002
    Khorasani, G. K., Michelsen, J. K., 1994. The Effects of Overpressure, Lithology, Chemistry and Heating Rate on Vitrinite Reflectance Evolution, and Its Relationship with Oil Generation. APEA J., 34 (Pt. 1): 418-434
    Kimble, B. J., Maxwell, J. R., Philp, R. P., et al., 1974. Tri-and Tetraterpenoid Hydrocarbons in the Messel Oil Shale. Geochimica et Cosmochimica Acta, 38(7): 1165-1181. doi: 10.1016/0016-7037(74)90011-8
    Klaja, J., Dudek, L., 2016. Geological Interpretation of Spectral Gamma Ray (SGR) Logging in Selected Boreholes. Nafta-Gaz, 72(1): 3-14. doi: 10.18668/ng2016.01.01
    Koŝina, M., Heppner, P., 1985. Macerals in Bituminous Coals and the Coking Process, 2. Coal Mass Properties and the Coke Mechanical Properties. Fuel, 64: 53-58
    Lafargue, E., Marquis, F., Pillot, D., 1998. Rock-Eval 6 Applications in Hydrocarbon Exploration, Production, and Soil Contamination Studies. Revue de l'Institut Fran ais du Pétrole, 53(4): 421-437. doi: 10.2516/ogst:1998036
    Laughrey, C. D. , 2014. Introductory Geochemistry for Shale Gas, Condensate-Rich Shales and Tight Oil Reservoirs. URTeC Annual Meeting Short Course, Colorado Convention Center, August 2014, Denver, Colorado. 325
    Leischner, K. , Welte, D. H. , Littke, R. , 1993. Fluid Inclusions and Organic Maturity Parameters as Calibration Tools in Basin Modeling. In: Dore, A. G. , ed. , Basin Modeling: Advances and Applications: NPF Special Publication, 3. Elsevier, Amsterdam. 161-172
    Leventhal, J. S. , 1998. Metal-Rich Black Shales: Formation, Economic Geology and Environmental Considerations. In: Schieber, J. , Zimmerle, W. , Sethi, P. , eds. , Shales and Mudstones Ⅱ. E. Schweizerbart'sche Verlagsbuchhandlung Stuttgart
    Lewan, M. D., Henry, M. E., Higley, D. K., et al., 2002. Material-Balance Assessment of the New Albany-Chesterian Petroleum System of the Illinois Basin. AAPG Bulletin, 86: 745-777. doi: 10.1306/61eedb8e-173e-11d7-8645000102c1865d
    Little, S. H., Vance, D., Lyons, T. W., et al., 2015. Controls on Trace Metal Authigenic Enrichment in Reducing Sediments: Insights from Modern Oxygen-Deficient Settings. American Journal of Science, 315(2): 77-119. doi: 10.2475/02.2015.01
    Martini, A. M., Walter, L. M., Ku, T. C. W., et al., 2003. Microbial Production and Modification of Gases in Sedimentary Basins: A Geochemical Case Study from a Devonian Shale Gas Play, Michigan Basin. AAPG Bulletin, 87(8): 1355-1375. doi: 10.1306/031903200184
    Mayer, L. M., 1994. Surface Area Control of Organic Carbon Accumulation in Continental Shelf Sediments. Geochimica et Cosmochimica Acta, 58(4): 1271-1284. doi: 10.1016/0016-7037(94)90381-6
    McCarthy, K. R., Niemann, M., Palmowski, D., et al., 2011. Basic Petroleum Geochemistry for Source Rock Evaluation. Oilfield Review, 23(2): 32-43
    Moore, T. A., Bowe, M., Nas, C., 2014. High Heat Flow Effects on a Coalbed Methane Reservoir, East Kalimantan (Borneo), Indonesia. International Journal of Coal Geology, 131: 7-31. doi: 10.1016/j.coal.2014.05.012
    Mukhopadhyay, P. K., 1994. Vitrinite Reflectance as Maturity Parameter: Petrographic and Molecular Characterization and Its Applications to Basin Modeling. In: Mukhopadhyay, P. K., Dow, W. G., eds., Vitrinite Reflectance as a Maturity Parameter. ACS Symposium Series, 570: 1-25 doi: 10.1021/symposium
    Mukhopadhyay, P. K., Dow, W. G., 1994. A Review of "Vitrinite Reflectance as a Maturity Parameter: Applications and Limitations". ACS Symposium Series, 570: 294
    Newman, J., Newman, N. A., 1982. Reflectance Anomalies in Pike River Coals: Evidence of Variability in Vitrinite Type, with Implications for Maturation Studies and "Suggate Rank". New Zealand Journal of Geology and Geophysics, 25(2): 233-243. doi: 10.1080/00288306.1982.10421412
    Obermajer, M., Fowler, M. G., Snowdon, L. R., 1999. Depositional Environment and Oil Generation in Ordovician Source Rocks from Southwestern Ontario, Canada: Organic Geochemical and Petrological Approach. AAPG Bulletin, 83: 1426-1453. doi: 10.1306/e4fd41d9-1732-11d7-8645000102c1865d
    Ocampo, R. , Callot, H. J. , Albrecht, P. , 1987. Evidence for Porphyrins of Bacterial and Algal Origin in Oil Shale. In: Filby, R. H. , ed. , Metal Complexes in Fossil Fuels. American Chemical Society, Washington DC
    Ohkouchi, N., Kuroda, J., Taira, A., 2015. The Origin of Cretaceous Black Shales: A Change in the Surface Ocean Ecosystem and Its Triggers. Proceedings of the Japan Academy, Series B, 91(7): 273-291. doi: 10.2183/pjab.91.273
    Osborn, S. G., McIntosh, J. C., 2010. Chemical and Isotopic Tracers of the Contribution of Microbial Gas in Devonian Organic-Rich Shales and Reservoir Sandstones, Northern Appalachian Basin. Applied Geochemistry, 25(3): 456-471. doi: 10.1016/j.apgeochem.2010.01.001
    Ostera, H. A., García, R., Malizia, D., et al., 2016. Shale Gas Plays, Neuquén Basin, Argentina: Chemostratigraphy and Mud Gas Carbon Isotopes Insights. Brazilian Journal of Geology, 46(Suppl. 1): 181-196. doi: 10.1590/2317-4889201620150001
    Othman, R., Ward, C. R., 2002. Thermal Maturation Pattern in the Southern Bowen, Northern Gunnedah and Surat Basins, Northern New South Wales, Australia. International Journal of Coal Geology, 51(3): 145-167. doi: 10.1016/s0166-5162(02)00082-4
    Peters, K. E., 1986. Guidelines for Evaluating Petroleum Source Rock Using Programmed Pyrolysis. AAPG Bulletin, 70: 318-329. doi: 10.1306/94885688-1704-11d7-8645000102c1865d
    Peters, K. E., Cassa, M. R., 1994. Applied Source Rock Geochemistry. In: Magoon, L. B., Dow, W. G., eds., The Petroleum System from Source to Trap. AAPG Memoir, 60: 93-120
    Peters, K. E. , Walters, C. C. , Moldowan, J. M. , 2005. The Biomarker Guide, 2nd Ed. , Vol. 2. Cambridge University Press, Cambridge
    Petersen, H. I., Vosgerau, H., 1999. Composition and Organic Maturity of Middle Jurassic Coals, North-East Greenland: Evidence for Liptinite-Induced Suppression of Huminite Reflectance. International Journal of Coal Geology, 41(3): 257-274. doi: 10.1016/s0166-5162(99)00022-1
    Pillot, D. , Letort, G. , Romero-Sarmiento, M. F. , et al. , 2014. Procédé Pour l' valuation d'Aumoins unecaractéristiquepétrolière d'un échantillon de Roche. Patent 14/55. 009
    Pittion, J. L. , Gouadain, J. , 1985. Maturity Studies of the Jurassic 'Coal Unit' in Three Wells from the Haltenbanken Area. In: Thomas, B. M. , ed. , Petroleum Geochemistry in Exploration of the Norwegian Shelf. Graham and Trotman, London. 205-211
    Price, L. C., Baker, C. E., 1985. Suppression of Vtrinite Reflectance in Amorphous Rich Kerogen--A Major Unrecognized Problem. Journal of Petroleum Geology, 8(1): 59-84. doi: 10.1111/j.1747-5457.1985.tb00191.x
    Prinzhofer, A. , 2012. Noble Gases in Oil and Gas Accumulations, Chapter 9. In: Burnard, P. , ed. , Noble Gases as Geochemical Tracers. Springer, New York. 225-247
    Qu, Z. Y., Sun, J. N., Shi, J. T., et al., 2016. Characteristics of Stable Carbon Isotopic Composition of Shale Gas. Journal of Natural Gas Geoscience, 1(2): 147-155. doi: 10.1016/j.jnggs.2016.05.008
    Quirke, J. M. E. , 1987. Rationalization for the Predominance of Nickel and Vanadium Porphyrins in the Geosphere. In: Filby, R. H. , ed. , Metal Complexes in Fossil Fuels. American Chemical Society, Washington DC
    Ransom, B., Bennett, R. H., Baerwald, R., et al., 1997. TEM Study of in Situ Organic Matter on Continental Margins: Occurrence and the "Monolayer" Hypothesis. Marine Geology, 138(1/2): 1-9. doi: 10.1016/s0025-3227(97)00012-1
    Ransom, B., Kim, D., Kastner, M., et al., 1998. Organic Matter Preservation on Continental Slopes: Importance of Mineralogy and Surface Area. Geochimica et Cosmochimica Acta, 62(8): 1329-1345. doi: 10.1016/s0016-7037(98)00050-7
    Ratcliffe, K. T., Wright, A. M., Schmidt, K., 2012. Application of Inorganic Whole-Rock Geochemistry to Shale Resource Plays: An Example from the Eagle Ford Formation, Texas. The Sedimentary Record, 10(2): 4-9. doi: 10.2110/sedred.2012.2.4
    Raymond, A. C., Murchison, D. G., 1991. Influence of Exinitic Macerals on the Reflectance of Vitrinite in Carboniferous Sediments of the Midland Valley of Scotland. Fuel, 70(2): 155-161. doi: 10.1016/0016-2361(91)90146-2
    Rice, D. D., 1993. Composition and Origins of Coalbed Gas. In: Law, B. E., Rice, D. D., eds., Hydrocarbons from Coal. Studies in Geology, AAPG, 38: 159-184
    Rivera, K. , Quan, T. M. , 2014. Thermal Maturation Effects on the Nitrogen Isotopes in Marine Shales: A Case Study of the Woodford Shale. Conference Paper, AAPG Annual Convention and Exhibition, Pittsburgh, Pennsylvania, May 19-22, 2013. Article #50920
    Robert, P. , 1980. The Optical Evolution of Kerogen and Geothermal Histories Applied to Oil and Gas Exploration. In: Durand, B. , ed. , Kerogen. Technip, Paris. 385-414
    Robin, P. L. , 1975. Caracterisation des Kerogenes et de Leur Evolution par Spectroscopie in Frarouge: [Dissertation]. University Louvain, Paris
    Romero-Sarmiento, M.-F., Pillot, D., Letort, G., et al., 2016. New Rock-Eval Method for Characterization of Unconventional Shale Resource Systems.Oil & Gas Science and Technology--Revue d'IFP Energies nouvelles, 71(3): 37. doi: 10.2516/ogst/2015007
    Romero-Sarmiento, M.-F., Rouzaud, J. N., Bernard, S., et al., 2014. Evolution of Barnett Shale Organic Carbon Structure and Nanostructure with Increasing Maturation. Organic Geochemistry, 71: 7-16. doi: 10.1016/j.orggeochem.2014.03.008
    Salmon, V., Derenne, S., Lallier-Vergès, E., et al., 2000. Protection of Organic Matter by Mineral Matrix in a Cenomanian Black Shale. Organic Geochemistry, 31(5): 463-474. doi: 10.1016/s0146-6380(00)00013-9
    Satterberg, J., Arnarson, T. S., Lessard, E. J., et al., 2003. Sorption of Organic Matter from Four Phytoplankton Species to Montmorillonite, Chlorite and Kaolinite in Seawater. Marine Chemistry, 81(1/2): 11-18. doi: 10.1016/s0304-4203(02)00136-6
    Schmoker, J. W. , 1995. Method for Assessing Continuous-Type (Unconventional) Hydrocarbon Accumulations. In: Gautier, D. L. , Dolton, G. L. , Takahashi, K. I. , et al. , eds. , 1995 National Assessment of United States Oil and Gas Resources--Results, Methodology, and Supporting Data. U. S. Geological Survey Digital Data Series 30: CD-ROM
    Schoell, M., 1983. Genetic Characterization of Natural Gases. American Association of Petroleum Geologists Bulletin, 67: 2225-2238
    Scott, C., Slack, J. F., Kelley, K. D., 2017. The Hyper-Enrichment of V and Zn in Black Shales of the Late Devonian-Early Mississippian Bakken Formation (USA). Chemical Geology, 452: 24-33. doi: 10.1016/j.chemgeo.2017.01.026
    Seifert, W. K., 1978. Application of Steranes and Terpanes in Kerogen Pyrolysis for Correlation of Oils and Source Rocks. Geochimica et Cosmochimica Acta, 42(5): 473-484. doi: 10.1016/0016-7037(78)90197-7
    Seifert, W. K. , Moldowan, J. M. , 1986. Use of Biomarkers in Petroleum Exploration. In: Johns, R. B. , ed. , Methods in Geochemistry and Geophysics, Vol. 24. Elsevier, Amsterdam. 261-290
    Snowdon, L. R., 1995. Rock-Eval Tmax Suppression: Documentation and Amelioration. AAPG Bulletin, 79: 1337-1348. doi: 10.1306/7834d4c2-1721-11d7-8645000102c1865d
    Sposito, G., Skipper, N. T., Sutton, R., et al., 1999. Surface Geochemistry of the Clay Minerals. Proceedings of the National Academy of Sciences, 96(7): 3358-3364. doi: 10.1073/pnas.96.7.3358
    Stach, E. , Mackowsky, M. -Th. , Teichmüller, M. , et al. , 1982. Stach's Textbook of Coal Petrology: 3rd Ed. Gebrüder Borntraeger, Berlin-Stuttgart. 535
    Stahl, W. J., 1977. Carbon and Nitrogen Isotopes in Hydrocarbon Research and Exploration. Chemical Geology, 20: 121-149. doi: 10.1016/0009-2541(77)90041-9
    Strąpoć, D., Mastalerz, M., Schimmelmann, A., et al., 2010. Geochemical Constraints on the Origin and Volume of Gas in the New Albany Shale (Devonian-Mississippian), Eastern Illinois Basin. AAPG Bulletin, 94(11): 1713-1740. doi: 10.1306/06301009197
    Suárez-Ruiz, I., Flores, D., Mendon a Filho, J. G., et al., 2012. Review and Update of the Applications of Organic Petrology: Part 1, Geological Applications. International Journal of Coal Geology, 99: 54-112. doi: 10.1016/j.coal.2012.02.004
    Suárez-Ruiz, I. , Iglesias, M. J. , Jiménez Bautista, A. , et al. , 1994a. Petrographic and Geochemical Anomalies Detected in the Spanish Jurassic Jet. In: Mukhopadhyay, P. K. , Dow, W. G. , eds. , Vitrinite Reflectance as a Maturity Parameter. Applications and Limitations. American Chemical Society Symposium Series, 570, Chapter 6. ACS Books. 76-92
    Suárez-Ruiz, I., Jimenez, A., Iglesias, M. J., et al., 1994b. Influence of Resinite on Huminite Properties. Energy & Fuels, 8(6): 1417-1424. doi: 10.1021/ef00048a033
    Sun, X., Zhang, T. W., Sun, Y. G., et al., 2016. Geochemical Evidence of Organic Matter Source Input and Depositional Environments in the Lower and Upper Eagle Ford Formation, South Texas. Organic Geochemistry, 98: 66-81. doi: 10.1016/j.orggeochem.2016.05.018
    Sweeney, J. J., Burnham, A.K., 1990. Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics (1). AAPG Bulletin, 74(10): 1559-1570. doi: 10.1306/0c9b251f-1710-11d7-8645000102c1865d
    Sykes, R., Snowdon, L. R., 2002. Guidelines for Assessing the Petroleum Potential of Coaly Source Rocks Using Rock-Eval Pyrolysis. Organic Geochemistry, 33(12): 1441-1455. doi: 10.1016/s0146-6380(02)00183-3
    Tang, X. L., Jiang, Z. X., Huang, H. X., et al., 2016. Lithofacies Characteristics and Its Effect on Gas Storage of the Silurian Longmaxi Marine Shale in the Southeast Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 28: 338-346. doi: 10.13039/501100001809
    Tang, Y., Jenden, P. D., Nigrini, A., et al., 1996. Modeling Early Methane Generation in Coal. Energy & Fuels, 10(3): 659-671. doi: 10.1021/ef950153l
    Tang, Y., Perry, J. K., Jenden, P. D., et al., 2000. Mathematical Modeling of Stable Carbon Isotope Ratios in Natural Gases. Geochimica et Cosmochimica Acta, 64(15): 2673-2687. doi: 10.1016/s0016-7037(00)00377-x
    Taylor, G. H. , 1996. The Electron Microscopy of Vitrinites. In: Given, P. H. , ed. , Papers of Conf. Coal Science, Advances in Chemistry Series 55. American Chemical Society, Washington DC. 274-283
    Taylor, G. H. , Teichmuller, M. , Davis, A. , 1998. Organic Petrology: Chapter 7. Gebrüder Borntraeger, Berlin
    Teichmüller, M., 1987. Recent Advances in Coalification Studies and Their Application to Geology. Geological Society, London, Special Publications, 32(1): 127-169. doi: 10.1144/gsl.sp.1987.032.01.09
    Tewari, A., Dutta, S., Sarkar, T., 2016. Organic Geochemical Characterization and Shale Gas Potential of the Permian Barren Measures Formation, West Bokaro Sub-Basin, Eastern India. Journal of Petroleum Geology, 39(1): 49-60. doi: 10.1111/jpg.12627
    Theng, B. K. G., Churchman, G. J., Newman, R. H., 1986. The Occurrence of Interlayer Clay-Organic Complexes in Two New Zealand Soils. Soil Science, 142(5): 262-266. doi: 10.1097/00010694-198611000-00003
    Tilley, B., Muehlenbachs, K., 2013. Isotope Reversals and Universal Stages and Trends of Gas Maturation in Sealed, Self-Contained Petroleum Systems. Chemical Geology, 339: 194-204. doi: 10.1016/j.chemgeo.2012.08.002
    Tissot, B. P. , Welte, D. H. , 1984. Petroleum Formation and Occurrence: 2nd Ed. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo
    Tissot, B. P. , Welte, D. H. , 1978. Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration. Springer-Verlag, Berlin, Heidelberg, New York
    Tissot, B. P., Pelet, R., Ungerer, P., 1987. Thermal History of Sedimentary Basins, Maturation Indices, and Kinetics of Oil and Gas Generation. AAPG Bulletin, 71: 1445-1466. doi: 10.1306/703c80e7-1707-11d7-8645000102c1865d
    Trabelsi, K. , Espitalié, J. , Huc, A. -Y. , 1994. Characterization of Extra Heavy Oils and Tar Deposits by Modified Pyrolysis Methods. Proceedings of the "Heavy Oil Technologies in a Wider Europe", Thermie EC Symposium, Berlin. 30-40
    Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1/2): 12-32. doi: 10.1016/j.chemgeo.2006.02.012
    Tuo, J. C., Wu, C. J., Zhang, M. F., 2016. Organic Matter Properties and Shale Gas Potential of Paleozoic Shales in Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 28: 434-446. doi: 10.1016/j.jngse.2015.12.003
    Turekian, K. K., Wedepohl, K. H., 1961. Distribution of the Elements in some Major Units of the Earth's Crust. Geological Society of America Bulletin, 72(2): 175. doi: 10.1130/0016-7606(1961)72[175:doteis]2.0.co;2
    van Krevelen, D. W. , 1961. Coal: Typology-Chemistry-Physics-Constitution: 1st Ed. Elsevier, Amsterdam. 514
    van Krevelen, D. W. , 1993. Coal: Typology-Chemistry-Physics-Constitution: 3rd Ed. Elsevier, Amsterdam. 979
    Vandenbroucke, M., Largeau, C., 2007. Kerogen Origin, Evolution and Structure. Organic Geochemistry, 38(5): 719-833. doi: 10.1016/j.orggeochem.2007.01.001
    VanHazebroeck, E., Borrok, D. M., 2016. A New Method for the Inorganic Geochemical Evaluation of Unconventional Resources: An Example from the Eagle Ford Shale. Journal of Natural Gas Science and Engineering, 33: 1233-1243. doi: 10.1016/j.jngse.2016.03.014
    Varma, A. K., Hazra, B., Mendhe, V. A., et al., 2015. Assessment of Organic Richness and Hydrocarbon Generation Potential of Raniganj Basin Shales, West Bengal, India. Marine and Petroleum Geology, 59: 480-490. doi: 10.1016/j.marpetgeo.2014.10.003
    Varma, A. K., Hazra, B., Samad, S. K., et al., 2014a. Methane Sorption Dynamics and Hydrocarbon Generation of Shale Samples from West Bokaro and Raniganj Basins, India. Journal of Natural Gas Science and Engineering, 21: 1138-1147. doi: 10.1016/j.jngse.2014.11.011
    Varma, A. K. , Hazra, B. , Samad, S. K. , et al. , 2014b. Shale Gas Potential of Lower Permian Shales from Raniganj and West Bokaro Basins, India. 66th Annual Meeting and Symposium of the International Committee for Coal and Organic Petrology (ICCP-2014), Stuttgart. 40-41
    Vengosh, A. , Warner, N. , Osborn, S. , et al. , 2011. Elucidating Water Contamination by Fracturing Fluids and Formation Waters from Gas Wells: Integrating Isotopic and Geochemical Tracers. U. S. Environmental Protection Agency, Workshop on Fracturing Fluid Composition, Feb. 24-25, 2011, Washington DC
    Vinci Technologies, 2003. Rock-Eval 6 Operator Manual. Vinci Technologies, France
    Vine, J. D., Tourtelot, E. B., 1970. Geochemistry of Black Shale Deposits: A Summary Report. Economic Geology, 65(3): 253-272. doi: 10.2113/gsecongeo.65.3.253
    Wang, X. B., Zhang, B., He, Z. X., et al., 2016. Electrical Properties of Longmaxi Organic-Rich Shale and Its Potential Applications to Shale Gas Exploration and Exploitation. Journal of Natural Gas Science and Engineering, 36: 573-585. doi: 10.13039/501100001809
    Wanty, R. B., Goldhaber, M. B., 1992. Thermodynamics and Kinetics of Reactions Involving Vanadium in Natural Systems: Accumulation of Vanadium in Sedimentary Rocks. Geochimica et Cosmochimica Acta, 56(4): 1471-1483. doi: 10.1016/0016-7037(92)90217-7
    Wei, X. F., Guo, T. L., Liu, R. B., 2016. Geochemical Features and Genesis of Shale Gas in the Jiaoshiba Block of Fuling Shale Gas Field, Chongqing, China. Journal of Natural Gas Geoscience, 1(5): 361-371. doi: 10.1016/j.jnggs.2016.11.005
    Welte, D. H., 1965. Relation between Petroleum and Source Rock. AAPG Bulletin, 49: 2249-2267. doi: 10.1306/a663388c-16c0-11d7-8645000102c1865d
    Whiticar, M. J., 1994. Correlation of Natural Gases with Their Sources. In: Magoon, J., Dow, W. G., eds., The Petroleum System--From Source to Trap. American Association of Petroleum Geologists, Memoir, 60: 261-283
    Whiticar, M. J., 1996. Stable Isotope Geochemistry of Coals, Humic Kerogens and Related Natural Gases. International Journal of Coal Geology, 32(1/2/3/4): 191-215. doi: 10.1016/s0166-5162(96)00042-0
    Wilkins, R. W. T., George, S. C., 2002. Coal as a Source Rock for Oil: A Review. International Journal of Coal Geology, 50(1/2/3/4): 317-361. doi: 10.1016/s0166-5162(02)00134-9
    Wood, D. A., 1988. Relationships between Thermal Maturity Indices Calculated Using Arrhenius Equation and Lopatin Method: Implications for Petroleum Exploration. AAPG Bulletin, 72: 115-135. doi: 10.1306/703c8263-1707-11d7-8645000102c1865d
    Wood, D. A., 2017. Re-establishing the Merits of Thermal Maturity and Petroleum Generation Multi-Dimensional Modelling with an Arrhenius Equation Using a Single Activation Energy. Journal of Earth Science, 28(5): 804-834. doi: 10.1007/s12583-017-0735-7
    Wüst, R. A. , Hackley, P. C. , Nassichuk, B. R. , et al. , 2013. Vitrinite Reflectance versus Pyrolysis Tmax Data: Assessing Thermal Maturity in Shale Plays with Special Reference to the Duvernay Shale Play of the Western Canadian Sedimentary Basin, Alberta, Canada. Society of Petroleum Engineers Unconventional Resources Conference and Exhibition Paper, Asia Pacific, November 11-13, 2013, Brisbane, Australia, 167013: 11
    Xia, X. Y., Chen, J., Braun, R., et al., 2013. Isotopic Reversals with Respect to Maturity Trends due to Mixing of Primary and Secondary Products in Source Rocks. Chemical Geology, 339: 205-212. doi: 10.1016/j.chemgeo.2012.07.025
    Xia, X. Y. , Tang, Y. C. , 2012. Erratum to X. Xia and Y. Tang (2012) "Isotope Fractionation of Methane during Natural Gas Flow with Coupled Diffusion and Adsorption/Desorption" Geochimica et Cosmochimica Acta 77, 489-503. Geochimica et Cosmochimica Acta, 83: 398-399. doi: 10.1016/j.gca.2012.01.005
    Yang, R., He, S., Hu, Q. H., et al., 2017. Geochemical Characteristics and Origin of Natural Gas from Wufeng-Longmaxi Shales of the Fuling Gas Field, Sichuan Basin (China). International Journal of Coal Geology, 171: 1-11. doi: 10.13039/501100004613
    Zeng, H. , Li, J. , Liu, W. , 2011. New Insights into Carbon Isotopic Reversals of Deep Gas in Songliao Basin, China. AAPG Hedberg Research Conference—Natural Gas Geochemistry: Recent Developments, Applications and Technologies, May 9-12, 2011, Beijing. 3
    Zhang, M. J. , Tang, Q. Y. , Cao, C. H. , et al. , 2017. Molecular and Carbon Isotopic Variation in 3. 5 Years Shale Gas Production from Longmaxi Formation in Sichuan Basin, China. Marine and Petroleum Geology. doi: 10.1016/j.marpetgeo.2017.01.023
    Zhou, Z., Ballentine, C. J., Kipfer, R., et al., 2005. Noble Gas Tracing of Groundwater/Coalbed Methane Interaction in the San Juan Basin, USA. Geochimica et Cosmochimica Acta, 69(23): 5413-5428. doi: 10.1016/j.gca.2005.06.027
    Zimmerman, A. R., Chorover, J., Goyne, K. W., et al., 2004. Protection of Mesopore-Adsorbed Organic Matter from Enzymatic Degradation. Environmental Science & Technology, 38(17): 4542-4548. doi: 10.1021/es035340+
    Zou, Y.-R., Cai, Y. L., Zhang, C. C., et al., 2007. Variations of Natural Gas Carbon Isotope-Type Curves and Their Interpretation--A Case Study. Organic Geochemistry, 38(8): 1398-1415. doi: 10.1016/j.orggeochem.2007.03.002
    Zumberge, J. E., Ferworn, K. A., Curtis, J. B., 2009. Gas Character Anomalies Found in Highly Productive Shale Gas Wells. Geochimica et Cosmochimica Acta, 73: A1539 doi: 10.1016/j.gca.2008.11.041
    Zumberge, J. E., Ferworn, K., Brown, S., 2012. Isotopic Reversal ('Rollover') in Shale Gases Produced from the Mississippian Barnett and Fayetteville Formations. Marine and Petroleum Geology, 31(1): 43-52. doi: 10.1016/j.marpetgeo.2011.06.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article Metrics

    Article views(2513) PDF downloads(500) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return