Abbott, G. D., Lewis, C. A., Maxwell, J. R., 1985. The Kinetics of Specific Organic Reactions in the Zone of Catagenesis. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 315(1531): 107-122. doi: 10.1098/rsta.1985.0032 |
Arrhenius, S., 1889. Über Die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker Durch Säuren. Z. Phys. Chem., 4: 226-248 https://www.degruyter.com/view/j/zpch.1889.4.issue-1/zpch-1889-0416/zpch-1889-0416.xml |
Behar, F., Vandenbroucke, M., Tang, Y., et al., 1997. Thermal Cracking of Kerogen in Open and Closed Systems: Determination of Kinetic Parameters and Stoichiometric Coefficients for Oil and Gas Generation. Organic Geochemistry, 26(5/6): 321-339. doi: 10.1016/s0146-6380(97)00014-4 |
Braun, R. L., Burnham, A. K., 1987. Analysis of Chemical Reaction Kinetics Using a Distribution of Activation Energies and Simpler Models. Energy & Fuels, 1(2): 153-161. doi: 10.1021/ef00002a003 |
Burnham, A. K., Sweeney, J. J., 1989. A Chemical Kinetic Model of Vitrinite Maturation and Reflectance. Geochimica et Cosmochimica Acta, 53(10): 2649-2657. doi: 10.1016/0016-7037(89)90136-1 |
Burnham, A. K., 1998. Comment on "Experiments on the Role of Water in Petroleum Formation" by M. D. Lewan. Geochimica et Cosmochimica Acta, 62: 2207-2210 doi: 10.1016/S0016-7037(98)00149-5 |
Burnham, A. K., 2017. Global Chemical Kinetics of Fossil Fuels: How to Model Maturation and Pyrolysis. Springer, Amsterdam. 330 |
Chen, Z. H., Liu, X. J., Guo, Q. L., et al., 2017. Inversion of Source Rock Hydrocarbon Generation Kinetics from Rock-Eval Data. Fuel, 194: 91-101. doi: 10.1016/j.fuel.2016.12.052 |
Cornford, C. , 2009. Source Rocks and Hydrocarbons of the North Sea: Chapter 11. In: Glennie, K. W. , ed. , Petroleum Geology of the North Sea: Basic Concepts and Recent Advances: 4th Ed. Online ISBN: 9781444313413: 376-462. doi: 10.1002/9781444313413 |
Dieckmann, V., 2005. Modelling Petroleum Formation from Heterogeneous Source Rocks: The Influence of Frequency Factors on Activation Energy Distribution and Geological Prediction. Marine and Petroleum Geology, 22(3): 375-390. doi: 10.1016/j.marpetgeo.2004.11.002 |
Ducros, M. , 2016. Source Rock Kinetics: Goal and Perspectives. Conference Paper AAPG Geosciences Technology Workshop, "Source Rocks of the Middle East", January 25-26, 2016, Abu Dhabi, UAE https: //www. researchgate. net/publication/304785725_Source_Rock_Kinetics_Goal_and_Perspectives |
Eglinton, T. I., Sinninghe Damsté, J. S., Kohnen, M. E. L., et al., 1990. Rapid Estimation of the Organic Sulphur Content of Kerogens, Coals and Asphaltenes by Pyrolysis-Gas Chromatography. Fuel, 69(11): 1394-1404. doi: 10.1016/0016-2361(90)90121-6 |
Espitalié, J. , 1986. Use of Tmax as a Maturation Index for Different Types of Organic Matter. In: Burris, J. , ed. , Comparison with Vitrinite Reflectance: 1st IFP Exploration Research Conference, Thermal modeling in Sedimentary Basins: Paris, June 3-7, 1985, Carcans, France. 475-496 |
Espitalié, J., Ungerer, P., Irwin, I., et al., 1988. Primary Cracking of Kerogens. Experimenting and Modelling C1, C2-C5, C6-C15 and C15+ Classes of Hydrocarbons Formed. Organic Geochemistry, 13(4/5/6): 893-899. doi: 10.1016/0146-6380(88)90243-4 |
Gorbachev, V. M., 1975. A Solution of the Exponential Integral in the Non-isothermal Kinetics for Linear Heating. Journal of Thermal Analysis, 8: 349350 doi: 10.1007/BF01904012 |
Hackley, P. C., Araujo, C. V., Borrego, A. G., et al., 2015. Standardization of Reflectance Measurements in Dispersed Organic Matter: Results of an Exercise to Improve Inter Laboratory Agreement. Mar. Pet. Geol., 59: 22-34 doi: 10.1016/j.marpetgeo.2014.07.015 |
Hackley, P. C., Cardott, B. J., 2016. Application of Organic Petrography in North American Shale Petroleum Systems: A Review. International Journal of Coal Geology, 163: 8-51. doi: 10.1016/j.coal.2016.06.010 |
Hartkopf-Fröder, C., Königshof, P., Littke, R., et al., 2015. Optical Thermal Maturity Parameters and Organic Geochemical Alteration at Low Grade Diagenesis to Anchimetamorphism: A Review. International Journal of Coal Geology, 150/151: 74-119. doi: 10.1016/j.coal.2015.06.005 |
He, S., Middleton, M., 2002. Heat Flow and Thermal Maturity Modelling in the Northern Carnarvon Basin, North West Shelf, Australia. Marine and Petroleum Geology, 19(9): 1073-1088. doi: 10.1016/s0264-8172(03)00003-5 |
Ho, T. T. Y. , Jensen, R. P. , Sahai, S. K. , et al. , 1998. Comparative Studies of Pre-and Post-Drilling Modelled Thermal Conductivity and Maturity Data with Post-Drilling Results: Implications for Basin Modelling and Hydrocarbon Exploration. In: Duppenbecker, S. J. , Iliffe, J. E. , eds. , Basin Modelling: Practice and Progress. Geological Society, London, Special Publications, 141(1): 187-208. doi: 10.1144/gsl.sp.1998.141.01.12 |
Hood, A., Gutjahr, C. C. M., Heacock, R. L., 1975. Organic Metamorphism and the Generation of Petroleum. AAPG Bulletin, 59: 986-996. doi: 10.1306/83d91f06-16c7-11d7-8645000102c1865d |
Huang, W.-L., 1996. Experimental Study of Vitrinite Maturation: Effects of Temperature, Time, Pressure, Water, and Hydrogen Index. Organic Geochemistry, 24(2): 233-241. doi: 10.1016/0146-6380(96)00032-0 |
Jarvie, D. M., 1991. Factors Affecting Rock-Eval Derived Kinetic Parameters. Chemical Geology, 93(1/2): 79-99. doi: 10.1016/0009-2541(91)90065-y |
Jarvie, D. M. , Lundell, L. L. , 2001. Kerogen Type and Thermal Transformation of Organic Matter in the Miocene Monterey Formation. In: Isaacs, C. M. , Rullkötter, J. , eds. , The Monterey Formation: From Rocks to Molecules. Columbia University Press, New York. 269-295 https: //www. mendeley. com/research-papers/kerogen-type-thermal-transformation-organic-matter-miocene-monterey-formation/ |
Jarvie, D. M., 2014. Components and Processes Affecting Producibility and Commerciality of Shale Resource Systems. Geologica Acta: Alago Special Publication, 12(4): 307-325 https://dialnet.unirioja.es/servlet/articulo?codigo=4922336 |
Klomp, U. C., Wright, P. A., 1989. A New Method for the Measurement of Kinetic Parameters of Hydrocarbon Generation from Source Rocks. Organic Geochemistry, 16(1/2/3): 49-60. doi: 10.1016/0146-6380(90)90025-u |
Larter, S. R., 1988. Some Pragmatic Perspectives in Source Rock Geochemistry. Marine and Petroleum Geology, 5(3): 194-204. doi: 10.1016/0264-8172(88)90001-3 |
Larter, S. R., 1989. Chemical Modelling of Vitrinite Reflectance Evolution. Geologische Rundschau, 78(1): 349-359. doi: 10.1007/bf01988369 |
Lehne, E., Dieckmann, V., 2007. The Significance of Kinetic Parameters and Structural Markers in Source Rock Asphaltenes, Reservoir Asphaltenes and Related Source Rock Kerogens, the Duvernay Formation (WCSB). Fuel, 86(5/6): 887-901. doi: 10.1016/j.fuel.2006.07.015 |
Lerche, I., Yarzab, R. E., Kendall, G. G., et al., 1984. Determination of Paleoheat Flux from Vitrinite Reflectance Data: Discussion. AAPG Bulletin, 69: 1704-1717. doi: 10.1306/94885606-1704-11d7-8645000102c1865d |
Lewan, M. D., Spiro, B., Illich, H., et al., 1985. Evaluation of Petroleum Generation by Hydrous Pyrolysis Experimentation. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 315(1531): 123-134. doi: 10.1098/rsta.1985.0033 |
Lewan, M. D., 1997. Experiments on the Role of Water in Petroleum Formation. Geochimica et Cosmochimica Acta, 61(17): 3691-3723. doi: 10.1016/s0016-7037(97)00176-2 |
Lewan, M. D., Ruble, T. E., 2002. Comparison of Petroleum Generation Kinetics by Isothermal Hydrous and Nonisothermal Open-System Pyrolysis. Organic Geochemistry, 33(12): 1457-1475. doi: 10.1016/s0146-6380(02)00182-1 |
Liao, L. L., Wang, Y. P., Chen, C. S., et al., 2017. Kinetic Study of Marine
and Lacustrine Shale Grains Using Rock-Eval Pyrolysis: Implications
to Hydrocarbon Generation, Retention and Expulsion. Marine and Petroleum Geology. doi: 10.1016/j.marpetgeo.2017.01.009 |
Lopatin, N. V., 1971. Temperature and Geologic Time as Factors in Coalification (in Russian). Akademiya Nauk SSSR Izvestiya, Seriya Geologicheskaya, 3: 95-106 |
Luo, X., Gong, S., Sun, F. J., et al., 2017. Effect of Volcanic Activity on Hydrocarbon Generation: Examples in Songliao, Qinshui, and Bohai Bay Basins in China. Journal of Natural Gas Science and Engineering, 38: 218-234 doi: 10.1016/j.jngse.2016.12.022 |
Ma, A. L., 2016. Kinetics of Oil-Cracking for Different Types of Marine Oils from Tahe Oilfield, Tarim Basin, NW China. Journal of Natural Gas Geoscience, 1(1): 35-43. doi: 10.1016/j.jnggs.2016.03.001 |
Mackenzie, A. S., Beaumont, C., McKenzie, D. P., 1984. Estimation of the Kinetics of Geochemical Reactions with Geophysical Models of Sedimentary Basins and Applications. Organic Geochemistry, 6: 875-884. doi: 10.1016/0146-6380(84)90110-4 |
Mackenzie, A. S., McKenzie, D. P., 1983. Isomerization and Aromatization of Hydrocarbons in Sedimentary Basins Formed by Extension. Geological Magazine, 120(5): 417. doi: 10.1017/s0016756800027461 |
Marzi, R., Rullkötter, J., Perriman, W. S., 1990. Application of the Change of Sterane Isomer Ratios to the Reconstruction of Geothermal Histories: Implications of the Results of Hydrous Pyrolysis Experiments. Organic Geochemistry, 16(1/2/3): 91-102. doi: 10.1016/0146-6380(90)90029-y |
Mohamed, A. Y., Whiteman, A. J., Archer, S. G., et al., 2016. Thermal Modelling of the Melut Basin Sudan and South Sudan: Implications for Hydrocarbon Generation and Migration. Marine and Petroleum Geology, 77: 746-762. doi: 10.1016/j.marpetgeo.2016.07.007 |
Nielsen, S. B., Barth, T., 1991a. Vitrinite Reflectance: Comments on "A Chemical Kinetic Model of Vitrinite Maturation and Reflectance" by Alan K. Burnham and Jerry J. Sweeney. Geochimica et Cosmochimica Acta, 55(2): 639-641. doi: 10.1016/0016-7037(91)90017-y |
Nielsen, S. B., Barth, T., 1991b. An Application of Least-Squares Inverse Analysis in Kinetic Interpretations of Hydrous Pyrolysis Experiments. Mathematical Geology, 23(4): 565-582. doi: 10.1007/bf02065807 |
Nielsen, S. B., Dahl, B., 1991. Confidence Limits on Kinetic Models of Primary Cracking and Implications for the Modelling of Hydrocarbon Generation. Marine and Petroleum Geology, 8(4): 483-492. doi: 10.1016/0264-8172(91)90070-h |
Nordeng, S. H. , 2013. Evaluating Source Rock Maturity Using Multi-Sample Kinetic Parameters from the Bakken Formation (Miss. -Dev. ), Williston Basin, ND. In: Geological Investigation No. 164 North Dakota Geological Survey, Dakota. 19 |
Nunn, J. A., Sleep, N. H., Moore, W. E., 1984. Thermal Subsidence and Generation of Hydrocarbons in Michigan Basin. AAPG Bulletin, 68: 296-315. doi: 10.1306/ad462c77-16f7-11d7-8645000102c1865d |
Nunn, J. A., 2012. Burial and Thermal History of the Haynesville Shale: Implications for Overpressure, Gas Generation, and Natural Hydro Fracture. Gulf Coast Association of Geological Societies (GCAGS) Journal, 1: 81-96 http://archives.datapages.com/data/gcags-journal/data/001/001001/pdfs/81.html |
Orr, W. L. , 1986. Kerogen/Asphaltene/Sulfur Relationships in Sulfur-Rich Monterey Oils. In: Leythaeuser, D. , Rullkotter, J. , eds. , Petroleum Geochemistry. Advances in Organic Geochemistry 1985, Part Ⅰ. Pergamon, London. 499-516 http: //www. sciencedirect. com/science/article/pii/0146638086900495?via%3Dihub |
Pepper, A. S., Corvi, P. J., 1995. Simple Kinetic Models of Petroleum Formation. Part Ⅰ: Oil and Gas Generation from Kerogen. Marine and Petroleum Geology, 12(3): 291-319. doi: 10.1016/0264-8172(95)98381-e |
Peters, K. E., 1986. Guidelines for Evaluating Petroleum Source Rock Using Programmed Pyrolysis. AAPG Bulletin, 70: 318-329. doi: 10.1306/94885688-1704-11d7-8645000102c1865d |
Peters, K. E., Burnham, A. K., Walters, C. C., 2015. Petroleum Generation Kinetics: Single versus Multiple Heating-Ramp Open-System Pyrolysis. AAPG Bulletin, 99(4):591-616. doi: 10.1306/11141414080 |
Pigott, J. D., 1985. Assessing Source Rock Maturity in Frontier Basins: Importance of Time, Temperature, and Tectonics. AAPG Bulletin, 69: 1269-1274. doi: 10.1306/ad462bcd-16f7-11d7-8645000102c1865d |
Reynolds, J. G., Burnham, A. K., Mitchell, T. O., 1995. Kinetic Analysis of California Petroleum Source Rocks by Programmed Temperature Micropyrolysis. Organic Geochemistry, 23(2): 109-120. doi: 10.1016/0146-6380(94)00121-g |
Ritter, U., Myhr, M. B., Vinge, T., et al., 1995. Experimental Heating and Kinetic Models of Source Rocks: Comparison of Different Methods. Organic Geochemistry, 23(1): 1-9. doi: 10.1016/0146-6380(94)00108-d |
Royden, L., Keen, C. E., 1980. Rifting Process and Thermal Evolution of the Continental Margin of Eastern Canada Determined from Subsidence Curves. Earth and Planetary Science Letters, 51(2): 343-361. doi: 10.1016/0012-821x(80)90216-2 |
Saxby, J. D., Bennett, A. J. R., Corcoran, J. F., et al., 1986. Petroleum Generation: Simulation over Six Years of Hydrocarbon Formation from Torbanite and Brown Coal in a Subsiding Basin. Organic Geochemistry, 9(2): 69-81. doi: 10.1016/0146-6380(86)90088-4 |
Schaefer, R. G., Galushkin, Y. I., Kolloff, A., et al., 1999. Reaction Kinetics of Gas Generation in Selected Source Rocks of the West Siberian Basin: Implications for the Mass Balance of Early-Thermogenic Methane. Chemical Geology, 156(1/2/3/4): 41-65. doi: 10.1016/s0009-2541(98)00177-6 |
Schenk, H. J., Di Primio, R., Horsfield, B., 1997. The Conversion of Oil into Gas in Petroleum Reservoirs. Part 1: Comparative Kinetic Investigation of Gas Generation from Crude Oils of Lacustrine, Marine and Fluviodeltaic Origin by Programmed-Temperature Closed-System Pyrolysis. Organic Geochemistry, 26(7/8): 467-481. doi: 10.1016/s0146-6380(97)00024-7 |
Shalaby, M. R., Abdullah, W. H., Abu Shady, A. N., 2008. Burial History, Basin Modeling and Petroleum Source Potential in the Western Desert, Egypt. Bulletin of the Geological Society of Malaysia, 54: 103 -113 https://www.researchgate.net/publication/280623773_Burial_history_basin_modeling_and_petroleum_source_potential_in_the_Western_Desert_Egypt |
Snowdon, L. R., 1979. Errors in Extrapolation of Experimental Kinetic Parameters to Organic Geochemical Systems: Geologic Notes. AAPG Bulletin, 63: 1128-1138. doi: 10.1306/2f9184c8-16ce-11d7-8645000102c1865d |
Stainforth, J. G., 2009. Practical Kinetic Modeling of Petroleum Generation and Expulsion. Marine and Petroleum Geology, 26(4): 552-572. doi: 10.1016/j.marpetgeo.2009.01.006 |
Suuberg, E. M., Peters, W. A., Howard, J. B., 1978. Product Composition and Kinetics of Lignite Pyrolysis. Industrial & Engineering Chemistry Process Design and Development, 17(1): 37-46. doi: 10.1021/i260065a008 |
Sweeney, J. J., Burnham, A. K., 1990. Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics (1). AAPG Bulletin, 74(10): 1559-1570. doi: 10.1306/0c9b251f-1710-11d7-8645000102c1865d |
Sykes, R., Snowdon, L. R., 2002. Guidelines for Assessing the Petroleum Potential of Coaly Source Rocks Using Rock-Eval Pyrolysis. Organic Geochemistry, 33(12): 1441-1455. doi: 10.1016/s0146-6380(02)00183-3 |
Tegelaar, E. W., Noble, R. A., 1994. Kinetics of Hydrocarbon Generation as a Function of the Molecular Structure of Kerogen as Revealed by Pyrolysis-Gas Chromatography. Organic Geochemistry, 22(3/4/5): 543-574. doi: 10.1016/0146-6380(94)90125-2 |
Tilley, B., Muehlenbachs, K., 2013. Isotope Reversals and Universal Stages and Trends of Gas Maturation in Sealed, Self-Contained Petroleum Systems. Chemical Geology, 339: 194-204. doi: 10.1016/j.chemgeo.2012.08.002 |
Tissot, B. P., Espitalié, J., 1975. L'evolution Thermique de la Matière Organique des Sédiments: Applications D'une Simulation Mathématique. Potentiel Pétrolier des Bassins Sédimentaires de Reconstitution de L'histoire Thermique des Sédiments. Revue de l'Institut Français du Pétrole, 30(5): 743-778. doi: 10.2516/ogst:1975026 |
Tissot, B. P., Welte, D. H., 1984. Petroleum Formation and Occurrence: Springer-Verlag, New York. 699 |
Ungerer, P., Pelet, R., 1987. Extrapolation of the Kinetics of Oil and Gas Formation from Laboratory Experiments to Sedimentary Basins. Nature, 327(6117): 52-54. doi: 10.1038/327052a0 |
Ungerer, P., Behar, F., Villalba, M., et al., 1988. Kinetic Modelling of Oil Cracking. Organic Geochemistry, 13(4/5/6): 857-868. doi: 10.1016/0146-6380(88)90238-0 |
Ungerer, P. , 1990. State of the Art of Research in Kinetic Modelling of Oil Formation and Expulsion. In: Durand, B. , Behar, F. , eds. , Proceedings of the 14th International Meeting on Organic Geochemistry, Paris, France, September 18-22, 1989. Org. Geochem. , 16: 1-25 http: //www. sciencedirect. com/science/article/pii/014663809090022R |
Vandenbroucke, M., Behar, F., Rudkiewicz, J. L., 1999. Kinetic Modelling of Petroleum Formation and Cracking: Implications from the High Pressure/High Temperature Elgin Field (UK, North Sea). Organic Geochemistry, 30(9): 1105-1125. doi: 10.1016/s0146-6380(99)00089-3 |
Waples, D. W., 1982. Time and Temperature in Petroleum Formation: Application of Lopatin's Method to Petroleum Exploration. AAPG Bulletin, 64: 916-926. doi: 10.1306/03b5a665-16d1-11d7-8645000102c1865d |
Waples, D. W. , Nowaczewski, V. S. , 2013. Source-Rock Kinetics. [2017-07-24]. https://siriusdummy.files.wordpress.com/2013/11/perspective-on-sr-kinetics-ss.pdf |
Waples, D. W., 2016. Petroleum Generation Kinetics: Single Versus Multiple Heating-Ramp Open-System Pyrolysis: Discussion. AAPG Bulletin, 100(4): 683-689. doi: 10.1306/01141615146 |
Wood, D. A., 1988. Relationships between Thermal Maturity Indices Calculated Using Arrhenius Equation and Lopatin Method: Implications for Petroleum Exploration. AAPG Bulletin, 72: 115-135. doi: 10.1306/703c8263-1707-11d7-8645000102c1865d |
Wood, D. A. , 1990. Thermal Maturation Modeling Using Spreadsheets. Geobyte, (Feb): 56-61 https: //www. osti. gov/scitech/biblio/6976787 |
Yang, R., He, S., Li, T. Y., et al., 2016. Origin of Over-Pressure in Clastic Rocks in Yuanba Area, Northeast Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 30: 90-105. doi: 10.13039/501100004613 |
Yang, R., He, S., Hu, Q. H., et al., 2017. Geochemical Characteristics and Origin of Natural Gas from Wufeng-Longmaxi Shales of the Fuling Gas Field, Sichuan Basin (China). International Journal of Coal Geology, 171: 1-11. doi: 10.13039/501100004613 |
Zhang, E. T., Hill, R. J., Katz, B. J., et al., 2008. Modeling of Gas Generation from the Cameo Coal Zone in the Piceance Basin, Colorado. AAPG Bulletin, 92(8): 1077-1106. doi: 10.1306/04020806015 |