Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 28 Issue 5
Oct 2017
Turn off MathJax
Article Contents
David A. Wood. Re-Establishing the Merits of Thermal Maturity and Petroleum Generation Multi-Dimensional Modeling with an Arrhenius Equation Using a Single Activation Energy. Journal of Earth Science, 2017, 28(5): 804-834. doi: 10.1007/s12583-017-0735-7
Citation: David A. Wood. Re-Establishing the Merits of Thermal Maturity and Petroleum Generation Multi-Dimensional Modeling with an Arrhenius Equation Using a Single Activation Energy. Journal of Earth Science, 2017, 28(5): 804-834. doi: 10.1007/s12583-017-0735-7

Re-Establishing the Merits of Thermal Maturity and Petroleum Generation Multi-Dimensional Modeling with an Arrhenius Equation Using a Single Activation Energy

doi: 10.1007/s12583-017-0735-7
More Information
  • Corresponding author: David A. Wood, dw@dwasolutions.com
  • Received Date: 25 Feb 2017
  • Accepted Date: 03 May 2017
  • Publish Date: 01 Oct 2017
  • Thermal maturation and petroleum generation modeling of shales is essential for successful exploration and exploitation of conventional and unconventional oil and gas plays. For basin-wide unconventional resource plays such modeling, when well calibrated with direct maturity measurements from wells, can characterize and locate production sweet spots for oil, wet gas and dry gas. The transformation of kerogen to petroleum is associated with many chemical reactions, but models typically focus on first-order reactions with rates determined by the Arrhenius Equation. A misconception has been perpetuated for many years that accurate thermal maturity modeling of vitrinite reflectance using the Arrhenius Equation and a single activation energy, to derive a time-temperature index (∑TTIARR), as proposed by Wood (1988), is flawed. This claim was initially made by Sweeney and Burnham (1990) in promoting their "EasyRo" method, and repeated by others. This paper demonstrates through detailed multi-dimensional burial and thermal modeling and direct comparison of the ∑TTIARR and "EasyRo" methods that this is not the case. The ∑TTIARR method not only provides a very useful and sensitive maturity index, it can reproduce the calculated vitrinite reflectance values derived from models based on multiple activation energies (e.g., "EasyRo"). Through simple expressions the ∑TTIARR method can also provide oil and gas transformation factors that can be flexibly scaled and calibrated to match the oil, wet gas and dry gas generation windows. This is achieved in a more-computationally-efficient, flexible and transparent way by the ∑TTIARR method than the "EasyRo" method. Analysis indicates that the "EasyRo" method, using twenty activation energies and a constant frequency factor, generates reaction rates and transformation factors that do not realistically model observed kerogen behaviour and transformation factors over geologic time scales.

     

  • loading
  • Abbott, G. D., Lewis, C. A., Maxwell, J. R., 1985. The Kinetics of Specific Organic Reactions in the Zone of Catagenesis. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 315(1531): 107-122. doi: 10.1098/rsta.1985.0032
    Arrhenius, S., 1889. Über Die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker Durch Säuren. Z. Phys. Chem., 4: 226-248 https://www.degruyter.com/view/j/zpch.1889.4.issue-1/zpch-1889-0416/zpch-1889-0416.xml
    Behar, F., Vandenbroucke, M., Tang, Y., et al., 1997. Thermal Cracking of Kerogen in Open and Closed Systems: Determination of Kinetic Parameters and Stoichiometric Coefficients for Oil and Gas Generation. Organic Geochemistry, 26(5/6): 321-339. doi: 10.1016/s0146-6380(97)00014-4
    Braun, R. L., Burnham, A. K., 1987. Analysis of Chemical Reaction Kinetics Using a Distribution of Activation Energies and Simpler Models. Energy & Fuels, 1(2): 153-161. doi: 10.1021/ef00002a003
    Burnham, A. K., Sweeney, J. J., 1989. A Chemical Kinetic Model of Vitrinite Maturation and Reflectance. Geochimica et Cosmochimica Acta, 53(10): 2649-2657. doi: 10.1016/0016-7037(89)90136-1
    Burnham, A. K., 1998. Comment on "Experiments on the Role of Water in Petroleum Formation" by M. D. Lewan. Geochimica et Cosmochimica Acta, 62: 2207-2210 doi: 10.1016/S0016-7037(98)00149-5
    Burnham, A. K., 2017. Global Chemical Kinetics of Fossil Fuels: How to Model Maturation and Pyrolysis. Springer, Amsterdam. 330
    Chen, Z. H., Liu, X. J., Guo, Q. L., et al., 2017. Inversion of Source Rock Hydrocarbon Generation Kinetics from Rock-Eval Data. Fuel, 194: 91-101. doi: 10.1016/j.fuel.2016.12.052
    Cornford, C. , 2009. Source Rocks and Hydrocarbons of the North Sea: Chapter 11. In: Glennie, K. W. , ed. , Petroleum Geology of the North Sea: Basic Concepts and Recent Advances: 4th Ed. Online ISBN: 9781444313413: 376-462. doi: 10.1002/9781444313413
    Dieckmann, V., 2005. Modelling Petroleum Formation from Heterogeneous Source Rocks: The Influence of Frequency Factors on Activation Energy Distribution and Geological Prediction. Marine and Petroleum Geology, 22(3): 375-390. doi: 10.1016/j.marpetgeo.2004.11.002
    Ducros, M. , 2016. Source Rock Kinetics: Goal and Perspectives. Conference Paper AAPG Geosciences Technology Workshop, "Source Rocks of the Middle East", January 25-26, 2016, Abu Dhabi, UAE https: //www. researchgate. net/publication/304785725_Source_Rock_Kinetics_Goal_and_Perspectives
    Eglinton, T. I., Sinninghe Damsté, J. S., Kohnen, M. E. L., et al., 1990. Rapid Estimation of the Organic Sulphur Content of Kerogens, Coals and Asphaltenes by Pyrolysis-Gas Chromatography. Fuel, 69(11): 1394-1404. doi: 10.1016/0016-2361(90)90121-6
    Espitalié, J. , 1986. Use of Tmax as a Maturation Index for Different Types of Organic Matter. In: Burris, J. , ed. , Comparison with Vitrinite Reflectance: 1st IFP Exploration Research Conference, Thermal modeling in Sedimentary Basins: Paris, June 3-7, 1985, Carcans, France. 475-496
    Espitalié, J., Ungerer, P., Irwin, I., et al., 1988. Primary Cracking of Kerogens. Experimenting and Modelling C1, C2-C5, C6-C15 and C15+ Classes of Hydrocarbons Formed. Organic Geochemistry, 13(4/5/6): 893-899. doi: 10.1016/0146-6380(88)90243-4
    Gorbachev, V. M., 1975. A Solution of the Exponential Integral in the Non-isothermal Kinetics for Linear Heating. Journal of Thermal Analysis, 8: 349350 doi: 10.1007/BF01904012
    Hackley, P. C., Araujo, C. V., Borrego, A. G., et al., 2015. Standardization of Reflectance Measurements in Dispersed Organic Matter: Results of an Exercise to Improve Inter Laboratory Agreement. Mar. Pet. Geol., 59: 22-34 doi: 10.1016/j.marpetgeo.2014.07.015
    Hackley, P. C., Cardott, B. J., 2016. Application of Organic Petrography in North American Shale Petroleum Systems: A Review. International Journal of Coal Geology, 163: 8-51. doi: 10.1016/j.coal.2016.06.010
    Hartkopf-Fröder, C., Königshof, P., Littke, R., et al., 2015. Optical Thermal Maturity Parameters and Organic Geochemical Alteration at Low Grade Diagenesis to Anchimetamorphism: A Review. International Journal of Coal Geology, 150/151: 74-119. doi: 10.1016/j.coal.2015.06.005
    He, S., Middleton, M., 2002. Heat Flow and Thermal Maturity Modelling in the Northern Carnarvon Basin, North West Shelf, Australia. Marine and Petroleum Geology, 19(9): 1073-1088. doi: 10.1016/s0264-8172(03)00003-5
    Ho, T. T. Y. , Jensen, R. P. , Sahai, S. K. , et al. , 1998. Comparative Studies of Pre-and Post-Drilling Modelled Thermal Conductivity and Maturity Data with Post-Drilling Results: Implications for Basin Modelling and Hydrocarbon Exploration. In: Duppenbecker, S. J. , Iliffe, J. E. , eds. , Basin Modelling: Practice and Progress. Geological Society, London, Special Publications, 141(1): 187-208. doi: 10.1144/gsl.sp.1998.141.01.12
    Hood, A., Gutjahr, C. C. M., Heacock, R. L., 1975. Organic Metamorphism and the Generation of Petroleum. AAPG Bulletin, 59: 986-996. doi: 10.1306/83d91f06-16c7-11d7-8645000102c1865d
    Huang, W.-L., 1996. Experimental Study of Vitrinite Maturation: Effects of Temperature, Time, Pressure, Water, and Hydrogen Index. Organic Geochemistry, 24(2): 233-241. doi: 10.1016/0146-6380(96)00032-0
    Jarvie, D. M., 1991. Factors Affecting Rock-Eval Derived Kinetic Parameters. Chemical Geology, 93(1/2): 79-99. doi: 10.1016/0009-2541(91)90065-y
    Jarvie, D. M. , Lundell, L. L. , 2001. Kerogen Type and Thermal Transformation of Organic Matter in the Miocene Monterey Formation. In: Isaacs, C. M. , Rullkötter, J. , eds. , The Monterey Formation: From Rocks to Molecules. Columbia University Press, New York. 269-295 https: //www. mendeley. com/research-papers/kerogen-type-thermal-transformation-organic-matter-miocene-monterey-formation/
    Jarvie, D. M., 2014. Components and Processes Affecting Producibility and Commerciality of Shale Resource Systems. Geologica Acta: Alago Special Publication, 12(4): 307-325 https://dialnet.unirioja.es/servlet/articulo?codigo=4922336
    Klomp, U. C., Wright, P. A., 1989. A New Method for the Measurement of Kinetic Parameters of Hydrocarbon Generation from Source Rocks. Organic Geochemistry, 16(1/2/3): 49-60. doi: 10.1016/0146-6380(90)90025-u
    Larter, S. R., 1988. Some Pragmatic Perspectives in Source Rock Geochemistry. Marine and Petroleum Geology, 5(3): 194-204. doi: 10.1016/0264-8172(88)90001-3
    Larter, S. R., 1989. Chemical Modelling of Vitrinite Reflectance Evolution. Geologische Rundschau, 78(1): 349-359. doi: 10.1007/bf01988369
    Lehne, E., Dieckmann, V., 2007. The Significance of Kinetic Parameters and Structural Markers in Source Rock Asphaltenes, Reservoir Asphaltenes and Related Source Rock Kerogens, the Duvernay Formation (WCSB). Fuel, 86(5/6): 887-901. doi: 10.1016/j.fuel.2006.07.015
    Lerche, I., Yarzab, R. E., Kendall, G. G., et al., 1984. Determination of Paleoheat Flux from Vitrinite Reflectance Data: Discussion. AAPG Bulletin, 69: 1704-1717. doi: 10.1306/94885606-1704-11d7-8645000102c1865d
    Lewan, M. D., Spiro, B., Illich, H., et al., 1985. Evaluation of Petroleum Generation by Hydrous Pyrolysis Experimentation. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 315(1531): 123-134. doi: 10.1098/rsta.1985.0033
    Lewan, M. D., 1997. Experiments on the Role of Water in Petroleum Formation. Geochimica et Cosmochimica Acta, 61(17): 3691-3723. doi: 10.1016/s0016-7037(97)00176-2
    Lewan, M. D., Ruble, T. E., 2002. Comparison of Petroleum Generation Kinetics by Isothermal Hydrous and Nonisothermal Open-System Pyrolysis. Organic Geochemistry, 33(12): 1457-1475. doi: 10.1016/s0146-6380(02)00182-1
    Liao, L. L., Wang, Y. P., Chen, C. S., et al., 2017. Kinetic Study of Marine and Lacustrine Shale Grains Using Rock-Eval Pyrolysis: Implications to Hydrocarbon Generation, Retention and Expulsion. Marine and Petroleum Geology. doi: 10.1016/j.marpetgeo.2017.01.009
    Lopatin, N. V., 1971. Temperature and Geologic Time as Factors in Coalification (in Russian). Akademiya Nauk SSSR Izvestiya, Seriya Geologicheskaya, 3: 95-106
    Luo, X., Gong, S., Sun, F. J., et al., 2017. Effect of Volcanic Activity on Hydrocarbon Generation: Examples in Songliao, Qinshui, and Bohai Bay Basins in China. Journal of Natural Gas Science and Engineering, 38: 218-234 doi: 10.1016/j.jngse.2016.12.022
    Ma, A. L., 2016. Kinetics of Oil-Cracking for Different Types of Marine Oils from Tahe Oilfield, Tarim Basin, NW China. Journal of Natural Gas Geoscience, 1(1): 35-43. doi: 10.1016/j.jnggs.2016.03.001
    Mackenzie, A. S., Beaumont, C., McKenzie, D. P., 1984. Estimation of the Kinetics of Geochemical Reactions with Geophysical Models of Sedimentary Basins and Applications. Organic Geochemistry, 6: 875-884. doi: 10.1016/0146-6380(84)90110-4
    Mackenzie, A. S., McKenzie, D. P., 1983. Isomerization and Aromatization of Hydrocarbons in Sedimentary Basins Formed by Extension. Geological Magazine, 120(5): 417. doi: 10.1017/s0016756800027461
    Marzi, R., Rullkötter, J., Perriman, W. S., 1990. Application of the Change of Sterane Isomer Ratios to the Reconstruction of Geothermal Histories: Implications of the Results of Hydrous Pyrolysis Experiments. Organic Geochemistry, 16(1/2/3): 91-102. doi: 10.1016/0146-6380(90)90029-y
    Mohamed, A. Y., Whiteman, A. J., Archer, S. G., et al., 2016. Thermal Modelling of the Melut Basin Sudan and South Sudan: Implications for Hydrocarbon Generation and Migration. Marine and Petroleum Geology, 77: 746-762. doi: 10.1016/j.marpetgeo.2016.07.007
    Nielsen, S. B., Barth, T., 1991a. Vitrinite Reflectance: Comments on "A Chemical Kinetic Model of Vitrinite Maturation and Reflectance" by Alan K. Burnham and Jerry J. Sweeney. Geochimica et Cosmochimica Acta, 55(2): 639-641. doi: 10.1016/0016-7037(91)90017-y
    Nielsen, S. B., Barth, T., 1991b. An Application of Least-Squares Inverse Analysis in Kinetic Interpretations of Hydrous Pyrolysis Experiments. Mathematical Geology, 23(4): 565-582. doi: 10.1007/bf02065807
    Nielsen, S. B., Dahl, B., 1991. Confidence Limits on Kinetic Models of Primary Cracking and Implications for the Modelling of Hydrocarbon Generation. Marine and Petroleum Geology, 8(4): 483-492. doi: 10.1016/0264-8172(91)90070-h
    Nordeng, S. H. , 2013. Evaluating Source Rock Maturity Using Multi-Sample Kinetic Parameters from the Bakken Formation (Miss. -Dev. ), Williston Basin, ND. In: Geological Investigation No. 164 North Dakota Geological Survey, Dakota. 19
    Nunn, J. A., Sleep, N. H., Moore, W. E., 1984. Thermal Subsidence and Generation of Hydrocarbons in Michigan Basin. AAPG Bulletin, 68: 296-315. doi: 10.1306/ad462c77-16f7-11d7-8645000102c1865d
    Nunn, J. A., 2012. Burial and Thermal History of the Haynesville Shale: Implications for Overpressure, Gas Generation, and Natural Hydro Fracture. Gulf Coast Association of Geological Societies (GCAGS) Journal, 1: 81-96 http://archives.datapages.com/data/gcags-journal/data/001/001001/pdfs/81.html
    Orr, W. L. , 1986. Kerogen/Asphaltene/Sulfur Relationships in Sulfur-Rich Monterey Oils. In: Leythaeuser, D. , Rullkotter, J. , eds. , Petroleum Geochemistry. Advances in Organic Geochemistry 1985, Part Ⅰ. Pergamon, London. 499-516 http: //www. sciencedirect. com/science/article/pii/0146638086900495?via%3Dihub
    Pepper, A. S., Corvi, P. J., 1995. Simple Kinetic Models of Petroleum Formation. Part Ⅰ: Oil and Gas Generation from Kerogen. Marine and Petroleum Geology, 12(3): 291-319. doi: 10.1016/0264-8172(95)98381-e
    Peters, K. E., 1986. Guidelines for Evaluating Petroleum Source Rock Using Programmed Pyrolysis. AAPG Bulletin, 70: 318-329. doi: 10.1306/94885688-1704-11d7-8645000102c1865d
    Peters, K. E., Burnham, A. K., Walters, C. C., 2015. Petroleum Generation Kinetics: Single versus Multiple Heating-Ramp Open-System Pyrolysis. AAPG Bulletin, 99(4):591-616. doi: 10.1306/11141414080
    Pigott, J. D., 1985. Assessing Source Rock Maturity in Frontier Basins: Importance of Time, Temperature, and Tectonics. AAPG Bulletin, 69: 1269-1274. doi: 10.1306/ad462bcd-16f7-11d7-8645000102c1865d
    Reynolds, J. G., Burnham, A. K., Mitchell, T. O., 1995. Kinetic Analysis of California Petroleum Source Rocks by Programmed Temperature Micropyrolysis. Organic Geochemistry, 23(2): 109-120. doi: 10.1016/0146-6380(94)00121-g
    Ritter, U., Myhr, M. B., Vinge, T., et al., 1995. Experimental Heating and Kinetic Models of Source Rocks: Comparison of Different Methods. Organic Geochemistry, 23(1): 1-9. doi: 10.1016/0146-6380(94)00108-d
    Royden, L., Keen, C. E., 1980. Rifting Process and Thermal Evolution of the Continental Margin of Eastern Canada Determined from Subsidence Curves. Earth and Planetary Science Letters, 51(2): 343-361. doi: 10.1016/0012-821x(80)90216-2
    Saxby, J. D., Bennett, A. J. R., Corcoran, J. F., et al., 1986. Petroleum Generation: Simulation over Six Years of Hydrocarbon Formation from Torbanite and Brown Coal in a Subsiding Basin. Organic Geochemistry, 9(2): 69-81. doi: 10.1016/0146-6380(86)90088-4
    Schaefer, R. G., Galushkin, Y. I., Kolloff, A., et al., 1999. Reaction Kinetics of Gas Generation in Selected Source Rocks of the West Siberian Basin: Implications for the Mass Balance of Early-Thermogenic Methane. Chemical Geology, 156(1/2/3/4): 41-65. doi: 10.1016/s0009-2541(98)00177-6
    Schenk, H. J., Di Primio, R., Horsfield, B., 1997. The Conversion of Oil into Gas in Petroleum Reservoirs. Part 1: Comparative Kinetic Investigation of Gas Generation from Crude Oils of Lacustrine, Marine and Fluviodeltaic Origin by Programmed-Temperature Closed-System Pyrolysis. Organic Geochemistry, 26(7/8): 467-481. doi: 10.1016/s0146-6380(97)00024-7
    Shalaby, M. R., Abdullah, W. H., Abu Shady, A. N., 2008. Burial History, Basin Modeling and Petroleum Source Potential in the Western Desert, Egypt. Bulletin of the Geological Society of Malaysia, 54: 103 -113 https://www.researchgate.net/publication/280623773_Burial_history_basin_modeling_and_petroleum_source_potential_in_the_Western_Desert_Egypt
    Snowdon, L. R., 1979. Errors in Extrapolation of Experimental Kinetic Parameters to Organic Geochemical Systems: Geologic Notes. AAPG Bulletin, 63: 1128-1138. doi: 10.1306/2f9184c8-16ce-11d7-8645000102c1865d
    Stainforth, J. G., 2009. Practical Kinetic Modeling of Petroleum Generation and Expulsion. Marine and Petroleum Geology, 26(4): 552-572. doi: 10.1016/j.marpetgeo.2009.01.006
    Suuberg, E. M., Peters, W. A., Howard, J. B., 1978. Product Composition and Kinetics of Lignite Pyrolysis. Industrial & Engineering Chemistry Process Design and Development, 17(1): 37-46. doi: 10.1021/i260065a008
    Sweeney, J. J., Burnham, A. K., 1990. Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics (1). AAPG Bulletin, 74(10): 1559-1570. doi: 10.1306/0c9b251f-1710-11d7-8645000102c1865d
    Sykes, R., Snowdon, L. R., 2002. Guidelines for Assessing the Petroleum Potential of Coaly Source Rocks Using Rock-Eval Pyrolysis. Organic Geochemistry, 33(12): 1441-1455. doi: 10.1016/s0146-6380(02)00183-3
    Tegelaar, E. W., Noble, R. A., 1994. Kinetics of Hydrocarbon Generation as a Function of the Molecular Structure of Kerogen as Revealed by Pyrolysis-Gas Chromatography. Organic Geochemistry, 22(3/4/5): 543-574. doi: 10.1016/0146-6380(94)90125-2
    Tilley, B., Muehlenbachs, K., 2013. Isotope Reversals and Universal Stages and Trends of Gas Maturation in Sealed, Self-Contained Petroleum Systems. Chemical Geology, 339: 194-204. doi: 10.1016/j.chemgeo.2012.08.002
    Tissot, B. P., Espitalié, J., 1975. L'evolution Thermique de la Matière Organique des Sédiments: Applications D'une Simulation Mathématique. Potentiel Pétrolier des Bassins Sédimentaires de Reconstitution de L'histoire Thermique des Sédiments. Revue de l'Institut Français du Pétrole, 30(5): 743-778. doi: 10.2516/ogst:1975026
    Tissot, B. P., Welte, D. H., 1984. Petroleum Formation and Occurrence: Springer-Verlag, New York. 699
    Ungerer, P., Pelet, R., 1987. Extrapolation of the Kinetics of Oil and Gas Formation from Laboratory Experiments to Sedimentary Basins. Nature, 327(6117): 52-54. doi: 10.1038/327052a0
    Ungerer, P., Behar, F., Villalba, M., et al., 1988. Kinetic Modelling of Oil Cracking. Organic Geochemistry, 13(4/5/6): 857-868. doi: 10.1016/0146-6380(88)90238-0
    Ungerer, P. , 1990. State of the Art of Research in Kinetic Modelling of Oil Formation and Expulsion. In: Durand, B. , Behar, F. , eds. , Proceedings of the 14th International Meeting on Organic Geochemistry, Paris, France, September 18-22, 1989. Org. Geochem. , 16: 1-25 http: //www. sciencedirect. com/science/article/pii/014663809090022R
    Vandenbroucke, M., Behar, F., Rudkiewicz, J. L., 1999. Kinetic Modelling of Petroleum Formation and Cracking: Implications from the High Pressure/High Temperature Elgin Field (UK, North Sea). Organic Geochemistry, 30(9): 1105-1125. doi: 10.1016/s0146-6380(99)00089-3
    Waples, D. W., 1982. Time and Temperature in Petroleum Formation: Application of Lopatin's Method to Petroleum Exploration. AAPG Bulletin, 64: 916-926. doi: 10.1306/03b5a665-16d1-11d7-8645000102c1865d
    Waples, D. W. , Nowaczewski, V. S. , 2013. Source-Rock Kinetics. [2017-07-24]. https://siriusdummy.files.wordpress.com/2013/11/perspective-on-sr-kinetics-ss.pdf
    Waples, D. W., 2016. Petroleum Generation Kinetics: Single Versus Multiple Heating-Ramp Open-System Pyrolysis: Discussion. AAPG Bulletin, 100(4): 683-689. doi: 10.1306/01141615146
    Wood, D. A., 1988. Relationships between Thermal Maturity Indices Calculated Using Arrhenius Equation and Lopatin Method: Implications for Petroleum Exploration. AAPG Bulletin, 72: 115-135. doi: 10.1306/703c8263-1707-11d7-8645000102c1865d
    Wood, D. A. , 1990. Thermal Maturation Modeling Using Spreadsheets. Geobyte, (Feb): 56-61 https: //www. osti. gov/scitech/biblio/6976787
    Yang, R., He, S., Li, T. Y., et al., 2016. Origin of Over-Pressure in Clastic Rocks in Yuanba Area, Northeast Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 30: 90-105. doi: 10.13039/501100004613
    Yang, R., He, S., Hu, Q. H., et al., 2017. Geochemical Characteristics and Origin of Natural Gas from Wufeng-Longmaxi Shales of the Fuling Gas Field, Sichuan Basin (China). International Journal of Coal Geology, 171: 1-11. doi: 10.13039/501100004613
    Zhang, E. T., Hill, R. J., Katz, B. J., et al., 2008. Modeling of Gas Generation from the Cameo Coal Zone in the Piceance Basin, Colorado. AAPG Bulletin, 92(8): 1077-1106. doi: 10.1306/04020806015
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(11)

    Article Metrics

    Article views(1101) PDF downloads(351) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return