Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 28 Issue 1
Feb 2017
Turn off MathJax
Article Contents
Zongyu Yue, Kaichang Di. Hydrocode Simulation of the Impact Melt Layer Distribution underneath Xiuyan Crater, China. Journal of Earth Science, 2017, 28(1): 180-186. doi: 10.1007/s12583-017-0741-9
Citation: Zongyu Yue, Kaichang Di. Hydrocode Simulation of the Impact Melt Layer Distribution underneath Xiuyan Crater, China. Journal of Earth Science, 2017, 28(1): 180-186. doi: 10.1007/s12583-017-0741-9

Hydrocode Simulation of the Impact Melt Layer Distribution underneath Xiuyan Crater, China

doi: 10.1007/s12583-017-0741-9
More Information
  • In this research, we studied the distribution of impact melt layers underneath Xiuyan crater using hydrocode simulation. The target was modeled by granite based on the rock type distribution around the crater and projector by iron, because most small and isolated terrestrial craters are formed by iron projectile. The simulated crater diameter and depth are 1 710 and 320 m, respectively, which are in good agreement with observations of 1 800 and 307 m (except for the post-impact lacustrine sedimentation). The validated model shows that impact melt materials were first formed along the transient crater floor and wall by highshock pressure, and then refilled inward the crater along with collapse of the crater wall. The final style of impact melt materials is interbedded with shock breccia underneath the crater center, which is verified through two layers in the borehole located in the crater center.


  • loading
  • Amsden, A. A., Ruppel, H. M., Hirt, C. W., 1980. SALE: A Simplified ALE Computer Program for Fluid Flow at All Speeds. Report #LA-8095. Los Alamos National Laboratories, Los Alamos, New Mexico. 101
    Chen, M., 2008. Impact-Derived Features of the Xiuyan Meteorite Crater. Chinese Science Bulletin, 53(3): 392-395. doi: 10.1007/s11434-008-0004-3
    Chen, M., Xiao, W. S., Xie, X. D., et al., 2010. Xiuyan Crater, China: Impact Origin Confirmed. Chinese Science Bulletin, 55(17): 1777-1781. doi: 10.1007/s11434-010-3010-1
    Chen, M., Koeberl, C., Xiao, W. S., et al., 2011. Planar Deformation Features in Quartz from Impact-Produced Polymict Breccia of the Xiuyan Crater, China. Meteoritics & Planetary Science, 46(5): 729-736. doi: 10.1111/j.1945-5100.2011.01186.x
    Collins, G. S., Melosh, H. J., Ivanov, B. A., 2004. Modeling Damage and Deformation in Impact Simulations. Meteoritics & Planetary Science, 39(2): 217-231. doi: 10.1111/j.1945-5100.2004.tb00337.x
    Collins, G. S., Melosh, H. J., Marcus, R. A., 2005. Earth Impact Effects Program: A Web-Based Computer Program for Calculating the Regional Environmental Consequences of a Meteoroid Impact on Earth. Meteoritics & Planetary Science, 40(6): 817-840. doi: 10.1111/j.1945-5100.2005.tb00157.x
    Grieve, R. A. F., 1978. The Melt Rocks at Brent Crater, Ontario, Canada. Proceeding of 9th Lunar Planetary Science Conference, March 13-17, Houston. 2579-2608
    Grieve, R. A. F., Langenhorst, F., St ffler, D., 1996. Shock Metamorphism of Quartz in Nature and Experiment: II. Significance in Geoscience. Meteoritics & Planetary Science, 31(1): 6-35. doi: 10.1111/j.1945-5100.1996.tb02049.x
    Ivanov, B. A., Deniem, D., Neukum, G., 1997. Implementation of Dynamic Strength Models into 2D Hydrocodes: Applications for Atmospheric Breakup and Impact Cratering. International Journal of Impact Engineering, 20(1-5): 411-430. doi: 10.1016/s0734-743x(97)87511-2
    Ivanov, B. A., Artemieva, N. A., 2011. Numerical Modeling of the Formation of Large Impact Craters. Geological Society of America Special Paper, 356: 619-630
    Kinslow, R., 1970. High-Velocity Impact Phenomena. Academic Press, New York
    Littlefield, D. L., 1997. ANEOS Extensions for Modeling Hypervelocity Impact. International Journal of Impact Engineering, 20(6-10): 533-544. doi: 10.1016/s0734-743x(97)87442-8
    Littlefield, D. L., Bauman, P. T., Molineux, A., 2007. Analysis of Formation of the Odessa Crater. International Journal of Impact Engineering, 34(12): 1953-1961. doi: 10.1016/j.ijimpeng.2006.12.005
    McGlaun, J. M., Thompson, S. L., Elrick, M. G., 1990. CTH: A Three-Dimensional Shock Wave Physics Code. International Journal of Impact Engineering, 10(1-4): 351-360. doi: 10.1016/0734-743x(90)90071-3
    Melosh, H. J., 1989. Impact Cratering: A Geologic Process. Oxford University Press, New York
    Melosh, H. J., 2007. A Hydrocode Equation of State for SiO2. Meteoritics & Planetary Science, 42(12): 2079-2098. doi: 10.1111/j.1945-5100.2007.tb01009.x
    Melosh, H. J., Ryan, E. V., Asphaug, E., 1992. Dynamic Fragmentation in Impacts: Hydrocode Simulation of Laboratory Impacts. Journal of Geophysical Research, 97(E9): 14735. doi: 10.1029/92je01632
    Ohnaka, M., 1995. A Shear Failure Strength Law of Rock in the Brittle-Plastic Transition Regime. Geophysical Research Letters, 22(1): 25-28. doi: 10.1029/94gl02791
    O'Keefe, J. D., Ahrens, T. J., 1994. Impact-Induced Melting of Planetary Surfaces. Geological Society of America Special Paper, 293: 103-109
    Osinski, G. R., Pierazzo, E., 2013. Impact Cratering: Processes and Products. Wiley-Blackwell, Hoboken, NJ
    Pierazzo, E., Vickery, A. M., Melosh, H. J., 1997. A Reevaluation of Impact Melt Production. Icarus, 127(2): 408-423. doi: 10.1006/icar.1997.5713
    Pierazzo, E., Melosh, H. J., 2000. Melt Production in Oblique Impacts. Icarus, 145(1): 252-261. doi: 10.1006/icar.1999.6332
    Qin, G., Lu, D., Ou, Q., et al., 2001. The Discovery of PGE Anomaly and Platina from Luoquanli Impact Crater, China. Earth Science Frontier, 8(2): 333-338 (in Chinese with English Abstract)
    Thompson S. L., Lauson, H. S., 1972. Improvements in the Chart D Radiation-Hydrodynamic CODE III: Revised Analytic Equations of State. Report SC-RR-71 0714. Sandia National Laboratory, Albuquerque. 119
    Tonks, W. B., Melosh, H. J., 1993. Magma Ocean Formation Due to Giant Impacts. Journal of Geophysical Research, 98(E3): 5319. doi: 10.1029/92je02726
    Wang X. Y., Luo, L., Guo H. D., et al., 2013. Cratering Process and Morphological Features of the Xiuyan Impact Crater in Northeast China. Science China:Earth Sciences, 56(10): 1629-1638. doi: 10.1007/s11430-013-4695-1
    Wünnemann, K., Collins, G. S., Melosh, H. J., 2006. A Strain-Based Porosity Model for Use in Hydrocode Simulations of Impacts and Implications for Transient Crater Growth in Porous Targets. Icarus, 180(2): 514-527. doi: 10.1016/j.icarus.2005.10.013
    Wünnemann, K., Collins, G. S., Osinski, G. R., 2008. Numerical Modelling of Impact Melt Production in Porous Rocks. Earth and Planetary Science Letters, 269(3/4): 530-539. doi: 10.1016/j.epsl.2008.03.007
    Yue, Z. Y., Di, K. C., Zhang, P., 2012. Theories and Methods for Numerical Simulation of Impact Crater Formation. Earth Science Frontiers, 19(6): 110-117 (in Chinese with English Abstract)
    Zhao, C. J., Liu, M. J., Fan, J. C., et al., 2011. High-Resolution Seismic Exploration of Xiuyan Impact Crater Structures. Chinese Journal of Geophysics, 54(6): 1559-1565 (in Chinese with English Abstract)
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(2)

    Article Metrics

    Article views(874) PDF downloads(441) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint