Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 28 Issue 1
Feb 2017
Turn off MathJax
Article Contents
Jie Zhang, Qinglai Feng, Zhi Zhang. Tracing Escaping Structure in the Northern Indo-China Peninsula by Openness and Remote Sensing. Journal of Earth Science, 2017, 28(1): 147-160. doi: 10.1007/s12583-017-0743-7
Citation: Jie Zhang, Qinglai Feng, Zhi Zhang. Tracing Escaping Structure in the Northern Indo-China Peninsula by Openness and Remote Sensing. Journal of Earth Science, 2017, 28(1): 147-160. doi: 10.1007/s12583-017-0743-7

Tracing Escaping Structure in the Northern Indo-China Peninsula by Openness and Remote Sensing

doi: 10.1007/s12583-017-0743-7
More Information
  • The Openness based on DEM emphasizes the terrain convexity and concavity. It facilitates the interpretation of detailed landforms on the Earth’s surface. Compared with the layer stacking of ETM+ with less three-dimensionality and visualizability and with indefinite details of linear images in the deep cutting or deep covered region, the Openness is used for accurate interpretation of tectonic geomorphic units and linear structures. In this paper, the ETM+ images (741 RGB) and RRIM based on Openness combined with the field geological investigation are used to trace the escaping structure in SE Asia. The east boundary is Ailaoshan shear zone and the west boundary is Uttaradit-Dien Bien Phu fault, which together form the southwards extruding wedge block. The arc boundary surface of the southern Khorat Plateau is jutted to the north. The NW and NE sides of Khorat Plateau are traversed by Uttaradit-Dien Bien Phu fault and Thakhek-Da Nang fault, respectively, resulting in a blocked escaping structure. The SE margins of Truong Son structure belt and Song Ma structure belt are both arcs jutting to SE. These arc structures clamped by faults or related to the fault on one side indicating the material flow direction obviously, are the most specific manifestation of escaping structures. Moreover, these push units are extruded from south to north successively.

     

  • loading
  • Cao, S., Liu, J., Leiss, B., et al., 2011. Oligo-Miocene Shearing along the Ailao Shan-Red River Shear Zone: Constraints from Structural Analysis and Zircon U/Pb Geochronology of Magmatic Rocks in the Diancang Shan Massif, SE Tibet, China. Gondwana Research, 19(4): 975-993. doi: 10.1016/j.gr.2010.10.006
    Cao, S., Liu, J., Leiss, B., et al., 2009. Timing of Initiation of Left-Lateral Slip along the Ailao Shan-Red River Shear Zone: Microstructural, Texture and Thermochronological Evidence from High Temperature Mylonites in Diancang Shan, SW China.Acta Geologica Sinica, 83(10): 1388-1400 https://www.researchgate.net/publication/280054521_Timing_of_initiation_of_left-lateral_slip_along_the_ailao_Shan-Red_river_shear_Zone_Microstructural_texture_and_thermochronological_evidence_from_high_temperature_Mylonites_in_Diancang_Shan_SW_China
    Chavez, P. S., 1984. Digital Processing Techniques for Image Mapping with Landsat TM and SPOT Simulator Data. In: Cook, J. J., ed., Proceedings of the Eighteenth International Symposium on Remote Sensing of Environment, Paris. Environmental Research Inst. of Michigan, Ann Arbor. 101-116
    Chiba, T., Kaneta, S., Suzuki, Y., 2008. Red Relief Image Map: New Visualization Method for Three Dimensional Data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(B2): 1071-1076. https://www.researchgate.net/publication/237517308_Red_relief_image_map_New_visualization_method_for_three_dimensional_data
    Elmahdy, S. I., Mohamed, M. M., 2014. Relationship between Geological Structures and Groundwater Flow and Groundwater Salinity in Al Jaaw Plain, United Arab Emirates: Mapping and Analysis by Means of Remote Sensing and GIS. Arabian Journal of Geosciences, 7(3): 1249-1259. doi: 10.1007/s12517-013-0895-4
    Elmahdy, S. I., Mansor, S., Huat, B. B., et al., 2012. Structural Geologic Control with the Limestone Bedrock Associated with Piling Problems Using Remote Sensing and GIS: A Modified Geomorphological Method. Environmental Earth Sciences, 66(8): 2185-2195. doi: 10.1007/s12665-011-1440-y
    Hall, R., Hattum, M. W. A. V., Spakman, W., 2008. Impact of India-Asia Collision on SE Asia: The Record in Borneo. Tectonophysics, 451(1): 366-389. doi: 10.1016/j.tecto.2007.11.058
    Hasegawa, S., Nonomura, A., Uchida, J. I., et al., 2015. Hazard Mapping of Earthquake-Induced Deep-Seated Catastrophic Landslides along the Median Tectonic Line in Shikoku by Using LiDAR DEM and Airborne Resistivity Data. In: Engineering Geology for Society and Territory. Springer International Publishing, [S.l.]. 717-720. doi:10.1007/978-3-319-09057-3_120
    Hsieh, Y., Kuo, C., Chen, Y., et al., 2015. Using Airborne LiDAR DEM to Determine the Bedrock Incision Rate: An Indirect Dating from Landslide Sliding Surface, Taiwan. In: Engineering Geology for Society and Territory. Springer International Publishing, [S.l.]. 429-434. doi:10.1007/978-3-319-09057-3_69
    Lepvrier, C., Vuong, N. V., Maluski, H., et al., 2008. Indosinian Tectonics in Vietnam. Comptes Rendus Geosciences, 340(2/3): 94-111. doi: 10.1016/j.crte.2007.10.005
    Lepvrier, C., Maluski, H., Vuong, N. V., et al., 1997. Indosinian NW-Trending Shear Zone within the Truong Son Belt (Vietnam): 40Ar-39Ar Triassic and Cretaceous to Cenozoic Overprints. Tectonophysics, 283(1): 105-127. doi: 10.1016/S0040-1951(97)00151-0
    Li, Q., Chen, W. J., Wan, J. L., et al., 2001. New Evidence of Tectonic Uplift and Transform of Movement Style along Ailao Shan-Red River Shear Zone. Science in China Series D: Earth Sciences, 44(2): 124-132. doi: 10.1007/bf02879655
    Lin, Z., Kaneda, H., Mukoyama, S., et al., 2013. Detection of Subtle Tectonic-Geomorphic Features in Densely Forested Mountains by very High-Resolution Airborne LiDAR Survey. Geomorphology, 182: 104-115. doi: 10.1016/j.geomorph.2012.11.001
    Morley, C. K., Woganan, N., Sankumarn, N., et al., 2001. Late Oligocene-Recent Stress Evolution in Rift Basins of Northern and Central Thailand: Implications for Escape Tectonics. Tectonophysics, 334(2): 115-150. doi: 10.1016/s0040-1951(00)00300-0
    Pike, R. J., Acevedo, W., Thelin, G. P., 1988. Some Topographic Ingredients of a Geographic Information System. Proceedings, International Geographic Information Systerms Symposium, 15-18 November, Arlington, Virginia (NASA, Washington, D.C.). 2: 151-164
    Prima, O. D. A., Yoshida, T., 2010. Characterization of Volcanic Geomorphology and Geology by Slope and Topographic Openness. Geomorphology, 118(1): 22-32. doi: 10.1016/j.geomorph.2009.12.005
    Qian, X., Feng, Q. L., Wang, Y. J., et al., 2016a. Geochronological and Geochemical Constraints on the Mafic Rocks along the Luang Prabang Zone: Carboniferous Back-Arc Setting in Northwest Laos. Lithos, 245: 60-75. doi: 10.1016/j.lithos.2015.07.019
    Qian, X., Feng, Q. L., Wang, Y. J., et al., 2016b. Petrochemistry and Tectonic Setting of the Middle Triassic Arc-Like Volcanic Rocks in the Sayabouli Area, NW Laos. Journal of Earth Science, 27(3): 365-377. doi: 10.1007/s12583-016-0669-5
    Qian, X., Feng, Q. L., Yang, W. Q., et al., 2015. Arc-Like Volcanic Rocks in NW Laos: Geochronological and Geochemical Constraints and Their Tectonic Implications. Journal of Asian Earth Sciences, 98: 342-357. doi: 10.1016/j.jseaes.2014.11.035
    Ren, J. S., Jin, X. C., 1996. New Observations of the Red River Fault. Geological Review, 42(5): 439-442 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP199605011.htm
    Smith, M. J., Clark, C. D., 2005. Methods for the Visualization of Digital Elevation Models for Landform Mapping. Earth Surface Processes and Landforms, 30(7): 885-900. doi: 10.1002/esp.1210
    Tapponnier, P., Xu, Z. Q., Roger, F., et al., 2001. Geology-Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671-1677. doi: 10.1126/science.105978
    Tapponnier, P., Lacassin, R., Leloup, P. H., et al., 1990. The Ailao Shan/Red River Metamorphic Belt: Tertiary Left-Lateral Shear between Indochina and South China. Nature, 343(6257): 431-437. doi: 10.1038/343431a0
    Tapponnier, P., Peltzer, G., Le Dain, A. Y., et al., 1982. Propagating Extrusion Tectonics in Asia: New insights from Simple Experiments with Plasticine.Geology, 10(10): 611. doi:10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
    Tapponnier, P., Molnar, P., 1976. Slip-Line Field Theory and Large-Scale Continental Tectonics. Nature, 264(5584): 319-324. doi: 10.1038/264319a0
    Wan, J. L., Li, Q., Chen, W. J., 1997. Fission Track Evidence of Diachronic Uplift along the Ailaoshan-Red River Left-Lateral Strike-slip Shear Zone. Seismology and Geology, 19(1): 87-90 (in Chinese with English Abstract) https://www.researchgate.net/publication/289468590_Fission_track_evidence_of_diachronic_uplift_along_the_Ailao_Shan-Red_River_left-lateral_strike-slip_shear_zone
    Wang, H., Lin, F. C., Li, X. Z., et al., 2015. The Division of Tectonic Units and Tectonic Evolution in Laos and Its Adjacent Regions. Geology in China, 42(1): 71-84 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201501005.htm
    Wang, P. L., Lo, C. H., Chung, S. L., et al., 2000. Onset Timing of Left-Lateral Movement along the Ailao Shan-Red River Shear Zone: 40Ar/39Ar Dating Constraint from the Nam Dinh Area, Northeastern Vietnam. Journal of Asian Earth Sciences, 18(3): 281-292. doi: 10.1016/s1367-9120(99)00064-4
    Wu, H. W., Zhang, L. S., Ji, S. C., 1989. The Red River-Ailaoshan Fault Zone-A Himalayan Large Sinistral Strike-Slip Intracontinental Shear Zone. Scientia Geologica Sinica, (1): 1-8 (in Chinese with English Abstract)
    Xiang, H. F., Guo, S. M., Zhang, W. X., et al., 2007. Quantitative Study on the Large Scale Dextral Strike-Slip Offset in the Southern Segment of the Red River Fault since Miocene. Seismology and Geology, 29(1): 52-65 (in Chinese with English Abstract) https://www.researchgate.net/publication/286314454_Quantitative_study_on_the_large_scale_dextral_strike-slip_offset_in_the_southern_segment_of_the_Red_River_Fault_since_Miocene?_sg=LS9ND2XCAzvb0Uo2sbBPV8jXSkUK0nbTe1gIz9f7MnzTaHcUUJOQSijyGgwjkB1Cic6qcQIi7WueYCvHM8vHC9kUP01y4HXMmvSW-rHdljY
    Xiang, H. F., Han, Z. J., Guo, S. M., et al., 2004. Processing about Quantitative Study of Large-Scale Strike-slip Movement on Red River Fault Zone. Advance in Earth Sciences, 19(S1): 56-59 (in Chinese with English Abstract)
    Xiang, H. F., Wan, J. L., Han, Z. J., et al., 2006. Geological Analysis and FT Dating of the Large-Scale Risht-Lateral Strike-Slip Movement of the Red River Fault Zone. Science in China Series D:Earth Sciences, 36(11): 977-987 (in Chinese) doi: 10.1007%2Fs11430-007-2037-x
    Yang, W. Q., Qian, X., Feng, Q. L., et al., 2016. Zircon U-Pb Geochronological Evidence for the Evolution of the Nan-Uttaradit Suture in Northern Thailand. Journal of Earth Science, 27(3): 378-390. doi: 10.1007/s12583-016-0670-z
    Yang, Z. Y., Besse, J., Sutheetorn, V., et al., 1995. Lower-Middle Jurassic Paleomagnetic Data from the Mae Sot Area (Thailand): Paleogeographic Evolution and Deformation History of Southeastern Asia. Earth and Planetary Science Letters, 136(3/4): 325-341. doi: 10.1016/0012-821x(95)00192-f
    Yokoyama, R., Shirasawa, M., Pike, R. J., 2002. Visualizing Topography by Openness: A New Application of Image Processing to Digital Elevation Models. Photogrammetric Engineering and Remote Sensing, 68(3): 257-266 https://www.researchgate.net/publication/242390231_Visualizing_Topography_by_Openness_A_New_Application_of_Image_Processing_to_Digital_Elevation_Models
    Zhang, B. L., Liu, R. X., Xiang, H. F., et al., 2009. FT Dating of Fault Rocks in the Central-Southern Section of the Red River Fault Zone and Its Geological Implications. Seismology and Geology, 31(1): 44-56 (in Chinese with English Abstract) https://www.researchgate.net/publication/287785862_FT_dating_of_fault_rocks_in_the_central-southern_section_of_the_Red_River_Fault_zone_and_its_geological_implications?_sg=8WxzOomlOx9M0fQnrsihAGTecooMuzg8nMZqJujsNoYdUr8uudLDDtsoDkrzyhaM4ldtG04omKA60J4XSP7x8w
    Zhang, B. L., Liu, R. X., Xiang, H. F., et al., 2008. Tectonite Features and Stress Field Variations Associated with Fault Motion Transformation in the Central Southern Part of the Red River Fault Zone. Acta Petrologica et Mineralogica, 27(6): 529-537 (in Chinese with English Abstract)
    Zhang, J. G., Huangpu, G., Xie, Y. Q., et al., 2009. Study on the Activity of Red River Fault in Vietnam. Seismology and Geology, 31(3): 389-400 (in Chinese with English Abstract)
    Zhang, J. J., Zhong, D. L., Sang, H. Q., et al., 2006. Structural and Geochronological Evidence for Multiple Episodes of Tertiary Deformation along the Ailaoshan-Red River Shear Zone, Southeastern Asia, Since the Paleocene. Chinese Journal of Geology, 41(2): 291-310 (in Chinese with English Abstract) https://www.researchgate.net/publication/230349967_Structural_and_Geochronological_Evidence_for_Multiple_Episodes_of_Tertiary_Deformation_along_the_Ailaoshan-Red_River_Shear_Zone_Southeastern_Asia_Since_the_Paleocene
    Zhang, L. S., Zhong, D. L., 1996. The Red River Strike-Slip Shear Zone and Cenozoic Tectonics of East Asia Continent. Scientia Geologica Sinica, 31(4): 327-341 (in Chinese with English Abstract) https://www.researchgate.net/publication/292283755_The_Red_River_strike-slip_shear_zone_and_Cenozoic_tectonics_of_east_Asia_continent
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views(559) PDF downloads(303) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return