Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 29 Issue 3
Aug 2018
Turn off MathJax
Article Contents
Jianping Wang, Zhenjiang Liu, Jiajun Liu, Xiangtao Zeng, Kexin Wang, Bizheng Liu, Huan Wang, Chonghao Liu, Fangfang Zhang. Trace Element Compositions of Pyrite from the Shuangwang Gold Breccias, Western Qinling Orogen, China: Implications for Deep Ore Prediction. Journal of Earth Science, 2018, 29(3): 564-572. doi: 10.1007/s12583-017-0751-7
Citation: Jianping Wang, Zhenjiang Liu, Jiajun Liu, Xiangtao Zeng, Kexin Wang, Bizheng Liu, Huan Wang, Chonghao Liu, Fangfang Zhang. Trace Element Compositions of Pyrite from the Shuangwang Gold Breccias, Western Qinling Orogen, China: Implications for Deep Ore Prediction. Journal of Earth Science, 2018, 29(3): 564-572. doi: 10.1007/s12583-017-0751-7

Trace Element Compositions of Pyrite from the Shuangwang Gold Breccias, Western Qinling Orogen, China: Implications for Deep Ore Prediction

doi: 10.1007/s12583-017-0751-7
More Information
  • Corresponding author: Jianping Wang, jpwang@cugb.edu.cn
  • Received Date: 25 Feb 2016
  • Accepted Date: 30 Apr 2016
  • Publish Date: 01 Jun 2018
  • The Shuangwang gold deposit, located in the Fengxian-Taibai fore-arc basin in the western Qinling Orogen of Central China, has yielded over 70 tons of gold. It is an orogenic gold deposit occurring in an NW-trending breccia belt. Most of the ores are hydrothermal breccia type containing fragments of adjacent strata cemented by ankerite and pyrite. Pyrite is the most abundant metallic mineral and the major gold-bearing mineral in the ores. A total of 58 pyrite samples from main ore bodies of the Shuangwang gold deposit have been analysed for 44 trace elements by HR-ICP-MS. Sb, Ba, Cu, Pb, Zn, Bi, Mo, Co are selected as indicator elements to investigate the potential usefulness of trace elements in pyrite as an indicator in gold exploration. The results show that the supra-ore halo elements Sb and Ba, which may have been more active than other near-ore halo elements and sub-ore halo elements, are best to characterize the shape of ore bodies. Five target areas are pointed out for deep ore exploration based on a comprehensive study of supra-ore, near-ore and sub-ore halos. This study provides evidence that trace elements in pyrite can be used to depict the deep extension of ore bodies and to vector towards undiscovered ore bodies.

     

  • loading
  • Baker, T., Mustard, R., Brown, V., et al., 2006. Textural and Chemical Zonation of Pyrite at Pajingo: A Potential Vector to Epithermal Gold Veins. Geochemistry: Exploration, Environment, Analysis, 6(4): 283–293. https://doi.org/10.1144/1467-7873/05-077
    Cline, J. S., Hofstra, A. H., Muntean, J. L., et al., 2005. Carlin-Type Gold Deposits in Nevada: Critical Geologic Characteristics and Viable Models. Economic Geology, 100: 451–484 http://pyrite.utah.edu/fieldtrips/SEGFnevada2007/Readings/General_CTD/Cline2005.pdf
    Cook, N. J., Ciobanu, C. L., Meria, D., et al., 2013. Arsenopyrite-Pyrite Association in an Orogenic Gold Ore: Tracing Mineralization History from Textures and Trace Elements. Economic Geology, 108(6): 1273–1283. https://doi.org/10.2113/econgeo.108.6.1273
    Deditius, A. P., Reich, M., Kesler, S. E., et al., 2014. The Coupled Geochemistry of Au and as in Pyrite from Hydrothermal Ore Deposits. Geochimica et Cosmochimica Acta, 140: 644–670. https://doi.org/10.1016/j.gca.2014.05.045
    Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011. Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 41(3): 213–237. https://doi.org/10.1016/j.jseaes.2011.03.002
    Feng, J. Z., Wang, D. B., Wang, X. M., 2005. Determination of the Au Background Value and Au Geochemistry in the Devonian of the West Qinling and Their Geological Significance. Geology of China. 32(1): 100–106 (in Chinese with English Abstract). https://doi.org/10000-3657(2005)01-0100-07
    Franchini, M., McFarlane, C., Maydagán, L., et al., 2015. Trace Metals in Pyrite and Marcasite from the Agua Rica Porphyry-High Sulfidation Epithermal Deposit, Catamarca, Argentina: Textural Features and Metal Zoning at the Porphyry to Epithermal Transition. Ore Geology Reviews, 66(2): 366–387. https://doi.org/10.1016/j.oregeorev.2014.10.022
    Goldfarb, R. J., Taylor, R. D., Collins, G. S., et al., 2014. Phanerozoic Continental Growth and Gold Metallogeny of Asia. Gondwana Resarch 25(1): 48–102. https://doi.org/10.1016/j.gr.2013.03.002
    Lai, S. C., Zhang, G. W., Yang, Y. C., et al., 1998. Geochemistry of the Ophiolite and Island-Arc Volcanic Rocks in the Mianxian-Lueyang Suture Zone, Southern Qinling and Their Tectonic Significance. Chinese Journal of Geochemistry, 18(1): 39–50. https://doi.org/10.1007/BF02876243
    Large, R. R., Bull, S. W., Maslennikov, V. V., 2011. A Carbonaceous Sedimentary Source Rock Model for Carlin-Type and Orogenic Gold Deposits. Economic Geology, 106(3): 331–358. https://doi.org/10.2113/econgeo.106.3.331
    Large, R. R., Danyushevsky, L., Hollit, C., et al., 2009. Gold and Trace Element Zonation in Pyrite Using a Laser Imaging Technique: Implications for the Timing of Gold in Orogenic and Carlin-Style Sediment-Hosted Deposits. Economic Geology, 104(5): 635–668. https://doi.org/10.2113/gsecongeo.104.5.635
    Li, H., Wang, Z. N., Li, F. G., 1995. Ideal Models of Superimposed Primary Halos in Hydrothermal Gold Deposits. Journal of Geochemical Exploration, 55(1–3): 329–336. https://doi.org/10.1016/0375-6742(94)00063-8
    Li, S. G., Xiao, Y. L., Liou, D. L., et al., 1993. Collision of the North China and Yangtze Blocks and Formation of Coesite-Bearing Eclogites: Timing and Processes. Chemical Geology, 109(1–4): 89–111. https://doi.org/10.1016/0009-2541(93) 90063-O doi: 10.1016/0009-2541(93)90063-O
    Li, X. Z., Yan, Z., Lu, X. X., 1993. Granites of Qinling-Dabie Orogen. Geological Publishing House, Beijing. 1–215 (in Chinese)
    Li, Y. J., Ding, S. P., Chen, Y. B., et al., 2003. New Knowledge on the Wenquan Granite in Western Qinling. Geology and Mineral Resources of South China, 19(3): 8–11 (in Chinese with English Abstract)
    Li, Z. P., Peters, S. G., 1998. Comparative Geology and Geochemistry of Sedimentary-Rock-Hosted (Carlin-Type) Gold Deposits in the People's Republic of China and in Nevada, USA. U. S. Geological Survey, Denver. 98–466. https://doi.org/purl.access.gpo.gov/GPO/LPS2141.
    Mao, J. W., Qiu, Y. M., Goldfarb, R. J., et al., 2002. Geology, Distribution, and Classification of Gold Deposits in the Western Qinling Belt, Central China. Mineralium Deposita, 37(3/4): 352–377. https://doi.org/10.1007/s00126-001-0249-0
    Mattauer, M., Mattle, P., Malavieille, J., et al., 1985. Tectonics of Qinling Belt: Build-up and Evolution of Eastern Asia. Nature, 317(6037): 496–500. https://doi.org/10.1038/317496a0
    Muntean, J. L., Cline, J. S., Simon, A. C. et al., 2011. Magmatic-Hydrothermal Origin of Nevada's Carlin-Type Gold Deposits. Nature Geoscience, 4(2): 122–127. https://doi.org/10.1038/ngeo1064
    Ratschbacher, L., Hacker, B. R., Calvert, A., et al., 2003. Tectonics of the Qingling (Central China): Tectonostratigraphy, Geochronology, and Deformation History. Tectonophysics, 366(1/2): 1–53. https://doi.org/10.1016/S0040-1951(03)00053-2
    Ren, P., Liang, T., Niu, L., et al., 2013. Geological Characteristic and Geodynamic Process from Pb-Zn Deposit in Qinling of Shaanxi. Journal of Earth Science Environment, 35(1): 34–47 (in Chinese with English Abstract). https://doi.org/1672-6561(2013)01-0034-14
    Roberts, F. I., 1982. Trace Element Chemistry of Pyrite: A Useful Guide to the Occurrence of Sulfide Base Metal Mineralization. Journal of Geochemical Exploration, 17(1): 49–62. https://doi.org/10.1016/0375-6742(82)90019-x
    Shi, Z. L., Liu, J. X., Fan, S. C., 1989. Geological Characteristics and Genesis of the Shuangwang Gold Deposit, Shaanxi Province. Science and Technology Publishing House of Shaanxi, Xi'an. 1–116 (in Chinese). https://doi.org/10.11720/wtyht.2016.2.11
    Su, W. C., Xia, B., Zhang, H. T., et al., 2008. Visible Gold in Arsenian Pyrite at the Shuiyindong Carlin-Type Gold Deposit, Guizhou, China: Implications for the Environment and Processes of Ore Formation. Ore Geology Reviews, 33(3/4): 667–679. https://doi.org/10.1016/j.oregeorev.2007.10.002
    Wang, X. X., Zattin, M., Li, J. J., et al., 2013. Cenozoic Tectonic Uplift History of Western Qinling: Evidence from Sedimentary and Fission-Track Data. Journal of Earth Science, 24(4): 491–505. https://doi.org/10.1007/s12383-013-0345-y
    Wang, H., 2012. The Features of Magmatic Rocks in Shuangwang Gold Mine, Shanxi Province and Its Implication on Gold Mineralization: [Dissertation]. China University of Geosciences, Beijing. 1–103 (in Chinese with English Abstract)
    Wang, Z. Q., Yan, Q. R., Yan, Z., 2009. New Division of the Main Tectonic Units of the Qinling Orogenic Belt, Central China. Acta Geologica Sinica, 83(11): 1527–1546 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200911003.htm
    Yao, S. Z., Ding, Z. J., Zhou, Z. G., et al., 2005. An Ore-Forming Model for Pb-Zn Deposits in the Qinling Orogenic Belt, China. In: Mao, J. W., ed., Mineral Deposit Research: Meeting the Global Challenge. Springer Berlin Heidelberg, Berlin. 215–217. https://doi.org/10.1007/3-540-27946-6_56
    Yuan, W. M., Mo, X. X., Zhang, A. K., et al., 2013. Fission Track Thermochronology Evidence for Multiple Periods of Mineralization in the Wulonggou Gold Deposits, Eastern Kunlun Mountains, Qinghai Province. Journal of Earth Science, 24(4): 471–478. https://doi.org/10.1007/s12583-013-0362-x
    Zeng, Q. S., Wang, J. C, Chen, G. H., 2005. Formation of Gold-Bearing Hydrofracturing Breccia Bodies in Tectonic Lenses: A Case Study on the Shuangwang Gold Deposit, Shaanxi, China. Geotectonica et Metallogenia, 29(2): 93–106. https://doi.org/1006-513X(2005)02-0093-14
    Zeng, Q. T., McCuaig, T. C., Hart, C. J. R., et al., 2012. Structural and Geochronological Studies on the Liba Goldfield of the West Qinling Orogen, Central China. Mineralium Deposita, 47(7): 799–819. https://doi.org/10.1007/s00126-011-0398-8
    Zhai, X. M., Day, H. W., Hacker, B. R., et al., 1998. Paleozoic Metamorphism in the Qinling Orogen, Tongbai Mountains, Central China. Geology, 26(4): 371–374. https://doi.org/10.1130/0091-7613(1998)026<0371:pmitqo>2.3.co; 2 doi: 10.1130/0091-7613(1998)026<0371:pmitqo>2.3.co;2
    Zhang, H. F., Jin, L. L., Zhang, L., et al., 2007. Geochemical and Pb-Sr-Nd Isotopic Compositions of Granitoids from Western Qinling Belt: Constraints on Basement Nature and Tectonic Affinity. Science in China Series D: Earth Sciences, 50(2): 184–196. https://doi.org/10.1007/s11430-007-2015-3
    Zhang, Z. H., Mao, J. W., Li, X. F., 2004. Geology, Geochemistry and Metallogenic Mechanism of the Shuangwang Breccia Type Gold Deposit. Mineral Deposits, 23(2): 241–252 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200402012.htm
    Zhou, T. H., Goldfarb, R. J., Phillips, G. N., 2002. Tectonics and Distribution of Gold Deposits in China—An Overview. Mineralium Deposita, 37(3/4): 249–282. https://doi.org/10.1007/s00126-001-0237-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views(594) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return