Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 28 Issue 4
Jul 2017
Turn off MathJax
Article Contents
Lunche Wang, Yisen Chen, Ying Niu, Germán Ariel Salazar, Wei Gong. Analysis of Atmospheric Turbidity in Clear Skies at Wuhan, Central China. Journal of Earth Science, 2017, 28(4): 729-738. doi: 10.1007/s12583-017-0756-2
Citation: Lunche Wang, Yisen Chen, Ying Niu, Germán Ariel Salazar, Wei Gong. Analysis of Atmospheric Turbidity in Clear Skies at Wuhan, Central China. Journal of Earth Science, 2017, 28(4): 729-738. doi: 10.1007/s12583-017-0756-2

Analysis of Atmospheric Turbidity in Clear Skies at Wuhan, Central China

doi: 10.1007/s12583-017-0756-2
More Information
  • The Ångström turbidity coefficient (β) and Linke turbidity factor (TL) are used to study the atmospheric conditions in Wuhan, Central China, using measured direct solar radiation during 2010–2011 in this study. The results show that annual mean β values generally increase from 0.28 in the morning to 0.35 at noon, and then decrease to 0.1 in the late afternoon during the day; annual mean TL generally varies from 3 to 7 in Central China. Both turbidity coefficients have maximum values in spring and summer, while minimum values are observed in winter months. It also reveals that β values show preponderance (52.8%) between 0.15 and 0.35, 78.1% of TL values are between 3.3 and 7.7, which can be compared with other sites around the world. Relationship between turbidity coefficients and main meteorological parameters (humidity, temperature and wind direction) have been further investigated, it is discovered that the local aerosol concentrations, dust events in northern China and Southwest Monsoon from the Indian Ocean influences the β values in the study area.

     

  • loading
  • Adamopoulos, A. D., Kambezidis, H. D., Kaskaoutis, D. G., et al., 2007. A Study of Aerosol Particle Sizes in the Atmosphere of Athens, Greece, Retrieved from Solar Spectral Measurements. Atmospheric Research, 86(3/4): 194-206. doi: 10.1016/j.atmosres.2007.04.003
    Ångström, A., 1961. Techniques of Determinig the Turbidity of the Atmosphere. Tellus, 13(2): 214-223. doi: 10.3402/tellusa.v13i2.9493
    Ångström, A., 1964. The Parameters of Atmospheric Turbidity. Tellus, 16(1): 64-75. doi: 10.1111/j.2153-3490.1964.tb00144.x
    Bilbao, J., Román, R., Miguel, A., 2014. Turbidity Coefficients from Normal Direct Solar Irradiance in Central Spain. Atmospheric Research, 143: 73-84. doi: 10.1016/j.atmosres.2014.02.007
    Bird, R. E. , Hulstrom, R. L. , 1981. A Simplified Clear Sky Model for Direct and Diffuse Insolation on Horizontal Surfaces. SERI/TR-642-761 Solar Energy Research Institute, Colorado
    Braslau, N., Dave, J. V., 1973. Effect of Aerosols on the Transfer of Solar Energy through Realistic Model Atmospheres. Part Ⅰ: Non-Absorbing Aerosols. Journal of Applied Meteorology, 12(4): 601-615. doi:10.1175/1520-0450(1973)012<0601:eoaott>2.0.co;2
    Chaâbane, M., 2008. Analysis of the Atmospheric Turbidity Levels at Two Tunisian Sites. Atmospheric Research, 87(2): 136-146. doi: 10.1016/j.atmosres.2007.08.003
    Che, H., Zhang, X. Y., Xia, X., et al., 2015. Ground-Based Aerosol Climatology of China: Aerosol Optical Depths from the China Aerosol Remote Sensing Network (CARSNET) 2002-2013. Atmospheric Chemistry and Physics, 15(13): 7619-7652. doi: 10.5194/acp-15-7619-2015
    Djafer, D., Irbah, A., 2013. Estimation of Atmospheric Turbidity over Gharda a City. Atmospheric Research, 128: 76-84. doi: 10.1016/j.atmosres.2013.03.009
    Dogniaux, R. , 1974. Representation Analytique des Composantes du Rayonnement Solaire. Institut Royal de Métèorologie de Belgique, Série A, No. 83
    Ellouz, F., Masmoudi, M., Medhioub, K., 2013. Study of the Atmospheric Turbidity over Northern Tunisia. Renewable Energy, 51: 513-517. doi: 10.1016/j.renene.2008.04.035
    El-Metwally, M., 2013. Indirect Determination of Broadband Turbidity Coefficients over Egypt. Meteorology and Atmospheric Physics, 119(1/2): 71-90. doi: 10.1007/s00703-012-0223-7
    Feng, Q., Wu, S. J., Du, Y., et al., 2010. Variations of PM10 Concentrations in Wuhan, China. Environmental Monitoring and Assessment, 176(1/2/3/4): 259-271. doi: 10.1007/s10661-010-1581-6
    Gong, W., Zhang, M., Han, G., et al., 2015. An Investigation of Aerosol Scattering and Absorption Properties in Wuhan, Central China. Atmosphere, 6(4): 503-520. doi: 10.3390/atmos6040503
    Grenier, J. C., De La Casinière, A., Cabot, T., 1995. Atmospheric Turbidity Analyzed by Means of Standardized Linke's Turbidity Factor. Journal of Applied Meteorology, 34(6): 1449-1458. doi:10.1175/1520-0450(1995)034<1449:atabmo>2.0.co;2
    Gueymard, C. A., 2005. Importance of Atmospheric Turbidity and Associated Uncertainties in Solar Radiation and Luminous Efficacy Modelling. Energy, 30(9): 1603-1621. doi: 10.1016/j.energy.2004.04.040
    Gueymard, C. A., Garrison, J. D., 1998. Critical Evaluation of Precipitable Water and Atmospheric Turbidity in Canada Using Measured Hourly Solar Irradiance. Solar Energy, 62(4): 291-307. doi: 10.1016/s0038-092x(98)00005-x
    Hu, B., Wang, Y. S., Liu, G. R., 2007. Spatiotemporal Characteristics of Photosynthetically Active Radiation in China. Journal of Geophysical Research, 112(D14): D14106. doi: 10.1029/2006jd007965
    Hussain, M., Khatun, S., Rasul, M. G., 2000. Determination of Atmospheric Turbidity in Bangladesh. Renewable Energy, 20(3): 325-332. doi: 10.1016/s0960-1481(99)00102-0
    Iqbal, M., 1983. An Introduction to Solar Radiation. Academic Press, New York
    Jacovides, C. P., Kaltsounides, N. A., Asimakopoulos, D. N., et al., 2005. Spectral Aerosol Optical Depth and Angstrom Parameters in the Polluted Athens Atmosphere. Theoretical and Applied Climatology, 81(3/4): 161-167. doi: 10.1007/s00704-004-0110-3
    Janjai, S., Kumharn, W., Laksanaboonsong, J., 2003. Determination of Angstrom's Turbidity Coefficient over Thailand. Renewable Energy, 28(11): 1685-1700. doi: 10.1016/s0960-1481(03)00010-7
    Kaskaoutis, D. G., Kambezidis, H. D., 2007. Comparison of the Ångström Parameters Retrieval in Different Spectral Ranges with the Use of Different Techniques. Meteorology and Atmospheric Physics, 99(3/4): 233-246. doi: 10.1007/s00703-007-0279-y
    Kasten, F., 1980. A Simple Parameterization of the Pyrheliometric Formula for Determining the Linke Turbidity Factor. Meteor. Rundschau, 33: 124-127
    Kasten, F., 1996. The Linke Turbidity Factor Based on Improved Values of the Integral Rayleigh Optical Thickness. Solar Energy, 56(3): 239-244. doi: 10.1016/0038-092x(95)00114-7
    Leckner, B., 1978. The Spectral Distribution of Solar Radiation at the Earth's Surface—Elements of a Model. Solar Energy, 20(2): 143-150. doi: 10.1016/0038-092x(78)90187-1
    Li, D. H. W., Lam, J. C., 2002. A Study of Atmospheric Turbidity for Hong Kong. Renewable Energy, 25(1): 1-13. doi: 10.1016/s0960-1481(01)00008-8
    Li, K. M., Li, Z. Q., Wang, C. Y., et al., 2016. Shrinkage of Mt. Bogda Glaciers of Eastern Tian Shan in Central Asia during 1962-2006. Journal of Earth Science, 27(1): 139-150. doi: 10.1007/s12583-016-0614-7
    Lin, A. W., Zou, L., Wang, L., et al., 2016. Estimation of Atmospheric Turbidity Coefficient over Zhengzhou during 1961-2013. Renewable Energy, 86: 1134-1144 doi: 10.1016/j.renene.2015.09.043
    Linke, F., 1922. Transmissions Koeffizient und Trubungsfaktor. Beitraége Zur Physik der Atmosphaére, 10: 91-103
    Long, C. N., Ackerman, T. P., 2000. Identification of Clear Skies from Broadband Pyranometer Measurements and Calculation of Downwelling Shortwave Cloud Effects. Journal of Geophysical Research: Atmospheres, 105(D12): 15609-15626. doi: 10.1029/2000jd900077
    López, G., Batlles, F. J., 2004. Estimate of the Atmospheric Turbidity from Three Broad-Band Solar Radiation Algorithms: A Comparative Study. Annales Geophysicae, 22(8): 2657-2668. doi: 10.5194/angeo-22-2657-2004
    Louche, A., Maurel, M., Simonnot, G., et al., 1987. Determination of Ångström's Turbidity Coefficient from Direct Total Solar Irradiance Measurements. Solar Energy, 38(2): 89-96. doi: 10.1016/0038-092x(87)90031-4
    Malik, A. Q., 2000. A Modified Method of Estimating Ångström's Turbidity Coefficient for Solar Radiation Models. Renewable Energy, 21(3/4): 537-552. doi: 10.1016/s0960-1481(00)00080-x
    Mavromatakis, F., Franghiadakis, Y., 2007. Direct and Indirect Determination of the Linke Turbidity Coefficient. Solar Energy, 81(7): 896-903. doi: 10.1016/j.solener.2006.11.010
    Pan, Z. T., Zhang, Y. J., Liu, X. D., et al., 2016. Current and Future Precipitation Extremes over Mississippi and Yangtze River Basins as Simulated in CMIP5 Models. Journal of Earth Science, 27(1): 22-36. doi: 10.1007/s12583-016-0627-2
    Pedrós, R., Utrillas, M. P., Martínez-Lozano, J. A., et al., 1999. Values of Broad Band Turbidity Coefficients in a Mediterranean Coastal Site. Solar Energy, 66(1): 11-20. doi: 10.1016/s0038-092x(99)00015-8
    Power, H. C., 2001. Estimating Atmospheric Turbidity from Climate Data. Atmospheric Environment, 35(1): 125-134 doi: 10.1016/S1352-2310(00)00277-6
    Salazar, G. A., 2011. Estimation of Monthly Values of Atmospheric Turbidity Using Measured Values of Global Irradiation and Estimated Values from CSR and Yang Hybrid Models. Study Case: Argentina. Atmospheric Environment, 45(15): 2465-2472. doi: 10.1016/j.atmosenv.2011.02.048
    Salazar, G., Utrillas, P., Esteve, A., et al., 2013. Estimation of Daily Average Values of the Ångström Turbidity Coefficient β Using a Corrected Yang Hybrid Model. Renewable Energy, 51: 182-188 doi: 10.1016/j.renene.2012.09.023
    Sapkota, B., Dhaubhadel, R., 2002. Atmospheric Turbidity over Kathmandu Valley. Atmospheric Environment, 36(8): 1249-1257. doi: 10.1016/s1352-2310(01)00582-9
    Trabelsi, A., Masmoudi, M., 2011. An Investigation of Atmospheric Turbidity over Kerkennah Island in Tunisia. Atmospheric Research, 101(1/2): 22-30. doi: 10.1016/j.atmosres.2011.03.009
    Trenberth, K. E., Fasullo, J. T., Kiehl, J., 2009. Earth's Global Energy Budget. Bulletin of the American Meteorological Society, 90(3): 311-323. doi: 10.1175/2008bams2634.1
    Wang, L. C., Gong, W., Li, C., et al., 2013. Measurement and Estimation of Photosynthetically Active Radiation from 1961 to 2011 in Central China. Applied Energy, 111: 1010-1017. doi: 10.1016/j.apenergy.2013.07.001
    Wang, L. C., Gong, W., Ma, Y. Y., et al., 2014a. Photosynthetically Active Radiation and Its Relationship with Global Solar Radiation in Central China. International Journal of Biometeorology, 58(6): 1265-1277. doi: 10.1007/s00484-013-0690-7
    Wang, L. C., Gong, W., Li, J., et al., 2014b. Empirical Studies of Cloud Effects on Ultraviolet Radiation in Central China. International Journal of Climatology, 34(7): 2218-2228. doi: 10.1002/joc.3832
    Wang, L. C., Gong, W., Xia, X. G., et al., 2015a. Long-Term Observations of Aerosol Optical Properties at Wuhan, an Urban Site in Central China. Atmospheric Environment, 101: 94-102. doi: 10.13039/501100001809
    Wang, L. C., Gong, W., Ramesh, P., et al., 2015b. Aerosol Optical Properties over Mount Song, a Rural Site in Central China. Aerosol and Air Quality Research, 15: 2051-2064. doi: 10.4209/aaqr.2014.12.0335
    Wang, L. C., Salazar, G. A., Gong, W., et al., 2015c. An Improved Method for Estimating the Ångström Turbidity Coefficient β in Central China during 1961-2010. Energy, 81: 67-73. doi: 10.13039/501100001809
    Wang, L. C., Kisi, O., Zounemat-Kermani, M., et al., 2016. Solar Radiation Prediction Using Different Techniques: Model Evaluation and Comparison. Renewable and Sustainable Energy Reviews, 61: 384-397. doi: 10.1016/j.rser.2016.04.024
    Wang, Y. Q., Zhang, X. Y., Sun, J. Y., et al., 2015. Spatial and Temporal Variations of the Concentrations of PM10, PM2.5 and PM1 in China. Atmospheric Chemistry and Physics Discussions, 15(11): 15319-15354. doi: 10.13039/501100004751
    Wen, C. C., Yeh, H. H., 2009. Analysis of Atmospheric Turbidity Levels at Taichung Harbor near the Taiwan Strait. Atmospheric Research, 94(2): 168-177. doi: 10.1016/j.atmosres.2009.05.010
    Wild, M., Gilgen, H., Roesch, A., et al., 2005. From Dimming to Brightening: Decadal Changes in Solar Radiation at Earth's Surface. Science, 308(5723): 847-850. doi: 10.1126/science.1103215
    Xia, X. A., Chen, H. B., Wang, P. C., et al., 2006. Variation of Column-Integrated Aerosol Properties in a Chinese Urban Region. Journal of Geophysical Research, 111(D5): D05204. doi: 10.1029/2005jd006203
    Xia, X. G., Li, Z. Q., Holben, B., et al., 2007. Aerosol Optical Properties and Radiative Effects in the Yangtze Delta Region of China. Journal of Geophysical Research, 112(D22): D22S12. doi: 10.1029/2007jd008859
    Yu, X. N., Zhu, B., Zhang, M. G., 2009. Seasonal Variability of Aerosol Optical Properties over Beijing. Atmospheric Environment, 43(26): 4095-4101. doi: 10.1016/j.atmosenv.2009.03.061
    Zakey, A., Abdelwahab, M., Makar, P. A., 2004. Atmospheric Turbidity over Egypt. Atmospheric Environment, 38(11): 1579-1591 doi: 10.1016/j.atmosenv.2003.12.017
    Zhuang, B. L., Wang, T. J., Li, S., et al., 2014. Optical Properties and Radiative Forcing of Urban Aerosols in Nanjing, China. Atmospheric Environment, 83: 43-52. doi: 10.13039/501100001809
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views(657) PDF downloads(210) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return