Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 29 Issue 6
Nov 2018
Turn off MathJax
Article Contents
Yihao Wu, Bo Zhong, Zhicai Luo. Investigation of the Tikhonov Regularization Method in Regional Gravity Field Modeling by Poisson Wavelets Radial Basis Functions. Journal of Earth Science, 2018, 29(6): 1349-1358. doi: 10.1007/s12583-017-0771-3
Citation: Yihao Wu, Bo Zhong, Zhicai Luo. Investigation of the Tikhonov Regularization Method in Regional Gravity Field Modeling by Poisson Wavelets Radial Basis Functions. Journal of Earth Science, 2018, 29(6): 1349-1358. doi: 10.1007/s12583-017-0771-3

Investigation of the Tikhonov Regularization Method in Regional Gravity Field Modeling by Poisson Wavelets Radial Basis Functions

doi: 10.1007/s12583-017-0771-3
Funds:

the China Postdoctoral Science Foundation 2016M602301

the National Natural Science Foundation of China 41374023

the National 973 Project of China 2013CB733302

the State Scholarship Fund from Chinese Scholarship Council 201306270014

the Key Laboratory of Geospace Envi-ronment and Geodesy, Ministry of Education, Wuhan University 15-02-08

the National Natural Science Foundation of China 41131067

the National Natural Science Foundation of China 41474019

More Information
  • Corresponding author: Bo Zhong
  • Received Date: 19 Jul 2016
  • Accepted Date: 05 Dec 2016
  • Publish Date: 01 Dec 2018
  • The application of Tikhonov regularization method dealing with the ill-conditioned problems in the regional gravity field modeling by Poisson wavelets is studied. In particular, the choices of the regularization matrices as well as the approaches for estimating the regularization parameters are inves-tigated in details. The numerical results show that the regularized solutions derived from the first-order regularization are better than the ones obtained from zero-order regularization. For cross validation, the optimal regularization parameters are estimated from L-curve, variance component estimation (VCE) and minimum standard deviation (MSTD) approach, respectively, and the results show that the derived regularization parameters from different methods are consistent with each other. Together with the first-order Tikhonov regularization and VCE method, the optimal network of Poisson wavelets is derived, based on which the local gravimetric geoid is computed. The accuracy of the corresponding gravimetric geoid reaches 1.1 cm in Netherlands, which validates the reliability of using Tikhonov regularization method in tackling the ill-conditioned problem for regional gravity field modeling.

     

  • loading
  • Albertella, A., Sansò, F., Sneeuw, N., 1999. Band-Limited Functions on a Bounded Spherical Domain:The Slepian Problem on the Sphere. Journal of Geodesy, 73(9):436-447. https://doi.org/10.1007/pl00003999 doi: 10.1007/PL00003999
    Andersen, O. B., 2010. The DTU10 Gravity Field and Mean Sea Surface. Second International Symposium of the Gravity Field of the Earth (IGFS2). Fairbanks, Alaska
    Chambodut, A., Panet, I., Mandea, M., et al., 2005. Wavelet Frames:An Alternative to Spherical Harmonic Representation of Potential Fields. Geophysical Journal International, 163(3):875-899. https://doi.org/10.1111/j.1365-246x.2005.02754.x doi: 10.1111/gji.2005.163.issue-3
    Girard, A., 1989. A Fast 'Monte-Carlo Cross-Validation' Procedure for Large Least Squares Problems with Noisy Data. Numerische Mathematik, 56(1):1-23. https://doi.org/10.1007/bf01395775 10.1007/bf01395775
    Guo, D. M., Bao, L. F., Xu, H. Z., 2015. Tectonic Characteristics of the Tibetan Plateau Based on EIGEN-6C2 Gravity Field Model. Earth Science-Journal of China University of Geosciences, 40(10):1643-1652. https://doi.org/10.3799/dqkx.2015.148 (in Chinese with English Abstract)
    Hansen, P. C., Jensen, T. K., Rodriguez, G., 2007. An Adaptive Pruning Algorithm for the Discrete L-Curve Criterion. Journal of Computational and Applied Mathematics, 198(2):483-492. https://doi.org/10.1016/j.cam.2005.09.026
    Hansen, P. C., O'Leary, D. P., 1993. The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems. SIAM Journal on Scientific Computing, 14(6):1487-1503. https://doi.org/10.1137/0914086
    Hashemi Farahani, H., Ditmar, P., Klees, R., et al., 2013. The Static Gravity Field Model DGM-1S from GRACE and GOCE Data:Computation, Validation and an Analysis of GOCE Mission's Added Value. Journal of Geodesy, 87(9):843-867. https://doi.org/10.1007/s00190-013-0650-3
    Heck, B., Seitz, K., 2006. A Comparison of the Tesseroid, Prism and Point-Mass Approaches for Mass Reductions in Gravity Field Modelling. Journal of Geodesy, 81(2):121-136. https://doi.org/10.1007/s00190-006-0094-0 10.1007/s00190-006-0094-0
    Heiskanen, W. A., Moritz H., 1967. Physical Geodesy. WH Freeman and Co., San Francisco
    Hirt, C., 2013. RTM Gravity Forward-Modeling Using Topogra-phy/Bathymetry Data to Improve High-Degree Global Geopotential Models in the Coastal Zone. Marine Geodesy, 36(2):183-202. https://doi.org/10.1080/01490419.2013.779334 10.1080/01490419.2013.779334
    Hoerl, A., Kennard, R., 1970. Ridge Regression:Biased Estimation for Nonorthogonal Problems. Technometrics, 42(1):80-86 doi: 10.2307-1271436/
    Holschneider, M., Iglewska-Nowak, I., 2007. Poisson Wavelets on the Sphere. Journal of Fourier Analysis and Applications, 13(4):405-419. https://doi.org/10.1007/s00041-006-6909-9
    Johnston, P. R., Gulrajani, R. M., 2000. Selecting the Corner in the L-Curve Approach to Tikhonov Regularization. IEEE Transactions on Biomedical Engineering, 47(9):1293-1296. https://doi.org/10.1109/10.867966
    Klees, R., Tenzer, R., Prutkin, I., et al., 2008. A Data-Driven Approach to Local Gravity Field Modelling Using Spherical Radial Basis Functions. Journal of Geodesy, 82(8):457-471. https://doi.org/10.1007/s00190-007-0196-3
    Koch, K. R., 1987. Bayesian Inference for Variance Components. Manuscr. Geod., 12:309-313 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_6df9ae1f41bb082095f30a1f1ae604a2
    Koch, K. R., Kusche, J., 2002. Regularization of Geopotential Determination from Satellite Data by Variance Components. Journal of Geodesy, 76(5):259-268. https://doi.org/10.1007/s00190-002-0245-x
    Kusche, J., Klees, R., 2002. Regularization of Gravity Field Estimation from Satellite Gravity Gradients. Journal of Geodesy, 76(6/7):359-368. https://doi.org/10.1007/s00190-002-0257-6 10.1007/s00190-002-0257-6
    Luthcke, S. B., Sabaka, T. J., Loomis, B. D., et al., 2013. Antarctica, Greenland and Gulf of Alaska Land-Ice Evolution from an Iterated GRACE Global Mascon Solution. Journal of Glaciology, 59(216):613-631. https://doi.org/10.3189/2013jog12j147 doi: 10.3189/2013JoG12J147
    Rummel, R., Schwarz, K. P., Gerstl, M., 1979. Least Squares Collocation and Regularization. Bulletin Géodésique, 53(4):343-361. https://doi.org/10.1007/bf02522276 doi: 10.1007/BF02522276
    Simons, F. J., Dahlen, F. A., 2006. Spherical Slepian Functions and the Polar Gap in Geodesy. Geophysical Journal International, 166(3):1039-1061. https://doi.org/10.1111/j.1365-246x.2006.03065.x doi: 10.1111/gji.2006.166.issue-3
    Tenzer, R., Klees, R., 2008. The Choice of the Spherical Radial Basis Functions in Local Gravity Field Modeling. Studia Geophysica et Geodaetica, 52(3):287-304. https://doi.org/10.1007/s11200-008-0022-2
    Tikhonov, A. N., 1963. Regularization of Incorrectly Posed Problems. Sov. Math. Dokl., 4(1):1624-1627 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bc91cff2e1cb452ead296dda8bc1ea71
    Wittwer, T., 2010. Regional Gravity Field Modelling with Radial Basis Functions: [Dissertation]. Delft University of Technology, Delft
    Wu, Y. H., Luo, Z. C., 2016. The Approach of Regional Geoid Refinement Based on Combining Multi-Satellite Altimetry Observations and Heterogeneous Gravity Data Sets. Chinese J. Geophys., 59(5):1596-1607. https://doi.org/10.6038/cjg20160505 (in Chinese with English Abstract) 10.6038/cjg20160505
    Wu, Y. H., Luo, Z. C., Chen, W., et al., 2017. High-Resolution Regional Gravity Field Recovery from Poisson Wavelets Using Heterogeneous Observational Techniques. Earth, Planets and Space, 69(34):1-15. https://doi.org/10.1186/s40623-017-0618-2 10.1186/s40623-017-0618-2
    Wu, Y. H., Luo, Z. C., Zhou, B. Y., 2016. Regional Gravity Modelling Based on Heterogeneous Data Sets by Using Poisson Wavelets Radial Basis Functions. Chinese J. Geophys., 59(3):852-864. https://doi.org/10.6038/cjg20160308 (in Chinese with English Abstract) 10.6038/cjg20160308
    Xu, P. L., 1992. The Value of Minimum Norm Estimation of Geopotential Fields. Geophysical Journal International, 111(1):170-178. https://doi.org/10.1111/j.1365-246x.1992.tb00563.x doi: 10.1111/gji.1992.111.issue-1
    Xu, P. L., 1998. Truncated SVD Methods for Discrete Linear Ill-Posed Problems. Geophysical Journal International, 135(2):505-514. https://doi.org/10.1046/j.1365-246x.1998.00652.x doi: 10.1046/j.1365-246X.1998.00652.x
    Xu, P. L., 2009. Iterative Generalized Cross-Validation for Fusing Hetero-scedastic Data of Inverse Ill-Posed Problems. Geophysical Journal International, 179(1):182-200. https://doi.org/10.1111/j.1365-246x.2009.04280.x doi: 10.1111/gji.2009.179.issue-1
    Xu, P. L., Rummel, R., 1994. Generalized Ridge Regression with Applica-tions in Determination of Potential Fields. Manuscr. Geod., 20:8-20
    Xu, P. L., Shen, Y. Z., Fukuda, Y., et al., 2006. Variance Component Estimation in Linear Inverse Ill-Posed Models. Journal of Geodesy, 80(2):69-81. https://doi.org/10.1007/s00190-006-0032-1
    Xu, S. F., Chen, C., Du, J. S., et al., 2015. Characteristics and Tectonic Implications of Lithospheric Density Structures beneath Western Junggar and Its Surroundings. Earth Science-Journal of China University of Geosciences, 40(9):1556-1565. https://doi.org/10.3799/dqkx.2015.140 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views(473) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return