Albertella, A., Sansò, F., Sneeuw, N., 1999. Band-Limited Functions on a Bounded Spherical Domain:The Slepian Problem on the Sphere. Journal of Geodesy, 73(9):436-447. https://doi.org/10.1007/pl00003999 doi: 10.1007/PL00003999 |
Andersen, O. B., 2010. The DTU10 Gravity Field and Mean Sea Surface. Second International Symposium of the Gravity Field of the Earth (IGFS2). Fairbanks, Alaska |
Chambodut, A., Panet, I., Mandea, M., et al., 2005. Wavelet Frames:An Alternative to Spherical Harmonic Representation of Potential Fields. Geophysical Journal International, 163(3):875-899. https://doi.org/10.1111/j.1365-246x.2005.02754.x doi: 10.1111/gji.2005.163.issue-3 |
Girard, A., 1989. A Fast 'Monte-Carlo Cross-Validation' Procedure for Large Least Squares Problems with Noisy Data. Numerische Mathematik, 56(1):1-23. https://doi.org/10.1007/bf01395775 10.1007/bf01395775 |
Guo, D. M., Bao, L. F., Xu, H. Z., 2015. Tectonic Characteristics of the Tibetan Plateau Based on EIGEN-6C2 Gravity Field Model. Earth Science-Journal of China University of Geosciences, 40(10):1643-1652. https://doi.org/10.3799/dqkx.2015.148 (in Chinese with English Abstract) |
Hansen, P. C., Jensen, T. K., Rodriguez, G., 2007. An Adaptive Pruning Algorithm for the Discrete L-Curve Criterion. Journal of Computational and Applied Mathematics, 198(2):483-492. https://doi.org/10.1016/j.cam.2005.09.026 |
Hansen, P. C., O'Leary, D. P., 1993. The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems. SIAM Journal on Scientific Computing, 14(6):1487-1503. https://doi.org/10.1137/0914086 |
Hashemi Farahani, H., Ditmar, P., Klees, R., et al., 2013. The Static Gravity Field Model DGM-1S from GRACE and GOCE Data:Computation, Validation and an Analysis of GOCE Mission's Added Value. Journal of Geodesy, 87(9):843-867. https://doi.org/10.1007/s00190-013-0650-3 |
Heck, B., Seitz, K., 2006. A Comparison of the Tesseroid, Prism and Point-Mass Approaches for Mass Reductions in Gravity Field Modelling. Journal of Geodesy, 81(2):121-136. https://doi.org/10.1007/s00190-006-0094-0 10.1007/s00190-006-0094-0 |
Heiskanen, W. A., Moritz H., 1967. Physical Geodesy. WH Freeman and Co., San Francisco |
Hirt, C., 2013. RTM Gravity Forward-Modeling Using Topogra-phy/Bathymetry Data to Improve High-Degree Global Geopotential Models in the Coastal Zone. Marine Geodesy, 36(2):183-202. https://doi.org/10.1080/01490419.2013.779334 10.1080/01490419.2013.779334 |
Hoerl, A., Kennard, R., 1970. Ridge Regression:Biased Estimation for Nonorthogonal Problems. Technometrics, 42(1):80-86 doi: 10.2307-1271436/ |
Holschneider, M., Iglewska-Nowak, I., 2007. Poisson Wavelets on the Sphere. Journal of Fourier Analysis and Applications, 13(4):405-419. https://doi.org/10.1007/s00041-006-6909-9 |
Johnston, P. R., Gulrajani, R. M., 2000. Selecting the Corner in the L-Curve Approach to Tikhonov Regularization. IEEE Transactions on Biomedical Engineering, 47(9):1293-1296. https://doi.org/10.1109/10.867966 |
Klees, R., Tenzer, R., Prutkin, I., et al., 2008. A Data-Driven Approach to Local Gravity Field Modelling Using Spherical Radial Basis Functions. Journal of Geodesy, 82(8):457-471. https://doi.org/10.1007/s00190-007-0196-3 |
Koch, K. R., 1987. Bayesian Inference for Variance Components. Manuscr. Geod., 12:309-313 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_6df9ae1f41bb082095f30a1f1ae604a2 |
Koch, K. R., Kusche, J., 2002. Regularization of Geopotential Determination from Satellite Data by Variance Components. Journal of Geodesy, 76(5):259-268. https://doi.org/10.1007/s00190-002-0245-x |
Kusche, J., Klees, R., 2002. Regularization of Gravity Field Estimation from Satellite Gravity Gradients. Journal of Geodesy, 76(6/7):359-368. https://doi.org/10.1007/s00190-002-0257-6 10.1007/s00190-002-0257-6 |
Luthcke, S. B., Sabaka, T. J., Loomis, B. D., et al., 2013. Antarctica, Greenland and Gulf of Alaska Land-Ice Evolution from an Iterated GRACE Global Mascon Solution. Journal of Glaciology, 59(216):613-631. https://doi.org/10.3189/2013jog12j147 doi: 10.3189/2013JoG12J147 |
Rummel, R., Schwarz, K. P., Gerstl, M., 1979. Least Squares Collocation and Regularization. Bulletin Géodésique, 53(4):343-361. https://doi.org/10.1007/bf02522276 doi: 10.1007/BF02522276 |
Simons, F. J., Dahlen, F. A., 2006. Spherical Slepian Functions and the Polar Gap in Geodesy. Geophysical Journal International, 166(3):1039-1061. https://doi.org/10.1111/j.1365-246x.2006.03065.x doi: 10.1111/gji.2006.166.issue-3 |
Tenzer, R., Klees, R., 2008. The Choice of the Spherical Radial Basis Functions in Local Gravity Field Modeling. Studia Geophysica et Geodaetica, 52(3):287-304. https://doi.org/10.1007/s11200-008-0022-2 |
Tikhonov, A. N., 1963. Regularization of Incorrectly Posed Problems. Sov. Math. Dokl., 4(1):1624-1627 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bc91cff2e1cb452ead296dda8bc1ea71 |
Wittwer, T., 2010. Regional Gravity Field Modelling with Radial Basis Functions: [Dissertation]. Delft University of Technology, Delft |
Wu, Y. H., Luo, Z. C., 2016. The Approach of Regional Geoid Refinement Based on Combining Multi-Satellite Altimetry Observations and Heterogeneous Gravity Data Sets. Chinese J. Geophys., 59(5):1596-1607. https://doi.org/10.6038/cjg20160505 (in Chinese with English Abstract) 10.6038/cjg20160505 |
Wu, Y. H., Luo, Z. C., Chen, W., et al., 2017. High-Resolution Regional Gravity Field Recovery from Poisson Wavelets Using Heterogeneous Observational Techniques. Earth, Planets and Space, 69(34):1-15. https://doi.org/10.1186/s40623-017-0618-2 10.1186/s40623-017-0618-2 |
Wu, Y. H., Luo, Z. C., Zhou, B. Y., 2016. Regional Gravity Modelling Based on Heterogeneous Data Sets by Using Poisson Wavelets Radial Basis Functions. Chinese J. Geophys., 59(3):852-864. https://doi.org/10.6038/cjg20160308 (in Chinese with English Abstract) 10.6038/cjg20160308 |
Xu, P. L., 1992. The Value of Minimum Norm Estimation of Geopotential Fields. Geophysical Journal International, 111(1):170-178. https://doi.org/10.1111/j.1365-246x.1992.tb00563.x doi: 10.1111/gji.1992.111.issue-1 |
Xu, P. L., 1998. Truncated SVD Methods for Discrete Linear Ill-Posed Problems. Geophysical Journal International, 135(2):505-514. https://doi.org/10.1046/j.1365-246x.1998.00652.x doi: 10.1046/j.1365-246X.1998.00652.x |
Xu, P. L., 2009. Iterative Generalized Cross-Validation for Fusing Hetero-scedastic Data of Inverse Ill-Posed Problems. Geophysical Journal International, 179(1):182-200. https://doi.org/10.1111/j.1365-246x.2009.04280.x doi: 10.1111/gji.2009.179.issue-1 |
Xu, P. L., Rummel, R., 1994. Generalized Ridge Regression with Applica-tions in Determination of Potential Fields. Manuscr. Geod., 20:8-20 |
Xu, P. L., Shen, Y. Z., Fukuda, Y., et al., 2006. Variance Component Estimation in Linear Inverse Ill-Posed Models. Journal of Geodesy, 80(2):69-81. https://doi.org/10.1007/s00190-006-0032-1 |
Xu, S. F., Chen, C., Du, J. S., et al., 2015. Characteristics and Tectonic Implications of Lithospheric Density Structures beneath Western Junggar and Its Surroundings. Earth Science-Journal of China University of Geosciences, 40(9):1556-1565. https://doi.org/10.3799/dqkx.2015.140 (in Chinese with English Abstract) |