Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 28 Issue 4
Jul 2017
Turn off MathJax
Article Contents
Renguang Zuo, Carranza Emmanuel John M.. A Fractal Measure of Spatial Association between Landslides and Conditioning Factors. Journal of Earth Science, 2017, 28(4): 588-594. doi: 10.1007/s12583-017-0772-2
Citation: Renguang Zuo, Carranza Emmanuel John M.. A Fractal Measure of Spatial Association between Landslides and Conditioning Factors. Journal of Earth Science, 2017, 28(4): 588-594. doi: 10.1007/s12583-017-0772-2

A Fractal Measure of Spatial Association between Landslides and Conditioning Factors

doi: 10.1007/s12583-017-0772-2
More Information
  • Corresponding author: Renguang Zuo,
  • Received Date: 07 Apr 2017
  • Accepted Date: 30 May 2017
  • Publish Date: 01 Aug 2017
  • Measuring the relative importance and assigning weights to conditioning factors of landslides occurrence are significant for landslide prevention and/or mitigation. In this contribution, a fractal method is introduced for measuring the spatial relationships between landslides and conditioning factors (such as faults, rivers, geological boundaries, and roads), and for assigning weights to conditioning factors for mapping of landslide susceptibility. This method can be expressed as ρ=d, where d is the fractal dimension, and C is a constant. This relationship indicates a fractal relation between landslide density (ρ) and distances to conditioning factors (ε). The case of d > 0 suggests a significant spatial correlation between landslides and conditioning factors. The larger the d ( > 0) value, the stronger the spatial correlation is between landslides and a specific conditioning factor. Two case studies in South China were examined to demonstrate the usefulness of this novel method.


  • loading
  • Agterberg, F. P., 2012. Multifractals and Geostatistics. Journal of Geochemical Exploration, 122: 113–122. doi: 10.1016/j.gexplo.2012.04.001
    Agterberg, F. P., 2013. Fractals and Spatial Statistics of Point Patterns. Journal of Earth Science, 24(1): 1–11. doi: 10.1007/s12583-013-0305-6
    Alimohammadlou, Y., Najafi, A., Gokceoglu, C., 2014. Estimation of Rainfall-Induced Landslides Using ANN and Fuzzy Clustering Methods: A Case Study in Saeen Slope, Azerbaijan Province, Iran. Catena, 120: 149–162. doi: 10.1016/j.catena.2014.04.009
    Althuwaynee, O. F., Pradhan, B., Lee, S., 2012. Application of an Evidential Belief Function Model in Landslide Susceptibility Mapping. Computers & Geosciences, 44: 120–135. doi: 10.1016/j.cageo.2012.03.003
    Barrile, V., Cirianni, F., Leonardi, G., et al., 2016. A Fuzzy-Based Methodology for Landslide Susceptibility Mapping. Procedia—Social and Behavioral Sciences, 223: 896–902. doi: 10.1016/j.sbspro.2016.05.309
    Blenkinsop, T., 2014. Scaling Laws for the Distribution of Gold, Geothermal, and Gas Resources. Pure and Applied Geophysics, 172(7): 2045–2056. doi: 10.1007/s00024-014-0909-5
    Carlson, C. A., 1991. Spatial Distribution of Ore Deposits. Geology, 19(2): 111. doi:10.1130/0091-7613(1991)019 < 0111:sdood >; 2
    Cheng, Q. M., 2007. Mapping Singularities with Stream Sediment Geochemical Data for Prediction of Undiscovered Mineral Deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32(1/2): 314–324. doi: 10.1016/j.oregeorev.2006.10.002
    Cheng, Q. M., 2008. Modeling Local Scaling Properties for Multiscale Mapping. Vadose Zone Journal, 7(2): 525. doi: 10.2136/vzj2007.0034
    Cheng, Q. M., 2012. Singularity Theory and Methods for Mapping Geochemical Anomalies Caused by Buried Sources and for Predicting Undiscovered Mineral Deposits in Covered Areas. Journal of Geochemical Exploration, 122: 55–70. doi: 10.1016/j.gexplo.2012.07.007
    Cheng, Q. M., Agterberg, F. P., 1995. Multifractal Modeling and Spatial Point Processes. Mathematical Geology, 27(7): 831–845. doi: 10.1007/bf02087098
    Faraji Sabokbar, H., Shadman Roodposhti, M., Tazik, E., 2014. Landslide Susceptibility Mapping Using Geographically-Weighted Principal Component Analysis. Geomorphology, 226: 15–24. doi: 10.1016/j.geomorph.2014.07.026
    Ghosh, S., Carranza, E. J. M., 2010. Spatial Analysis of Mutual Fault/Fracture and Slope Controls on Rocksliding in Darjeeling Himalaya, India. Geomorphology, 122(1/2): 1–24. doi: 10.1016/j.geomorph.2010.05.008
    Ghosh, S., Carranza, E. J. M., van Westen, C. J., et al., 2011. Selecting and Weighting Spatial Predictors for Empirical Modeling of Landslide Susceptibility in the Darjeeling Himalayas (India). Geomorphology, 131(1/2): 35–56. doi: 10.1016/j.geomorph.2011.04.019
    Ghosh, S., Günther, A., Carranza, E. J. M., et al., 2010. Rock Slope Instability Assessment Using Spatially Distributed Structural Orientation Data in Darjeeling Himalaya (India). Earth Surface Processes and Landforms, 35(15): 1773–1792. doi: 10.1002/esp.2017
    Ghosh, S., van Westen, C. J., Carranza, E. J. M., et al., 2009. A Quantitative Approach for Improving the BIS (Indian) Method of Medium-Scale Landslide Susceptibility. Journal of the Geological Society of India, 74(5): 625–638. doi: 10.1007/s12594-009-0167-9
    Ghosh, S., van Westen, C. J., Carranza, E. J. M., et al., 2012a. Integrating Spatial, Temporal, and Magnitude Probabilities for Medium-Scale Landslide Risk Analysis in Darjeeling Himalayas, India. Landslides, 9(3): 371–384. doi: 10.1007/s10346-011-0304-6
    Ghosh, S., van Westen, C. J., Carranza, E. J. M., et al., 2012b. Generating Event-Based Landslide Maps in a Data-Scarce Himalayan Environment for Estimating Temporal and Magnitude Probabilities. Engineering Geology, 128: 49–62. doi: 10.1016/j.enggeo.2011.03.016
    Gorum, T., Carranza, E. J. M., 2015. Control of Style-of-Faulting on Spatial Pattern of Earthquake-Triggered Landslides. International Journal of Environmental Science and Technology, 12(10): 3189–3212. doi: 10.1007/s13762-015-0752-y
    Guzzetti, F., Malamud, B. D., Turcotte, D. L., et al., 2002. Power-Law Correlations of Landslide Areas in Central Italy. Earth and Planetary Science Letters, 195(3/4): 169–183. doi: 10.1016/s0012-821x(01)00589-1
    Guzzetti, F., Reichenbach, P., Cardinali, M., et al., 2005. Probabilistic Landslide Hazard Assessment at the Basin Scale. Geomorphology, 72(1/2/3/4): 272–299. doi: 10.1016/j.geomorph.2005.06.002
    Hong, H. Y., Pourghasemi, H. R., Pourtaghi, Z. S., 2016. Landslide Susceptibility Assessment in Lianhua County (China): A Comparison between a Random Forest Data Mining Technique and Bivariate and Multivariate Statistical Models. Geomorphology, 259: 105–118. doi: 10.1016/j.geomorph.2016.02.012
    Hong, H. Y., Pradhan, B., Xu, C., et al., 2015. Spatial Prediction of Landslide Hazard at the Yihuang Area (China) Using Two-Class Kernel Logistic Regression, Alternating Decision Tree and Support Vector Machines. Catena, 133: 266–281. doi: 10.13039/501100001809
    Iwahashi, J., Watanabe, S., Furuya, T., 2003. Mean Slope-Angle Frequency Distribution and Size Frequency Distribution of Landslide Masses in Higashikubiki Area, Japan. Geomorphology, 50(4): 349–364. doi: 10.1016/s0169-555x(02)00222-2
    Kawabata, D., Bandibas, J., 2009. Landslide Susceptibility Mapping Using Geological Data: A DEM from ASTER Images and an Artificial Neural Network (ANN). Geomorphology, 113(1/2): 97–109. doi: 10.1016/j.geomorph.2009.06.006
    Lee, S., Hwang, J., Park, I., 2013. Application of Data-Driven Evidential Belief Functions to Landslide Susceptibility Mapping in Jinbu, Korea. Catena, 100: 15–30. doi: 10.1016/j.catena.2012.07.014
    Lee, S., Ryu, J. H., Won, J. S., et al., 2004. Determination and Application of the Weights for Landslide Susceptibility Mapping Using an Artificial Neural Network. Engineering Geology, 71(3/4): 289–302. doi: 10.1016/s0013-7952(03)00142-x
    Lee, Y. F., Chi, Y. Y., 2011. Rainfall-Induced Landslide Risk at Lushan, Taiwan. Engineering Geology, 123(1/2): 113–121. doi: 10.1016/j.enggeo.2011.03.006
    Li, C. J., Ma, T. H., Zhu, X. S., et al., 2011. The Power-Law Relationship between Landslide Occurrence and Rainfall Level. Geomorphology, 130(3/4): 221–229. doi: 10.1016/j.geomorph.2011.03.018
    Malamud, B. D., Turcotte, D. L., Guzzetti, F., et al., 2004. Landslide Inventories and Their Statistical Properties. Earth Surface Processes and Landforms, 29(6): 687–711. doi: 10.1002/esp.1064
    Oh, H. J., Pradhan, B., 2011. Application of a Neuro-Fuzzy Model to Landslide-Susceptibility Mapping for Shallow Landslides in a Tropical Hilly Area. Computers & Geosciences, 37(9): 1264–1276. doi: 10.1016/j.cageo.2010.10.012
    Pelletier, J. D., Malamud, B. D., Blodgett, T., et al., 1997. Scale-Invariance of Soil Moisture Variability and Its Implications for the Frequency-Size Distribution of Landslides. Engineering Geology, 48(3/4): 255–268. doi: 10.1016/s0013-7952(97)00041-0
    Poli, S., Sterlacchini, S., 2007. Landslide Representation Strategies in Susceptibility Studies Using Weights-of-Evidence Modeling Technique. Natural Resources Research, 16(2): 121–134. doi: 10.1007/s11053-007-9043-8
    Pradhan, B., 2013. A Comparative Study on the Predictive Ability of the Decision Tree, Support Vector Machine and Neuro-Fuzzy Models in Landslide Susceptibility Mapping Using GIS. Computers & Geosciences, 51: 350–365. doi: 10.1016/j.cageo.2012.08.023
    Pradhan, B., Lee, S., 2010. Landslide Susceptibility Assessment and Factor Effect Analysis: Backpropagation Artificial Neural Networks and Their Comparison with Frequency Ratio and Bivariate Logistic Regression Modelling. Environmental Modelling & Software, 25(6): 747–759. doi: 10.1016/j.envsoft.2009.10.016
    Raines, G. L., 2008. Are Fractal Dimensions of the Spatial Distribution of Mineral Deposits Meaningful?. Natural Resources Research, 17(2): 87–97. doi: 10.1007/s11053-008-9067-8
    Rouai, M., Jaaidi, E. B., 2003. Scaling Properties of Landslides in the Rif Mountains of Morocco. Engineering Geology, 68(3/4): 353–359. doi: 10.1016/s0013-7952(02)00237-5
    Trigila, A., Iadanza, C., Spizzichino, D., 2010. Quality Assessment of the Italian Landslide Inventory Using GIS Processing. Landslides, 7(4): 455–470. doi: 10.1007/s10346-010-0213-0
    Tsangaratos, P., Benardos, A., 2014. Estimating Landslide Susceptibility through a Artificial Neural Network Classifier. Natural Hazards, 74(3): 1489–1516. doi: 10.1007/s11069-014-1245-x
    Tsangaratos, P., Ilia, I., 2016. Comparison of a Logistic Regression and Na ve Bayes Classifier in Landslide Susceptibility Assessments: The Influence of Models Complexity and Training Dataset Size. Catena, 145: 164–179. doi: 10.1016/j.catena.2016.06.004
    Turcotte, D. L., Malamud, B. D., 2004. Landslides, Forest Fires, and Earthquakes: Examples of Self-Organized Critical Behavior. Physica A: Statistical Mechanics and Its Applications, 340(4): 580–589. doi: 10.1016/j.physa.2004.05.009
    Wang, Z. Y., Zuo, R. G., Zhang, Z. J., 2015. Spatial Analysis of Fe Deposits in Fujian Province, China: Implications for Mineral Exploration. Journal of Earth Science, 26(6): 813–820. doi: 10.1007/s12583-015-0597-9
    Zhang, G., Chen, L., Yin, K., 2005. Landslide Hazard Zonation of Yongjia County, Zhejiang Province. Hydrogeology & Engineering Geology, (3): 27–31 (in Chinese with English Abstract)
    Zhu, A. X., Wang, R. X., Qiao, J. P., et al., 2014. An Expert Knowledge-Based Approach to Landslide Susceptibility Mapping Using GIS and Fuzzy Logic. Geomorphology, 214: 128–138. doi: 10.13039/501100001809
    Zuo, R. G., 2016. A Nonlinear Controlling Function of Geological Features on Magmatic-Hydrothermal Mineralization. Scientific Reports, 6(1): 27127. doi: 10.1038/srep27127
    Zuo, R. G., Agterberg, F. P., Cheng, Q. M., et al., 2009. Fractal Characterization of the Spatial Distribution of Geological Point Processes. International Journal of Applied Earth Observation and Geoinformation, 11(6): 394–402. doi: 10.1016/j.jag.2009.07.001
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views(2422) PDF downloads(512) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint