Anggara, F., Sasaki, K., Sugai, Y., 2016. The Correlation between Coal Swelling and Permeability during CO2 Sequestration: A Case Study Using Kushiro Low Rank Coals. International Journal of Coal Geology, 166: 62-70. doi: 10.1016/j.coal.2016.08.020 |
Chen, G. Q., Yang, J. L., Liu, Z. Y., 2012. Method for Simultaneous Measure of Sorption and Swelling of the Block Coal under High Gas Pressure. Energy & Fuels, 26(7): 4583-4589. doi: 10.1021/ef3001168 |
Day, S., Fry, R., Sakurovs, R., 2008. Swelling of Australian Coals in Supercritical CO2. International Journal of Coal Geology, 74(1): 41-52. doi: 10.1016/j.coal.2007.09.006 |
Day, S., Fry, R., Sakurovs, R., 2012. Swelling of Coal in Carbon Dioxide, Methane and Their Mixtures. International Journal of Coal Geology, 93: 40-48. doi: 10.1016/j.coal.2012.01.008 |
Dudzińska, A., 2017. Sorption Properties of Hard Coals with Regard to Gases Present in the Mine Atmosphere. Journal of Earth Science, 28(1): 124-130. doi: 10.1007/s12583-016-0716-2 |
Fujioka, M., Yamaguchi, S., Nako, M., 2010. CO2-ECBM Field Tests in the Ishikari Coal Basin of Japan. International Journal of Coal Geology, 82(3/4): 287-298. doi: 10.1016/j.coal.2010.01.004 |
George, J. D., Barakat, M. A., 2001. The Change in Effective Stress Associated with Shrinkage from Gas Desorption in Coal. International Journal of Coal Geology, 45(2/3): 105-113. doi: 10.1016/s0166-5162(00)00026-4 |
Gunter, W. D., Gentzis, T., Rottenfusser, B. A., et al., 1997. Deep Coalbed Methane in Alberta, Canada: A Fuel Resource with the Potential of Zero Greenhouse Gas Emissions. Energy Conversion and Management, 38: S217-S222. doi: 10.1016/s0196-8904(96)00272-5 |
Guo, X., Wang, Z. M., Zhao, Y. L., 2016. A Comprehensive Model for the Prediction of Coal Swelling Induced by Methane and Carbon Dioxide Adsorption. Journal of Natural Gas Science and Engineering, 36: 563-572. doi: 10.13039/501100001809 |
Han, F. S., Chen, G. Q., Liu, Z. Y., et al., 2017. Correlation of Swelling and Sorption Properties of Block Coal Sample. Fuel, 188: 452-461. doi: 10.13039/501100001809 |
Harpalani, S., Mitra, A., 2010. Impact of CO2 Injection on Flow Behavior of Coalbed Methane Reservoirs. Transport in Porous Media, 82(1): 141-156. doi: 10.1007/s11242-009-9475-1 |
Harpalani, S., Schraufnagel, R. A., 1990. Shrinkage of Coal Matrix with Release of Gas and Its Impact on Permeability of Coal. Fuel, 69(5): 551-556. doi: 10.1016/0016-2361(90)90137-f |
Jaeger, J. C., Cook, N. G., Zimmerman, R., 2009. Fundamentals of Rock Mechanics. John Wiley & Sons, New York http://ci.nii.ac.jp/ncid/BA19114836 |
Jin, K., Cheng, Y. P., Liu, Q. Q., et al., 2016. Experimental Investigation of Pore Structure Damage in Pulverized Coal: Implications for Methane Adsorption and Diffusion Characteristics. Energy & Fuels, 30(12): 10383-10395. doi: 10.13039/501100004608 |
Krooss, B. M., van Bergen, F., Gensterblum, Y., et al., 2002. High-Pressure Methane and Carbon Dioxide Adsorption on Dry and Moisture-Equilibrated Pennsylvanian Coals. International Journal of Coal Geology, 51(2): 69-92. doi: 10.1016/s0166-5162(02)00078-2 |
Liu, Q. Q., Cheng, Y. P., Ren, T., et al., 2016. Experimental Observations of Matrix Swelling Area Propagation on Permeability Evolution Using Natural and Reconstituted Samples. Journal of Natural Gas Science and Engineering, 34: 680-688. doi: 10.13039/501100002858 |
Majewska, Z., Majewski, S., Ziętek, J., 2010. Swelling of Coal Induced by Cyclic Sorption/Desorption of Gas: Experimental Observations Indicating Changes in Coal Structure due to Sorption of CO2 and CH4. International Journal of Coal Geology, 83(4): 475-483. doi: 10.1016/j.coal.2010.07.001 |
Mazumder, S., Wolf, K. H. A. A., van Hemert, P., et al., 2008. Laboratory Experiments on Environmental Friendly Means to Improve Coalbed Methane Production by Carbon Dioxide/Flue Gas Injection. Transport in Porous Media, 75(1): 63-92. doi: 10.1007/s11242-008-9222-z |
Olajossy, A., 2017. Some Parameters of Coal Methane System that Cause very Slow Release of Methane from Virgin Coal Beds (CBM). International Journal of Mining Science and Technology, 27(2): 321-326. doi: 10.1016/j.ijmst.2017.01.006 |
Palmer, I., Mansoori, J., 1998. How Permeability Depends on Stress and Pore Pressure in Coalbeds: A New Model. SPE Reservoir Evaluation & Engineering, 1(6): 539-544. doi: 10.2118/52607-pa |
Pan, Z. J., Connell, L. D., 2007. A Theoretical Model for Gas Adsorption-Induced Coal Swelling. International Journal of Coal Geology, 69(4): 243-252. doi: 10.1016/j.coal.2006.04.006 |
Pan, Z. J., Connell, L. D., 2012. Modelling Permeability for Coal Reservoirs: A Review of Analytical Models and Testing Data. International Journal of Coal Geology, 92: 1-44. doi: 10.1016/j.coal.2011.12.009 |
Pini, R., Ottiger, S., Storti, G., et al., 2009. Pure and Competitive Adsorption of CO2, CH4 and N2 on Coal for ECBM. Energy Procedia, 1(1): 1705-1710. doi: 10.1016/j.egypro.2009.01.223 |
Puri, R., Yee, D., 1990. Enhanced Coalbed Methane Recovery. SPE Annual Technical Conference and Exhibition, Sep. 23rd-26th, 1990, New Orleans https://re.public.polimi.it/handle/11311/553158 |
Ranathunga, A. S., Perera, M. S. A., Ranjith, P. G., et al., 2017. An Experimental Investigation of Applicability of CO2 Enhanced Coal Bed Methane Recovery to Low Rank Coal. Fuel, 189: 391-399. doi: 10.13039/501100000923 |
Reeves, S., Oudinot, A., 2004. The Tiffany Unit N2-ECBM Pilot: A Reservoir Modeling Study. U.S. Department of Energy Topical Report, Washinton DC. DE-FC26-0NT40924 https://digital.library.unt.edu/ark:/67531/metadc899537/ |
Shi, J.-Q., Durucan, S., 2004. Drawdown Induced Changes in Permeability of Coalbeds: A New Interpretation of the Reservoir Response to Primary Recovery. Transport in Porous Media, 56(1): 1-16. doi: 10.1023/b:tipm.0000018398.19928.5a |
Shi, J.-Q., Durucan, S., 2008. Modelling of Mixed-Gas Adsorption and Diffusion in Coalbed Reservoirs. SPE Unconventional Reservoirs Conference, Sep. 23-26, 2008, Keystone doi: 10.2118/114197-MS |
Shi, J.-Q., Pan, Z. J., Durucan, S., 2014. Analytical Models for Coal Permeability Changes during Coalbed Methane Recovery: Model Comparison and Performance Evaluation. International Journal of Coal Geology, 136: 17-24. doi: 10.1016/j.coal.2014.10.004 |
Tang, S. H., Wan, Y., Duan, L. J., et al., 2015. Methane Adsorption-Induced Coal Swelling Measured with an Optical Method. International Journal of Mining Science and Technology, 25(6): 949-953. doi: 10.13039/501100001809 |
Vishal, V., Singh, T. N., Ranjith, P. G., 2015. Influence of Sorption Time in CO2-ECBM Process in Indian Coals Using Coupled Numerical Simulation. Fuel, 139: 51-58. doi: 10.1016/j.fuel.2014.08.009 |
Wang, G. D., Ren, T., Wang, K., et al., 2014. Influence of Maximum Pressure on the Path of CO2 Desorption Isotherm on Coal. Energy & Fuels, 28(11): 7093-7096. doi: 10.13039/501100001809 |
Wang, K., Wang, G. D., Ren, T., et al., 2014. Methane and CO2 Sorption Hysteresis on Coal: A Critical Review. International Journal of Coal Geology, 132: 60-80. doi: 10.13039/501100004543 |
Wang, Y. C., Wang, S. M., Xue, S., et al., 2015. Numerical Modeling of Porous Flow in Fractured Rock and Its Applications in Geothermal Energy Extraction. Journal of Earth Science, 26(1): 20-27. doi: 10.1007/s12583-015-0507-1 |
Wen, Z., Liu, K., Chen, X., 2015. Approximate Analytical Solutions for Two-Region Non-Darcian Flow to a Partially Penetrationg Well. Earth Science, 40(5): 918-924 (in Chinese with English Abstract) http://d.wanfangdata.com.cn/Periodical_dqkx201505015.aspx |
White, C. M., Smith, D. H., Jones, K. L., et al., 2005. Sequestration of Carbon Dioxide in Coal with Enhanced Coalbed Methane Recovery: A Review. Energy & Fuels, 19(3): 659-724. doi: 10.1021/ef040047w |
Zang, J., Wang, K., Zhao, Y. X., 2015. Evaluation of Gas Sorption-Induced Internal Swelling in Coal. Fuel, 143: 165-172. doi: 10.13039/501100001809 |
Zhang, L., Luo, J., Cui, G., et al., 2016. Mechanisms of Cold Shock during Coalbed Fracturing Assisted with Cryogenic Gases. Earth Science, 41(4): 664-674 (in Chinese with English Abstract) http://industry.wanfangdata.com.cn/hk/Detail/Periodical?id=Periodical_dqkx201604012 |