Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 28 Issue 5
Oct 2017
Turn off MathJax
Article Contents
Sugirtha Velusamy, Sivabalan Sakthivel, Lakshman Neelakantan, Jitendra S. Sangwai. Imidazolium-Based Ionic Liquids as an Anticorrosive Agent for Completion Fluid Design. Journal of Earth Science, 2017, 28(5): 949-961. doi: 10.1007/s12583-017-0780-2
Citation: Sugirtha Velusamy, Sivabalan Sakthivel, Lakshman Neelakantan, Jitendra S. Sangwai. Imidazolium-Based Ionic Liquids as an Anticorrosive Agent for Completion Fluid Design. Journal of Earth Science, 2017, 28(5): 949-961. doi: 10.1007/s12583-017-0780-2

Imidazolium-Based Ionic Liquids as an Anticorrosive Agent for Completion Fluid Design

doi: 10.1007/s12583-017-0780-2
More Information
  • Corresponding author: Jitendra S. Sangwai, jitendrasangwai@iitm.ac.in
  • Received Date: 17 Apr 2017
  • Accepted Date: 25 Jun 2017
  • Publish Date: 01 Oct 2017
  • Most of the onshore and offshore oil and gas reservoirs are facing operational challenges due to high temperature and high salinity, thus requiring advanced techniques for realizing the expected oil recovery with the use of specially designed chemicals. During oil and gas well development, completion fluids, which are solids-free liquids, are used to complete an oil or gas well. Completion fluids consisting of brines are primarily used for oil and gas well stabilization and are corrosive in nature. There is a need to develop additives to be added with completion fluids to address the corrosive nature. The present investigation involved the usage of two imidazolium ionic liquids (ILs) as corrosion inhibitors for mild steel in various completion brine (CaCl2, HCOOCs and ZnBr2) fluids. The study was performed using various techniques, such as, potentiodynamic polarization, weight loss measurements and exposure studies. All the above techniques showed promising results which indicated that the ILs as corrosion inhibitors used were of the mixed-type following both physisorption and chemisorption over the mild steel surface. Among the two inhibitors studied here, 1-octyl-3-methyl imidazolium chloride ([OMIM]+[Cl]-) with longer alkyl chain exhibited better inhibition efficiency and much lesser corrosion rate than 1-butyl-3-methyl imidazolium chloride ([BMIM]+[Cl]-) with a shorter alkyl chain. The results obtained from various methodologies indicate that ionic liquids can be explored to develop anti-corrosive completion fluids suitable for oil and gas reservoirs.

     

  • loading
  • Aghasadeghi, A. , 2011. Corrosivity Studies of Well Completion Fluids Comprising ZnCl2/CaCl2 on N-80 Steel. NACE International Corrosion Conference, March 13-17, 2011, Houston, Texas. NACE 11111
    Ahmad, Z. , 2006. Principles of Corrosion Engineering and Corrosion Control, 1st Ed. , Chapter 3, Corrosion Kinetics. 57-119
    Ali, S. A., Saeed, M. T., Rahman, S. U., 2003. The Isoxazolidines: A New Class of Corrosion Inhibitors of Mild Steel in Acidic Medium. Corrosion Science, 45(2): 253-266. doi: 10.1016/s0010-938x(02)00099-9
    Ameer, M. A., Fekry, A. M., Othman, A., 2014. Electrochemical Investigation of Green Inhibitor Adsorption on Low-Carbon Steel in Produced Water. International Journal of Electrochemical Science, 9(4): 1964-1985 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.654.4703
    Avci, G., 2008. Corrosion Inhibition of Indole-3-Acetic Acid on Mild Steel in 0.5M HCl. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317(1/2/3): 730-736. doi: 10.1016/j.colsurfa.2007.12.009
    Behpour, M., Ghoreishi, S. M., Salavati-Niasari, M., et al., 2008. Evaluating Two New Synthesized S-N Schiff Bases on the Corrosion of Copper in 15% Hydrochloric Acid. Materials Chemistry and Physics, 107(1): 153-157. doi: 10.1016/j.matchemphys.2007.06.068
    Bentiss, F., Lebrini, M., Lagrenée, M., 2005. Thermodynamic Characterization of Metal Dissolution and Inhibitor Adsorption Processes in Mild Steel/2, 5-Bis(N-Thienyl)-1, 3, 4-Thiadiazoles/Hydrochloric Acid System. Corrosion Science, 47(12): 2915-2931. doi: 10.1016/j.corsci.2005.05.034
    Chen, Z. Y., Li, L. J., Zhang, G. A., et al., 2013. Inhibition Effect of Propargyl Alcohol on the Stress Corrosion Cracking of Super 13Cr Steel in a Completion Fluid. Corrosion Science, 69: 205-210. doi: 10.1016/j.corsci.2012.12.004
    Devasenapathi, A., Raja, V. S., 1998. Effect of Externally Added Molybdate on Repassivation and Stress Corrosion Cracking of Type 304 Stainless Steel in Hydrochloric Acid. Corrosion, 52(4): 243-249. doi: 10.5006/1.3293636
    Döner, A., Şahin, E. A., Kardaş, G., et al., 2013. Investigation of Corrosion Inhibition Effect of 3-[(2-Hydroxy-Benzylidene)-Amino]-2-Thioxo-Thiazolidin-4-One on Corrosion of Mild Steel in the Acidic Medium. Corrosion Science, 66: 278-284. doi: 10.1016/j.corsci.2012.09.030
    El-Said, M., Ramzi, M., Abdel-Moghny, T., 2009. Analysis of Oilfield Waters by Ion Chromatography to Determine the Composition of Scale Deposition. Desalination, 249(2): 748-756. doi: 10.1016/j.desal.2008.12.061
    Finšgar, M., Jackson, J., 2014. Application of Corrosion Inhibitors for Steels in Acidic Media for the Oil and Gas Industry: A Review. Corrosion Science, 86: 17-41. doi: 10.1016/j.corsci.2014.04.044
    Fuchs-Godec, R., 2006. The Adsorption, CMC Determination and Corrosion Inhibition of some N-Alkyl Quaternary Ammonium Salts on Carbon Steel Surface in 2M H2SO4. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 280(1/2/3): 130-139. doi: 10.1016/j.colsurfa.2006.01.046
    Hegazy, M. A., 2009. A Novel Schiff Base-Based Cationic Gemini Surfactants: Synthesis and Effect on Corrosion Inhibition of Carbon Steel in Hydrochloric Acid Solution. Corrosion Science, 51(11): 2610-2618. doi: 10.1016/j.corsci.2009.06.046
    Hegazy, M. A., Aiad, I., 2015. 1-Dodecyl-4-(((3-Morpholinopropyl)imino) methyl)pyridin-1-Ium Bromide as a Novel Corrosion Inhibitor for Carbon Steel during Phosphoric Acid Production. Journal of Industrial and Engineering Chemistry, 31: 91-99. doi: 10.1016/j.jiec.2015.06.012
    Hegazy, M. A., Hasan, A. M., Emara, M. M., et al., 2012. Evaluating Four Synthesized Schiff Bases as Corrosion Inhibitors on the Carbon Steel in 1M Hydrochloric Acid. Corrosion Science, 65: 67-76. doi: 10.1016/j.corsci.2012.08.005
    Hezave, A. Z., Dorostkar, S., Ayatollahi, S., et al., 2013. Investigating the Effect of Ionic Liquid (1-Dodecyl-3-Methylimidazolium Chloride ([C12mim] [Cl])) on the Water/Oil Interfacial Tension as a Novel Surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 421: 63-71. doi: 10.1016/j.colsurfa.2012.12.008
    Khadraoui, A., Khelifa, A., Hadjmeliani, M., et al., 2016. Extraction, Characterization and Anti-Corrosion Activity of Mentha Pulegium Oil: Weight Loss, Electrochemical, Thermodynamic and Surface Studies. Journal of Molecular Liquids, 216: 724-731. doi: 10.1016/j.molliq.2016.02.005
    Li, X. H., Deng, S. D., Fu, H., et al., 2008. Synergistic Inhibition Effect of Rare Earth Cerium (Ⅳ) Ion and Anionic Surfactant on the Corrosion of Cold Rolled Steel in H2SO4 Solution. Corrosion Science, 50(9): 2635-2645. doi: 10.1016/j.corsci.2008.06.026
    Li, X. G., Sun, W. J., Wu, G. Z., et al., 2011. Ionic Liquid Enhanced Solvent Extraction for Bitumen Recovery from Oil Sands. Energy & Fuels, 25(11): 5224-5231. doi: 10.1021/ef2010942
    Likhanova, N. V., Domínguez-Aguilar, M. A., Olivares-Xometl, O., et al., 2010. The Effect of Ionic Liquids with Imidazolium and Pyridinium Cations on the Corrosion Inhibition of Mild Steel in Acidic Environment. Corrosion Science, 52(6): 2088-2097. doi: 10.1016/j.corsci.2010.02.030
    Martínez-Palou, R., Mosqueira, M. D. L., Zapata-Rendón, B., et al., 2011. Transportation of Heavy and Extra-Heavy Crude Oil by Pipeline: A Review. Journal of Petroleum Science and Engineering, 75(3/4): 274-282. doi: 10.1016/j.petrol.2010.11.020
    Mernari, B., El Attari, H., Traisnel, M., et al., 1998. Inhibiting Effects of 3, 5-Bis(N-Pyridyl)-4-Amino-1, 2, 4-Triazoles on the Corrosion for Mild Steel in 1 M HCl Medium. Corrosion Science, 40(2/3): 391-399. doi: 10.1016/s0010-938x(97)00142-x
    Munirathinam, B., Neelakantan, L., 2016. Role of Crystallographic Texture and Crystallinity on the Electrochemical Behavior of Nanocrystalline Sr Doped Calcium Phosphate Coatings. Journal of the Electrochemical Society, 163(7): D336-D343. doi: 10.1149/2.1411607jes
    Nejad, N. F., Shams, E., Adibi, M., et al., 2012. Desulfurization from Model of Gasoline by Extraction with Synthesized [BF4]-And [PF6]-Based Ionic Liquids. Petroleum Science and Technology, 30(15): 1619-1628. doi: 10.1080/10916466.2010.509071
    Noor, E. A., 2005. The Inhibition of Mild Steel Corrosion in Phosphoric Acid Solutions by some N-Heterocyclic Compounds in the Salt Form. Corrosion Science, 47(1): 33-55. doi: 10.1016/j.corsci.2004.05.026
    Painter, P., Williams, P., Lupinsky, A., 2010. Recovery of Bitumen from Utah Tar Sands Using Ionic Liquids. Energy & Fuels, 24(9): 5081-5088. doi: 10.1021/ef100765u
    Pandarinathan, V., Lepková, K., Bailey, S. I., et al., 2014. Adsorption of Corrosion Inhibitor 1-Dodecylpyridinium Chloride on Carbon Steel Studied by in situ AFM and Electrochemical Methods. Industrial & Engineering Chemistry Research, 53(14): 5858-5865. doi: 10.1021/ie402784y
    Plechkova, N. V., Seddon, K. R., 2008. Applications of Ionic Liquids in the Chemical Industry. Chem. Soc. Rev., 37(1): 123-150. doi: 10.1039/b006677j
    Quintero, L., 2002. An Overview of Surfactant Applications in Drilling Fluids for the Petroleum Industry. Journal of Dispersion Science and Technology, 23(1-3): 393-404. doi: 10.1081/dis-120003327
    Sakthivel, S., Velusamy, S., Gardas, R. L., et al., 2014a. Eco-Efficient and Green Method for the Enhanced Dissolution of Aromatic Crude Oil Sludge Using Ionic Liquids. RSC Advances, 4(59): 31007-31018. doi: 10.1039/c4ra03425b
    Sakthivel, S., Velusamy, S., Gardas, R. L., et al., 2014b. Experimental Investigation on the Effect of Aliphatic Ionic Liquids on the Solubility of Heavy Crude Oil Using UV-Visible, Fourier Transform-Infrared, And13C NMR Spectroscopy. Energy & Fuels, 28(9): 6151-6162. doi: 10.1021/ef501086v
    Sakthivel, S., Velusamy, S., Gardas, R. L., et al., 2015a. Use of Aromatic Ionic Liquids in the Reduction of Surface Phenomena of Crude Oil-Water System and Their Synergism with Brine. Industrial & Engineering Chemistry Research, 54(3): 968-978. doi: 10.1021/ie504331k
    Sakthivel, S., Velusamy, S., Gardas, R. L., et al., 2015b. Adsorption of Aliphatic Ionic Liquids at Low Waxy Crude Oil-Water Interfaces and the Effect of Brine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 468: 62-75. doi: 10.1016/j.colsurfa.2014.12.010
    Sakthivel, S., Chhotaray, P. K., Velusamy, S., et al., 2015c. Synergistic Effect of Lactam, Ammonium and Hydroxyl Ammonium Based Ionic Liquids with and without NaCl on the Surface Phenomena of Crude Oil/Water System. Fluid Phase Equilibria, 398: 80-97. doi: 10.1016/j.fluid.2015.04.011
    Sakthivel, S., Gardas, R. L., Sangwai, J. S., 2016. Effect of Alkyl Ammonium Ionic Liquids on the Interfacial Tension of the Crude Oil-Water System and Their Use for the Enhanced Oil Recovery Using Ionic Liquid-Polymer Flooding. Energy & Fuels, 30(3): 2514-2523. doi: 10.13039/501100003845
    Singh, D. K., Kumar, S., Udayabhanu, G., et al., 2016. 4(N, N-Dimethylamino) Benzaldehyde Nicotinic Hydrazone as Corrosion Inhibitor for Mild Steel in 1M HCl Solution: An Experimental and Theoretical Study. Journal of Molecular Liquids, 216: 738-746. doi: 10.1016/j.molliq.2016.02.012
    Solmaz, R., Altunbaş Şahin, E., D ner, A., et al., 2011. The Investigation of Synergistic Inhibition Effect of Rhodanine and Iodide Ion on the Corrosion of Copper in Sulphuric Acid Solution. Corrosion Science, 53(10): 3231-3240. doi: 10.1016/j.corsci.2011.05.067
    Tiu, B. D. B., Advincula, R. C., 2015. Polymeric Corrosion Inhibitors for the Oil and Gas Industry: Design Principles and Mechanism. Reactive and Functional Polymers, 95: 25-45. doi: 10.1016/j.reactfunctpolym.2015.08.006
    Velusamy, S., Sakthivel, S., Gardas, R. L., et al., 2015. Substantial Enhancement of Heavy Crude Oil Dissolution in Low Waxy Crude Oil in the Presence of Ionic Liquid. Industrial & Engineering Chemistry Research, 54(33): 7999-8009. doi: 10.13039/501100003845
    Wang, X., Xu, J., Sun, C., et al., 2015. Effect of Oilfield Produced Water on Corrosion of Pipeline. International Journal of Electrochemicalence, 10(10): 8656-8667
    Welton, T., 1999. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chemical Reviews, 99(8): 2071-2084. doi: 10.1021/cr980032t
    Yurt, A., Balaban, A., Kandemir, S. U., et al., 2004. Investigation on some Schiff Bases as HCl Corrosion Inhibitors for Carbon Steel. Materials Chemistry and Physics, 85(2/3): 420-426. doi: 10.1016/j.matchemphys.2004.01.033
    Zhu, Y. K., Free, M. L., 2016. Experimental Investigation and Modeling of the Performance of Pure and Mixed Surfactant Inhibitors: Micellization and Corrosion Inhibition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 489: 407-422. doi: 10.1016/j.colsurfa.2015.11.005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views(701) PDF downloads(129) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return