Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 28 Issue 4
Jul 2017
Turn off MathJax
Article Contents
Majid Bagheri, Mohammad Ali Riahi. Modeling the Facies of Reservoir Using Seismic Data with Missing Attributes by Dissimilarity Based Classification. Journal of Earth Science, 2017, 28(4): 703-708. doi: 10.1007/s12583-017-0797-6
Citation: Majid Bagheri, Mohammad Ali Riahi. Modeling the Facies of Reservoir Using Seismic Data with Missing Attributes by Dissimilarity Based Classification. Journal of Earth Science, 2017, 28(4): 703-708. doi: 10.1007/s12583-017-0797-6

Modeling the Facies of Reservoir Using Seismic Data with Missing Attributes by Dissimilarity Based Classification

doi: 10.1007/s12583-017-0797-6
More Information
  • Using seismic attributes as features for classification in feature space, in various aims such as seismic facies analysis, is conventional for the purpose of seismic interpretation. But sometimes seismic data may have no attributes or it is hard to define a small and relevant set of attributes in some applications. Therefore, employing techniques that perform facies modeling without using attributes is necessary. In this paper we present a new method for facies modeling of seismic data with missing attributes that called dissimilarity based classification. In this method, classification is bas ed on dissimilarities and facies modeling will be done in dissimilarity space. In this space dissimilarities consider as new features instead of real features. A support vector machine as a powerful classifier was employed in both feature space (feature-based) and dissimilarity space (feature-less) for facies analysis. The proposed feature-less and feature-based classification is applied on a real seismic data from an Iranian oil field. Facies modeling using seismic attributes provide better results, but the feature-less classification outcome is also satisfactory and the facies correlation is acceptable. Indeed, the power of attributes to discriminate different facies causes to that facies analysis using attributes provide more reliable results comparing to feature-less facies analysis.

     

  • loading
  • Bagheri, M., Riahi, M. A., Hashemi, H., 2013. Reservoir Lithofacies Analysis Using 3D Seismic Data in Dissimilarity Space. Journal of Geophysics and Engineering, 10(3): 035006. doi: 10.1088/1742-2132/10/3/035006
    Bagheri, M., Riahi, M. A., 2014. Seismic Facies Analysis from Well Logs Based on Supervised Classification Scheme with Different Machine Learning Techniques. Arabian Journal of Geosciences, 8(9): 7153-7161. doi: 10.1007/s12517-014-1691-5
    Bhatt, A., Helle, H. B., 2002. Determination of Facies from Well Logs Using Modular Neural Networks. Petroleum Geoscience, 8(3): 217-228. doi: 10.1144/petgeo.8.3.217
    Carrillat, A., Basu, T., Ysaccis, R., et al., 2008. Integrated Geological and Geophysical Analysis by Hierarchical Classification: Combining Seismic Stratigraphic and AVO Attributes. Petroleum Geoscience, 14(4): 339-354. doi: 10.1144/1354-079308-800
    Dumay, J., Fournier, F., 1988. Multivariate Statistical Analyses Applied to Seismic Facies Recognition. Geophysics, 53(9): 1151-1159. doi: 10.1190/1.1442554
    Duin, R. P. W., de Ridder, D., Tax, D. M. J., 1997. Experiments with a Featureless Approach to Pattern Recognition. Pattern Recognition Letters, 18(11/12/13): 1159-1166. doi: 10.1016/s0167-8655(97)00138-4
    Duin, R. P. W., Loog, M., Pekalska, E., et al., 2010. Feature-Based Dissimilarity Space Classification. Lecture Notes in Computer Science, 6388: 46-55. doi: 10.1007/978-3-642-17711-8_5
    Farzadi, P., 2006. Seismic Facies Analysis Based on 3D Multi-Attribute Volume Classification, Dariyan Formation, Se Persian Gulf. Journal of Petroleum Geology, 29(2): 159-173. doi: 10.1111/j.1747-5457.2006.00159.x
    Marroquín, I. D., Brault, J. J., Hart, B. S., 2009. A Visual Data-Mining Methodology for Seismic Facies Analysis: Part 2—Application to 3D Seismic Data. Geophysics, 74(1): P13-P23. doi: 10.1190/1.3046456
    Mathieu, P. G., Rice, G. W., 1969. Multivariate Analysis Used in the Detection of Stratigraphic Anomalies from Seismic Data. Geophysics, 34(4): 507-515. doi: 10.1190/1.1440027
    Paparozzi, E. , Grana, D. , Mancini, S. , et al. , 2011. Seismic Driven Probabilistic Classification of Reservoir Facies and Static Reservoir Modeling. 73rd EAGE Conference and Exhibition Incorporating SPE EUROPEC. Vienna, Austria, 23-26 May, 2011
    Pekalska, E. P., Duin, R. P. W., 2002. Dissimilarity Representations Allow for Building Good Classifiers. Pattern Recognition Letters, 23(8): 943-956. doi: 10.1016/s0167-8655(02)00024-7
    Pekalska, E. P. , Duin, R. P. W. , 2005. The Dissimilarity Representation for Pattern Recognition: Foundations and Applications. Series in Machine Perception and Artificial Intelligence, Volume 64. World Scientific, Singapore
    Saggaf, M. M., Toksöz, M. N., Marhoon, M. I., 2003. Seismic Facies Classification and Identification by Competitive Neural Networks. Geophysics, 68(6): 1984-1999. doi: 10.1190/1.1635052
    Simaan, M. A. , 1991. A Knowledge-Based Computer System for Segmentation of Seismic Sections Based on Texture. 61st Ann. Internat. Mtg. , Soc. Expl. Geophys, Expanded Abstracts. 289-292. doi: 10.1190/1.1888942
    Scholkopf, B., Burges, C. J. C., Smola, A. J., 1999. Fast Training of Support Vector Machines Using Sequential Minimal Optimization. Advances in Kernel Methods Support Vector Learning. Mass, MIT Press, Cambridge. 185-208
    Sutadiwirya, Y. , Abrar, B. , Henardi, D. , et al. , 2008. Using MRGC (Multi Resolution Graph-Based Clustering) Method to Integrate Log Data Analysis and Core Facies to Define Electrofacies, in the Benua Field. Central Sumatera Basin, Indonesia, International Gas Union Research Conference, IGRC, Paris
    Telmadarreie, A., Shadizadeh, S. R., Alizadeh, B., 2012. Investigation of Hydrogen Sulfide Oil Pollution Source, Asmari Oil Reservoir of Marun Oil Field in the Southwest of Iran. Iranian Journal of Chemical Engineering, 9(3): 63-74
    van der Heijden, F. , Duin, R. P. W. , de Ridder, D. , et al. , 2004. Classification, Parameter Estimation and Estate Estimation, an Engineering Approach Using Matlab. Wiley, The Netherlands
    Vapnik, V., 1998. Statistical Learning Theory. John Wiley & Sons, New York
    West, B. P., May, S. R., Eastwood, J. E., et al., 2002. Interactive Seismic Facies Classification Using Textural Attributes and Neural Networks. The Leading Edge, 21(10): 1042-1049. doi: 10.1190/1.1518444
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views(578) PDF downloads(119) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return