Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 28 Issue 4
Jul 2017
Turn off MathJax
Article Contents
Huan Chen, Qun-Ke Xia, Etienne Deloule, Jannick Ingrin. Typical Oxygen Isotope Profile of Altered Oceanic Crust Recorded in Continental Intraplate Basalts. Journal of Earth Science, 2017, 28(4): 578-587. doi: 10.1007/s12583-017-0798-5
Citation: Huan Chen, Qun-Ke Xia, Etienne Deloule, Jannick Ingrin. Typical Oxygen Isotope Profile of Altered Oceanic Crust Recorded in Continental Intraplate Basalts. Journal of Earth Science, 2017, 28(4): 578-587. doi: 10.1007/s12583-017-0798-5

Typical Oxygen Isotope Profile of Altered Oceanic Crust Recorded in Continental Intraplate Basalts

doi: 10.1007/s12583-017-0798-5
More Information
  • Corresponding author: Qun-Ke Xia, qkxia@zju.edu.cn
  • Received Date: 24 May 2017
  • Accepted Date: 19 Jul 2017
  • Publish Date: 01 Aug 2017
  • Recycled oceanic crust (ROC) has long been suggested to be a candidate introducing enriched geochemical signatures into the mantle source of intraplate basalts. The different parts of oceanic crust are characterized by variable oxygen isotope compositions (δ18O=3.7‰ to 13.6‰). To trace the signatures of ROC in the mantle source of intraplate basalts, we measured the δ18O values of clinopyroxene (cpx) phenocrysts in the Cenozoic basalts from the Shuangliao volcanic field, NE China using secondary ion mass spectrometer (SIMS). The δ18O values of the Shuangliao cpx phenocrysts in four basalts ranging from 4.10‰ to 6.73‰ (with average values 5.93‰±0.36‰, 5.95‰±0.30‰, 5.58‰±0.66‰, and 4.55‰± 0.38‰, respectively) apparently exceed those of normal mantle-derived cpx (5.6‰±0.2‰) and fall in the typical oxygen isotope range of altered oceanic crust. The δ18O values display the negative correlations with the Eu, Sr anomalies of whole rocks and erupted ages, demonstrating that (1) the ROC is the main enriched component in the mantle source of the Shuangliao basalts and (2) the contributions of ROC varied with time. The basalt with the lowest δ18O value is characterized by a significant K positive anomaly, highest H2O/Ce and Ba/Th ratios, suggesting that the mantle source of basalts with low δ18O can also include a water-rich sediment component that may be the trigger for partial melting. Considering the continuous subduction of the Pacific slab, the temporal heterogeneity of the source components is likely to be caused by the Pacific slab subduction.

     

  • loading
  • Bach, W., Alt, J. C., Niu, Y. L., et al., 2001. The Geochemical Consequences of Late-Stage Low-Grade Alteration of Lower Ocean Crust at the SW Indian Ridge: Results from ODP Hole 735B (Leg 176). Geochimica et Cosmochimica Acta, 65(19): 3267-3287. doi: 10.1016/s0016-7037(01)00677-9
    Chen, H., Xia, Q.-K., Ingrin, J., 2015a. Water Content of the Xiaogulihe Ultrapotassic Volcanic Rocks, NE China: Implications for the Source of the Potassium-Rich Component. Science Bulletin, 60(16): 1468-1470. doi: 10.13039/501100001809
    Chen, H., Xia, Q.-K., Ingrin, J., et al., 2015b. Changing Recycled Oceanic Components in the Mantle Source of the Shuangliao Cenozoic Basalts, NE China: New Constraints from Water Content. Tectonophysics, 650: 113-123. doi: 10.13039/501100001809
    Chen, H., Xia, Q.-K., Ingrin, J., et al., 2017. Heterogeneous Source Components of Intraplate Basalts from NE China Induced by the Ongoing Pacific Slab Subduction. Earth and Planetary Science Letters, 459: 208-220. doi: 10.13039/501100001809
    Chen, Y., Zhang, Y. X., Graham, D., et al., 2007. Geochemistry of Cenozoic Basalts and Mantle Xenoliths in Northeast China. Lithos, 96(1/2): 108-126. doi: 10.1016/j.lithos.2006.09.015
    Ching-oh, S., Williams, R. J., Shine-soon, S., 1974. Distribution Coefficients of Eu and Sr for Plagioclase-Liquid and Clinopyroxene-Liquid Equilibria in Oceanic Ridge Basalt: An Experimental Study. Geochimica et Cosmochimica Acta, 38(9): 1415-1433. doi: 10.1016/0016-7037(74)90096-9
    Deegan, F. M., Whitehouse, M. J., Troll, V. R., et al., 2016. Pyroxene Standards for SIMS Oxygen Isotope Analysis and Their Application to Merapi Volcano, Sunda Arc, Indonesia. Chemical Geology, 447: 1-10. doi: 10.13039/501100004359
    Dixon, J. E., Leist, L., Langmuir, C., et al., 2002. Recycled Dehydrated Lithosphere Observed in Plume-Influenced Mid-Ocean-Ridge Basalt. Nature, 420(6914): 385-389. doi: 10.1038/nature01215
    Drake, M. J., Weill, D. F., 1975. Partition of Sr, Ba, Ca, Y, Eu2+, Eu3+, and Other REE between Plagioclase Feldspar and Magmatic Liquid: An Experimental Study. Geochimica et Cosmochimica Acta, 39(5): 689-712. doi: 10.1016/0016-7037(75)90011-3
    Eiler, J. M., 2001. Oxygen Isotope Variations of Basaltic Lavas and Upper Mantle Rocks. Reviews in Mineralogy and Geochemistry, 43(1): 319-364. doi: 10.2138/gsrmg.43.1.319
    Eiler, J. M., Farley, K. A., Valley, J. W., et al., 1997. Oxygen Isotope Variations in Ocean Island Basalt Phenocrysts. Geochimica et Cosmochimica Acta, 61(11): 2281-2293. doi: 10.1016/s0016-7037(97)00075-6
    Eiler, J. M., Schiano, P., Kitchen, N., et al., 2000. Oxygen-Isotope Evidence for Recycled Crust in the Sources of Mid-Ocean-Ridge Basalts. Nature, 403(6769): 530-534. doi: 10.1038/35000553
    Farmer, G. L. , 2014. Continental Basaltic Rocks. In: Holland, H. , Turekian, K. , eds. , Treatise on Geochemistry, Second Edition. Elsevier, Amsterdam. 75-110
    Fichtner, A., Villaseñ or, A., 2015. Crust and Upper Mantle of the Western Mediterranean-Constraints from Full-Waveform Inversion. Earth and Planetary Science Letters, 428: 52-62. doi: 10.1016/j.epsl.2015.07.038
    Fitzsimons, I. C. W., Harte, B., Clark, R. M., 2000. SIMS Stable Isotope Measurement: Counting Statistics and Analytical Precision. Mineralogical Magazine, 64(1): 59-83. doi: 10.1180/002646100549139
    Gao, Y. J., Hoefs, J., Przybilla, R., et al., 2006. A Complete Oxygen Isotope Profile through the Lower Oceanic Crust, ODP Hole 735B. Chemical Geology, 233(3/4): 217-234. doi: 10.1016/j.chemgeo.2006.03.005
    Gregory, R. T., Taylor, H. P. Jr., 1981. An Oxygen Isotope Profile in a Section of Cretaceous Oceanic Crust, Samail Ophiolite, Oman: Evidence for δ18O Buffering of the Oceans by Deep ( > 5 km) Seawater-Hydrothermal Circulation at Mid-Ocean Ridges. Journal of Geophysical Research: Solid Earth, 86(B4): 2737-2755. doi: 10.1029/jb086ib04p02737
    Gurenko, A. A., Bindeman, I. N., Chaussidon, M., 2011. Oxygen Isotope Heterogeneity of the Mantle beneath the Canary Islands: Insights from Olivine Phenocrysts. Contributions to Mineralogy and Petrology, 162(2): 349-363. doi: 10.1007/s00410-010-0600-5
    Gurenko, A. A., Chaussidon, M., Schmincke, H. U., 2001. Magma Ascent and Contamination beneath one Intraplate Volcano: Evidence from S and O Isotopes in Glass Inclusions and Their Host Clinopyroxenes from Miocene Basaltic Hyaloclastites Southwest of Gran Canaria (Canary Islands). Geochimica et Cosmochimica Acta, 65(23): 4359-4374. doi: 10.1016/s0016-7037(01)00737-2
    Hartley, M. E., Thordarson, T., Taylor, C., et al., 2012. Evaluation of the Effects of Composition on Instrumental Mass Fractionation during SIMS Oxygen Isotope Analyses of Glasses. Chemical Geology, 334: 312-323. doi: 10.1016/j.chemgeo.2012.10.027
    Hoffman, S. E., Wilson, M., Stakes, D. S., 1986. Inferred Oxygen Isotope Profile of Archaean Oceanic Crust, Onverwacht Group, South Africa. Nature, 321(6065): 55-58. doi: 10.1038/321055a0
    Huang, J. L., Zhao, D. P., 2006. High-Resolution Mantle Tomography of China and Surrounding Regions. Journal of Geophysical Research, 111(B9): B09305. doi: 10.1029/2005jb004066
    Jung, S., Hoernes, S., 2000. The Major-and Trace-Element and Isotope (Sr, Nd, O) Geochemistry of Cenozoic Alkaline Rift-Type Volcanic Rocks from the Rhö n Area (Central Germany): Petrology, Mantle Source Characteristics and Implications for Asthenosphere-Lithosphere Interactions. Journal of Volcanology and Geothermal Research, 99(1/2/3/4): 27-53. doi: 10.1016/s0377-0273(00)00156-6
    Kelley, K. A., Plank, T., Ludden, J., et al., 2003. Composition of Altered Oceanic Crust at ODP Sites 801 and 1149. Geochemistry, Geophysics, Geosystems, 4(6). doi: 10.1029/2002gc000435
    Kita, N. T., Nagahara, H., Tachibana, S., et al., 2010. High Precision SIMS Oxygen Three Isotope Study of Chondrules in LL3 Chondrites: Role of Ambient Gas during Chondrule Formation. Geochimica et Cosmochimica Acta, 74(22): 6610-6635. doi: 10.1016/j.gca.2010.08.011
    Kita, N. T., Ushikubo, T., Fu, B., et al., 2009. High Precision SIMS Oxygen Isotope Analysis and the Effect of Sample Topography. Chemical Geology, 264(1/2/3/4): 43-57. doi: 10.1016/j.chemgeo.2009.02.012
    Kokfelt, T. F., Hoernle, K., Hauff, F., et al., 2006. Combined Trace Element and Pb-Nd-Sr-O Isotope Evidence for Recycled Oceanic Crust (Upper and Lower) in the Iceland Mantle Plume. Journal of Petrology, 47(9): 1705-1749. doi: 10.1093/petrology/egl025
    Kuritani, T., Ohtani, E., Kimura, J. I., 2011. Intensive Hydration of the Mantle Transition Zone beneath China Caused by Ancient Slab Stagnation. Nature Geoscience, 4(10): 713-716. doi: 10.1038/ngeo1250
    Lei, J. S., Xie, F. R., Fan, Q. C., et al., 2013. Seismic Imaging of the Deep Structure under the Chinese Volcanoes: An Overview. Physics of the Earth and Planetary Interiors, 224: 104-123. doi: 10.1016/j.pepi.2013.08.008
    Li, J. Y., 2006. Permian Geodynamic Setting of Northeast China and Adjacent Regions: Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences, 26(3/4): 207-224. doi: 10.1016/j.jseaes.2005.09.001
    Liu, J., Xia, Q.-K., Deloule, E., et al., 2015a. Recycled Oceanic Crust and Marine Sediment in the Source of Alkali Basalts in Shandong, Eastern China: Evidence from Magma Water Content and Oxygen Isotopes. Journal of Geophysical Research: Solid Earth, 120(12): 8281-8303. doi: 10.13039/501100001809
    Liu, J., Xia, Q.-K., Deloule, E., et al., 2015b. Water Content and Oxygen Isotopic Composition of Alkali Basalts from the Taihang Mountains, China: Recycled Oceanic Components in the Mantle Source. Journal of Petrology, 56(4): 681-702. doi: 10.1093/petrology/egv013
    Liu, X., Zhao, D. P., Li, S. Z., et al., 2017. Age of the Subducting Pacific Slab beneath East Asia and Its Geodynamic Implications. Earth and Planetary Science Letters, 464: 166-174. doi: 10.13039/501100001691
    Maruyama, S., Isozaki, Y., Kimura, G., et al., 1997. Paleogeographic Maps of the Japanese Islands: Plate Tectonic Synthesis from 750 Ma to the Present. The Island Arc, 6(1): 121-142. doi: 10.1111/j.1440-1738.1997.tb00043.x
    Marzoli, A., Piccirillo, E. M., Renne, P. R., et al., 2000. The Cameroon Volcanic Line Revisited: Petrogenesis of Continental Basaltic Magmas from Lithospheric and Asthenospheric Mantle Sources. Journal of Petrology, 41(1): 87-109. doi: 10.1093/petrology/41.1.87
    Mattey, D., Lowry, D., Macpherson, C., 1994. Oxygen Isotope Composition of Mantle Peridotite. Earth and Planetary Science Letters, 128(3/4): 231-241. doi: 10.1016/0012-821x(94)90147-3
    Muehlenbachs, K., Clayton, R. N., 1976. Oxygen Isotope Composition of the Oceanic Crust and Its Bearing on Seawater. Journal of Geophysical Research, 81(23): 4365-4369. doi: 10.1029/jb081i023p04365
    Page, F. Z., Kita, N. T., Valley, J. W., 2010. Ion Microprobe Analysis of Oxygen Isotopes in Garnets of Complex Chemistry. Chemical Geology, 270(1/2/3/4): 9-19. doi: 10.1016/j.chemgeo.2009.11.001
    Plank, T., Langmuir, C. H., 1998. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 145(3/4): 325-394. doi: 10.1016/s0009-2541(97)00150-2
    Putlitz, B., Matthews, A., Valley, J. W., 2000. Oxygen and Hydrogen Isotope Study of High-Pressure Metagabbros and Metabasalts (Cyclades, Greece): Implications for the Subduction of Oceanic Crust. Contributions to Mineralogy and Petrology, 138(2): 114-126. doi: 10.1007/s004100050012
    Rogers, N. W., Hawkesworth, C. J., Ormerod, D. S., 1995. Late Cenozoic Basaltic Magmatism in the Western Great Basin, California and Nevada. Journal of Geophysical Research: Solid Earth, 100(B6): 10287-10301. doi: 10.1029/94jb02738
    Sengör, A. M. C. , Natal'in, B. A. , 1996. Paleotectonics of Asia: Fragments of a Synthesis. In: Yin, A. , Harrison, M. , eds. , Tectonic Evolution of Asia. Cambridge University Press, Cambridge. 486-640
    Sengö r, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299-307. doi: 10.1038/364299a0
    Taylor, H. P., 1974. The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition. Economic Geology, 69(6): 843-883. doi: 10.2113/gsecongeo.69.6.843
    Valley, J. W. , Kita, N. T. , 2009. In Situ Oxygen Isotope Geochemistry by Ion Microprobe. Mineralogical Association of Canada Short Course. Mineralogical Association of Canada, Toronto. 19-63
    Wang, X. C., Wilde, S. A., Li, Q. L., et al., 2015. Continental Flood Basalts Derived from the Hydrous Mantle Transition Zone. Nature Communications, 6: 7700. doi: 10.1038/ncomms8700
    Wang, Z., Eiler, J. M., 2008. Insights into the Origin of Low-δ18O Basaltic Magmas in Hawaii Revealed from in situ Measurements of Oxygen Isotope Compositions of Olivines. Earth and Planetary Science Letters, 269(3/4): 377-387. doi: 10.1016/j.epsl.2008.02.018
    Wei, W., Xu, J. D., Zhao, D. P., et al., 2012. East Asia Mantle Tomography: New Insight into Plate Subduction and Intraplate Volcanism. Journal of Asian Earth Sciences, 60: 88-103. doi: 10.1016/j.jseaes.2012.08.001
    Woodhead, J. D., Greenwood, P., Harmon, R. S., et al., 1993. Oxygen Isotope Evidence for Recycled Crust in the Source of EM-Type Ocean Island Basalts. Nature, 362(6423): 809-813. doi: 10.1038/362809a0
    Workman, R. K., Hart, S. R., 2005. Major and Trace Element Composition of the Depleted MORB Mantle (DMM). Earth and Planetary Science Letters, 231(1/2): 53-72. doi: 10.1016/j.epsl.2004.12.005
    Wotzlaw, J. F., Bindeman, I. N., Stern, R. A., et al., 2015. Rapid Heterogeneous Assembly of Multiple Magma Reservoirs Prior to Yellowstone Supereruptions. Scientific Reports, 5(1). doi: 10.1038/srep14026
    Xia, Q.-K., Dallai, L., Deloule, E., 2004. Oxygen and Hydrogen Isotope Heterogeneity of Clinopyroxene Megacrysts from Nushan Volcano, SE China. Chemical Geology, 209(1/2): 137-151. doi: 10.1016/j.chemgeo.2004.04.028
    Xu, Y. G., Zhang, H. H., Qiu, H. N., et al., 2012. Oceanic Crust Components in Continental Basalts from Shuangliao, Northeast China: Derived from the Mantle Transition Zone?. Chemical Geology, 328: 168-184. doi: 10.1016/j.chemgeo.2012.01.027
    Yu, S. Y., Xu, Y. G., Huang, X. L., et al., 2009. Hf-Nd Isotopic Decoupling in Continental Mantle Lithosphere beneath Northeast China: Effects of Pervasive Mantle Metasomatism. Journal of Asian Earth Sciences, 35(6): 554-570. doi: 10.1016/j.jseaes.2009.04.005
    Zhang, J., Zhang, H. F., 2007. Compositional Features and P-T Conditions of Granulite Xenoliths from Late Cretaceous Mafic Dike, Qingdao Region. Acta Petrologica Sinica, 23(5): 1133-1140 (in Chinese with English Abstract)
    Zhang, M., Stephenson, P. J., O'Reilly, S. Y., et al., 2001. Petrogenesis and Geodynamic Implications of Late Cenozoic Basalts in North Queensland, Australia: Trace-Element and Sr-Nd-Pb Isotope Evidence. Journal of Petrology, 42(4): 685-719. doi: 10.1093/petrology/42.4.685
    Zhou, X., Armstrong, R. L., 1982. Cenozoic Volcanic Rocks of Eastern China-Secular and Geographic Trends in Chemistry and Strontium Isotopic Composition. Earth and Planetary Science Letters, 58(3): 301-329. doi: 10.1016/0012-821x(82)90083-8
    Zou, H. B., Zindler, A., Xu, X. S., et al., 2000. Major, Trace Element, and Nd, Sr and Pb Isotope Studies of Cenozoic Basalts in SE China: Mantle Sources, Regional Variations, and Tectonic Significance. Chemical Geology, 171(1/2): 33-47. doi: 10.1016/s0009-2541(00)00243-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views(7526) PDF downloads(541) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return