Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 28 Issue 5
Oct 2017
Turn off MathJax
Article Contents
Mohammad Ali Faraji, Ali Kadkhodaie, Reza Rezaee, David A. Wood. Integration of Core Data, Well Logs and Seismic Attributes for Identification of the Low Reservoir Quality Units with Unswept Gas in the Carbonate Rocks of the World's Largest Gas Field. Journal of Earth Science, 2017, 28(5): 857-866. doi: 10.1007/s12583-017-0800-2
Citation: Mohammad Ali Faraji, Ali Kadkhodaie, Reza Rezaee, David A. Wood. Integration of Core Data, Well Logs and Seismic Attributes for Identification of the Low Reservoir Quality Units with Unswept Gas in the Carbonate Rocks of the World's Largest Gas Field. Journal of Earth Science, 2017, 28(5): 857-866. doi: 10.1007/s12583-017-0800-2

Integration of Core Data, Well Logs and Seismic Attributes for Identification of the Low Reservoir Quality Units with Unswept Gas in the Carbonate Rocks of the World's Largest Gas Field

doi: 10.1007/s12583-017-0800-2
More Information
  • Corresponding author: Ali Kadkhodaie, kadkhodaie_ali@tabrizu.ac.ir
  • Received Date: 08 May 2017
  • Accepted Date: 10 Jul 2017
  • Publish Date: 01 Oct 2017
  • Tight zones of the gas bearing Kangan and Dalan formations of the South Pars gas field contain a considerable amount of unswept gas due to their low porosity, low permeability and isolated pore types. The current study, integrates core data, rock elastic properties and 3D seismic attributes to delineate tight and low-reservoir-quality zones of the South Pars gas field. In the first step, the dynamic reservoir geomechanical parameters were calculated based on empirical relationships from well log data. The log-derived elastic moduli were validated with the available laboratory measurements of core data. Cross plots between estimated porosity and elastic parameters based on Young's modulus indicate that low porosity zone coincide with high values of Young's module. The results were validated with petrographic studies of the available thin sections. The core samples with low porosity and permeability are correlated with strong rocks with tight matrix frameworks and high elastic values. Subsequently, rock elastic properties including Young's modulus and Poisson's ratio along with porosity were estimated by using neural networks from a collection of 3D post-stack seismic attributes, such as acoustic impedance (AI), instantaneous phase of AI and apparent polarity. Distinguishing low reservoir quality areas in pay zones with unswept gas is then facilitated by locating low porosity and high elastic modulus values. Anhydrite zones are identified and eliminated as non-pay zones due to their characterization of zero porosity and high Young modulus values. The methodology described has applications for unconventional reservoirs more generally, because it is able to distinguish low porosity and permeability zones that are potentially productive from those unprospective zones with negligible reservoir quality.

     

  • loading
  • Aali, J., Rahimpour-Bonab, H., Kamali, M. R., 2006. Geochemistry and Origin of the World's Largest Gas Field from Persian Gulf, Iran. Journal of Petroleum Science and Engineering, 50(3/4): 161-175. https://doi.org/10.1016/j.petrol.2005.12.004
    Abreu, V., Sullivan, M., Pirmez, C., et al., 2003. Lateral Accretion Packages (LAPs): An Important Reservoir Element in Deep Water Sinuous Channels. Marine and Petroleum Geology, 20(6/7/8): 631-648. https://doi.org/10.1016/j.marpetgeo.2003.08.003
    Bastos, A. C. , Dillon, L. D. , Vasquez, G. F. , et al. , 1998. Core-Derived Acoustic, Porosity & Permeability Correlations for Computation Pseudo-Logs. In: Harvey, P. K. , Lovell, M. A. , eds. , Core-Log Integration. Geological Society, London, Special Publications, 136(1): 141-146. https://doi.org/10.1144/gsl.sp.1998.136.01.12
    Becquey, M., Lavergne, M., Willm, C., 1979. Acoustic Impedance Logs Computed from Seismic Traces. Geophysics, 44(9): 1485-1501. https://doi.org/10.1190/1.1441020
    Edlmann, K. , Somerville, J. M. , Smart, B. G. D. , et al. , 1998. Predicting Rock Mechanical Properties from Wireline Porosities. In: Proceedings of the EUROCK 98 SPE/ISRM Rock Mechanics in Petroleum Engineering Meeting, Vol. 2. Society of Petroleum Engineers, Richardson, Texas. SPE Paper 47344. 169-175. https://doi.org/10.2118/47344-MS
    Farquhar, R. A. , Somerville, J. M. , Smart, B. G. D. , 1994. Porosity as a Geomechanical Indicator: An Application of Core and Log Data and Rock Mechanics. In: Proceedings of the European Petroleum Conference, London, England. Society of Petroleum Engineers, Richardson, Texas. SPE Paper 28853. 481-489 https: //www. osti. gov/scitech/biblio/372426-porosity-geomechanical-indicator-application-core-log-data-rock-mechanics
    Fjaer, E., Horsrud, H. P., Raaen, A. M., et al., 2008. Petroleum Related Rock Mechanics. Developments in Petroleum Science, 53: 1-419 doi: 10.1016/S0376-7361(07)53001-3
    Gardner, G. H. F., Gardner, L. W., Gregory, A. R., 1974. Formation Velocity and Density—The Diagnostic Basics for Stratigraphic Traps. Geophysics, 39(6): 770-780. https://doi.org/10.1190/1.1440465
    Ghiasi-Freez, J., Soleimanpour, I., Kadkhodaie-Ilkhchi, A., et al., 2012. Semi-Automated Porosity Identification from Thin Section Images Using Image Analysis and Intelligent Discriminant Classifiers. Computers & Geosciences, 45: 36-45. https://doi.org/10.1016/j.cageo.2012.03.006
    Hampson, D. P., Schuelke, J. S., Quirein, J. A., 2001. Use of Multiattribute Transforms to Predict Log Properties from Seismic Data. Geophysics, 66(1): 220-236. https://doi.org/10.1190/1.1444899
    Hart, B. S., Balch, R. S., 2000. Approaches to Defining Reservoir Physical Properties from 3-D Seismic Attributes with Limited Well Control: An Example from the Jurassic Smackover Formation, Alabama. Geophysics, 65(2): 368-376. https://doi.org/10.1190/1.1444732
    Huuse, M., Feary, D. A., 2005. Seismic Inversion for Acoustic Impedance and Porosity of Cenozoic Cool-Water Carbonates on the Upper Continental Slope of the Great Australian Bight. Marine Geology, 215(3/4): 123-134. https://doi.org/10.1016/j.margeo.2004.12.005
    Kadkhodaie-Ilkhchi, A., Monteiro, S. T., Ramos, F., et al., 2010. Rock Recognition from MWD Data: A Comparative Study of Boosting, Neural Networks, and Fuzzy Logic. IEEE Geoscience and Remote Sensing Letters, 7(4): 680-684. https://doi.org/10.1109/lgrs.2010.2046312 doi: 10.1109/LGRS.2010.2046312
    Kadkhodaie-Ilkhchi, R., Moussavi-Harami, R., Rezaee, R., et al., 2014. Seismic Inversion and Attributes Analysis for Porosity Evaluation of the Tight Gas Sandstones of the Whicher Range Field in the Perth Basin, Western Australia. Journal of Natural Gas Science and Engineering, 21: 1073-1083. https://doi.org/10.13039/501100003121 doi: 10.1016/j.jngse.2014.10.027
    Kearey, P., Brooks, M., Hill, I., 2002. An Introduction to Geophysical Exploration. Blackwell Science, Oxford
    Khoshdel, H. , Riahi, M. A. , 2007. 3D Porosity Estimation Using Multi Attribute Analysis Methods in One of Persian Gulf Oil Fields. EUROPEC/EAGE Conference and Exhibition, June 11-14, London. https://doi.org/10.2118/106057-MS
    Konert, G., Afifi, A., Al-Hajri, S., et al., 2001. Paleozoic Stratigraphy and Hydrocarbon Habitat of the Arabian Plate. GeoArabia, 6(3): 407-442 https://www.researchgate.net/publication/268982007_Paleozoic_Stratigraphy_and_Hydrocarbon_Habitat_of_the_Arabian_Plate
    Lavergne, M., Willm, C., 1977. Inversion of Seismograms and Pseudo Velocity Logs. Geophysical Prospecting, 25(2): 231-250. https://doi.org/10.1111/j.1365-2478.1977.tb01165.x doi: 10.1111/gpr.1977.25.issue-2
    Leiphart, D. J., Hart, B. S., 2001. Comparison of Linear Regression and a Probabilistic Neural Network to Predict Porosity from 3-D Seismic Attributes in Lower Brushy Canyon Channeled Sandstones, Southeast New Mexico. Geophysics, 66(5): 1349-1358. https://doi.org/10.1190/1.1487080
    Naimi, S. R., Shadizadeh, S. R., Riahi, M. A., et al., 2014. Estimation of Reservoir Porosity and Water Saturation Based on Seismic Attributes Using Support Vector Regression Approach. Journal of Applied Geophysics, 107: 93-101. https://doi.org/10.1016/j.jappgeo.2014.05.011
    Pearson, R. , Hart, B. , 1999. Convergence of 3-D Seismic Attribute-Based Reservoir Property Prediction and Geologic Interpretation as a Risk Reduction Tool: A Case Study from a Permian Intraslope Basin. In: Internat. Mtg. , Soc. Expl. Geophys. , Expanded Abstracts. 896-899. https://doi.org/10.1190/1.1821252
    Rahimpour-Bonab, H., 2007. A Procedure for Appraisal of a Hydrocarbon Reservoir Continuity and Quantification of Its Heterogeneity. Journal of Petroleum Science and Engineering, 58(1/2): 1-12. https://doi.org/10.1016/j.petrol.2006.11.004
    Rahimpour-Bonab, H., Esrafili-Dizaji, B., Tavakoli, V., 2010. Dolomitization and Anhydrite Precipitation in Permo-Triassic Carbonates at the South Pars Gasfield, Offshore Iran: Controls on Reservoir Quality. Journal of Petroleum Geology, 33(1): 43-66. https://doi.org/10.1111/j.1747-5457.2010.00463.x doi: 10.1111/jpg.2010.33.issue-1
    Raymer, L. L. , Hunt, E. R. , Gardner, J. S. , 1980. An Improved Sonic Transit Time to Porosity Transform. In: 21st Annual Society of Professional Well Log Analysts Logging Symposium, Transactions, 8-11 July, Lafayette https: //www. onepetro. org/conference-paper/SPWLA-1980-P
    Rezvandehy, M., Aghababaei, H., Raissi, S. H. T., 2011. Integrating Seismic Attributes in the Accurate Modeling of Geological Structures and Determining the Storage of the Gas Reservoir in Gorgan Plain (North of Iran). Journal of Applied Geophysics, 73(3): 187-195. https://doi.org/10.1016/j.jappgeo.2010.12.008
    Russel, H. B. , 1988. Introduction to Seismic Inversion Methods. Society of Exploration Geophysicists, Tusla doi: 10. 1190/1. 9781560802303
    Sfidari, E., Kadkhodaie-Ilkhchi, A., Rahimpour-Bbonab, H., et al., 2014. A Hybrid Approach for Litho-Facies Characterization in the Framework of Sequence Stratigraphy: A Case Study from the South Pars Gas Field, the Persian Gulf Basin. Journal of Petroleum Science and Engineering, 121: 87-102. https://doi.org/10.1016/j.petrol.2014.06.013
    Soubotcheva, N. , Stewart, R. R. , 2004. Predicting Porosity Logs from Seismic Attributes Using Geostatistics. CREWES Research Report, 16, Calgary https: //www. researchgate. net/publication/315735298_Predicting_porosity_logs_from_seismic_attributes_using_geostatistics
    Szabo, F., Kheradpir, A., 1978. Permian and Triassic Stratigraphy, Zagros Basin, South-West Iran. Journal of Petroleum Geology, 1(2): 57-82. https://doi.org/10.1111/j.1747-5457.1978.tb00611.x doi: 10.1111/jpg.1978.1.issue-2
    Tebo, J. M., Hart, B. S., 2005. Use of Volume-Based 3-D Seismic Attribute Analysis to Characterize Physical-Property Distribution: A Case Study to Delineate Sedimentologic Heterogeneity at the Appleton Field, Southwestern Alabama, U.S.A.. Journal of Sedimentary Research, 75(4): 723-735. https://doi.org/10.2110/jsr.2005.058
    Tixier, M. P., Loveless, G. W., Anderson, R. A., 1975. Estimation of Formation Strength from the Mechanical-Properties Log (Incudes Associated Paper 6400). Journal of Petroleum Technology, 27(3): 283-293. https://doi.org/10.2118/4532-pa doi: 10.2118/4532-PA
    Veeken, P. C. H., Da Silva, M., 2004. Seismic Inversion Methods and Some of Their Constraints. First Break, 22(6): 47-70. https://doi.org/10.3997/1365-2397.2004011
    Wu, J., Li, F. H., 2009. Prediction of Oil-Bearing Single Sandbody by 3D Geological Modeling Combined with Seismic Inversion. Petroleum Exploration and Development, 36(5): 623-627. https://doi.org/10.1016/s1876-3804(09)60150-6 doi: 10.1016/S1876-3804(09)60150-6
    Wyllie, M. R. J., Gardner, G. H. F., Gregory, A. R., 1962. Studies of Elastic Wave Attenuation in Porous Media. Geophysics, 27(5): 569-589. https://doi.org/10.1190/1.1439063
    Wyllie, M. R. J., Gregory, A. R., Gardner, G. H. F., 1958. An Experimental Investigation of Factors Affecting Elastic Wave Velocities in Porous Media. Geophysics, 23(3): 459-493. https://doi.org/10.1190/1.1438493
    Wyllie, M. R. J., Gregory, A. R., Gardner, L. W., 1956. Elastic Wave Velocities in Heterogeneous and Porous Media. Geophysics, 21(1): 41-70. https://doi.org/10.1190/1.1438217
    Yao, T. T., Chopra, A., 2000. Integration of Seismic Attribute Map into 3D Facies Modeling. Journal of Petroleum Science and Engineering, 27(1/2): 69-84. https://doi.org/10.1016/s0920-4105(00)00048-6
    Zoback, M. D., 2010. Reservoir Geomechanics. Cambridge University Press, Cambridge
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views(794) PDF downloads(163) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return