Abdallah, W., Buckley, J., Carnegie, A., et al., 2007. Fundamentals of Wettability. Schlumberger Oilfield Review, 19(2): 44-61 https://es.scribd.com/presentation/175102990/Fundamentals-of-Wettability |
Andrew, M., Bijeljic, B., Blunt, M. J., 2014. Pore-Scale Contact Angle Measurements at Reservoir Conditions Using X-Ray Microtomography. Advances in Water Resources, 68: 24-31. https://doi.org/10.1016/j.advwatres.2014.02.014 |
Anovitz, L. M., Cole, D. R., Sheets, J. M., et al., 2015. Effects of Maturation on Multiscale (Nanometer to Millimeter) Porosity in the Eagle Ford Shale. Interpretation, 3(3): SU59-SU70. https://doi.org/10.1190/int-2014-0280.1 doi: 10.1190/INT-2014-0280.1 |
Benavente, D., Lock, P., Angeles Garcia Del Cura, M., et al., 2002. Predicting the Capillary Imbibition of Porous Rocks from Microstructure. Transport in Porous Media, 49(1): 59-76 doi: 10.1023/A:1016047122877 |
Brittin, W. E., 1946. Liquid Rise in a Capillary Tube. Journal of Applied Physics, 17(1): 37-44. https://doi.org/10.1063/1.1707633 |
Broseta, D., Tonnet, N., Shah, V., 2012. Are Rocks still Water-Wet in the Presence of Dense CO2 or H2S?.Geofluids, 12(4): 280-294. https://doi.org/10.1111/j.1468-8123.2012.00369.x doi: 10.1111/gfl.2012.12.issue-4 |
Cai, J. C., Perfect, E., Cheng, C. L., et al., 2014. Generalized Modeling of Spontaneous Imbibition Based on Hagen-Poiseuille Flow in Tortuous Capillaries with Variably Shaped Apertures. Langmuir, 30(18): 5142-5151. https://doi.org/10.1021/la5007204 |
Cai, J. C., Yu, B. M., 2011. A Discussion of the Effect of Tortuosity on the Capillary Imbibition in Porous Media. Transport in Porous Media, 89(2): 251-263. https://doi.org/10.1007/s11242-011-9767-0 |
Cai, J. C., Yu, B. M., Mei, M. F., et al., 2010a. Capillary Rise in a Single Tortuous Capillary. Chinese Physics Letters, 27(5): 054701. https://doi.org/10.1088/0256-307x/27/5/054701 doi: 10.1088/0256-307X/27/5/054701 |
Cai, J. C., Yu, B. M., Zou, M. Q., et al., 2010b. Fractal Characterization of Spontaneous Co-Current Imbibition in Porous Media. Energy & Fuels, 24(3): 1860-1867. https://doi.org/10.1021/ef901413p doi: 10.1021/ef901413p?src=recsys |
Chen, C., Wan, J. M., Li, W. Z., et al., 2015. Water Contact Angles on Quartz Surfaces under Supercritical CO2 Sequestration Conditions: Experimental and Molecular Dynamics Simulation Studies. International Journal of Greenhouse Gas Control, 42: 655-665. https://doi.org/10.13039/501100001809 doi: 10.1016/j.ijggc.2015.09.019 |
Cheng, C. L., Perfect, E., Donnelly, B., et al., 2015. Rapid Imbibition of Water in Fractures within Unsaturated Sedimentary Rock. Advances in Water Resources, 77: 82-89. https://doi.org/10.13039/100006151 doi: 10.1016/j.advwatres.2015.01.010 |
Cheng, Y. M., 2012. Impact of Water Dynamics in Fractures on the Performance of Hydraulically Fractured Wells in Gas-Shale Reservoirs. Journal of Canadian Petroleum Technology, 51(2): 143-151. https://doi.org/10.2118/127863-pa doi: 10.2118/127863-PA |
Dreyer, M., Delgado, A., Path, H. J., 1994. Capillary Rise of Liquid between Parallel Plates under Microgravity. Journal of Colloid and Interface Science, 163(1): 158-168. https://doi.org/10.1006/jcis.1994.1092 |
Dubiel, R. F., Pitman, J. K., Pearson, O. N., et al., 2012. Assessment of Undiscovered Oil and Gas Resources in Conventional and Continuous Petroleum Systems in the Upper Cretaceous Eagle Ford Group, US Gulf Coast region. Vol. No. 2012-3003. US Geological Survey, 2011, Reston, VA https://pubs.er.usgs.gov/usgspubs/publication/fs20123003 |
Ergene, S. M. , 2014. Lithologic heterogeneity of the Eagle Ford Formation, South Texas: [Dissertation]. The University of Texas at Austin, Austin, Texas |
Fischer, C., Gaupp, R., 2005. Change of Black Shale Organic Material Surface Area during Oxidative Weathering: Implications for Rock-Water Surface Evolution. Geochimica et Cosmochimica Acta, 69(5): 1213-1224. https://doi.org/10.1016/j.gca.2004.09.021 |
Gao, L. C., McCarthy, T. J., 2007. How Wenzel and Cassie were Wrong. Langmuir, 23(7): 3762-3765. https://doi.org/10.1021/la062634a |
Gao, Z. Y., Hu, Q. H., 2016. Wettability of Mississippian Barnett Shale Samples at Different Depths: Investigations from Directional Spontaneous Imbibition. AAPG Bulletin, 100(1): 101-114. https://doi.org/10.1306/09141514095 |
Hamraoui, A., Nylander, T., 2002. Analytical Approach for the Lucas-Washburn Equation. Journal of Colloid and Interface Science, 250(2): 415-421. https://doi.org/10.1006/jcis.2002.8288 |
Hamraoui, A., Thuresson, K., Nylander, T., et al., 2000. Can a Dynamic Contact Angle be Understood in Terms of a Friction Coefficient?. Journal of Colloid and Interface Science, 226(2): 199-204. https://doi.org/10.1006/jcis.2000.6830 |
Handy, L., 1960. Determination of Effective Capillary Pressures for Porous Media from Imbibition Data. Pet. Trans. AIME, 219(7): 75-80 https://www.onepetro.org/general/SPE-1361-G |
Hardy, W. B., 1922. Historical Notes Upon Surface Energy and Forces of Short Range. Nature, 109(2734): 375-378. https://doi.org/10.1038/109375a0 |
Hassanein, R., Meyer, H. O., Carminati, A., et al., 2006. Investigation of Water Imbibition in Porous Stone by Thermal Neutron Radiography. Journal of Physics D: Applied Physics, 39(19): 4284-4291. https://doi.org/10.1088/0022-3727/39/19/023 |
International Organization for Standardization, 1997. Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters. International Organization for Standardization, Geneva, Switzerland |
Javaheri, A., Dehghanpour, H., Wood, J. M., 2017. Tight Rock Wettability and Its Relationship to Other Petrophysical Properties: A Montney Case Study. Journal of Earth Science, 28(2): 381-390. https://doi.org/10.1007/s12583-017-0725-9 |
Joos, P., van Remoortere, P., Bracke, M., 1990. The Kinetics of Wetting in a Capillary. Journal of Colloid and Interface Science, 136(1): 189-197. https://doi.org/10.1016/0021-9797(90)90089-7 |
Jurin, J., 1717. An Account of Some Experiments Shown before the Royal Society: With an Enquiry into the Cause of the Ascent and Suspension of Water in Capillary Tubes. Philosophical Transactions of the Royal Society of London, 30(351-363): 739-747. https://doi.org/10.1098/rstl.1717.0026 |
Kang, M., Perfect, E., Cheng, C. L., et al., 2013. Diffusivity and Sorptivity of Berea Sandstone Determined Using Neutron Radiography. Vadose Zone Journal, 12(3). https://doi.org/10.2136/vzj2012.0135 https://www.soils.org/publications/vzj/abstracts/12/3/vzj2012.0135 |
Li, K. W., 2007. Scaling of Spontaneous Imbibition Data with Wettability Included. Journal of Contaminant Hydrology, 89(3/4): 218-230. https://doi.org/10.1016/j.jconhyd.2006.09.009 http://www.ncbi.nlm.nih.gov/pubmed/17081652 |
Lucas, R., 1918. Rate of Capillary Ascension of Liquids. Kolloid Z, 23(15): 15-22 doi: 10.1088/1757-899X/147/1/012041/pdf |
Mamontov, E., Vlcek, L., Wesolowski, D. J., et al., 2007. Dynamics and Structure of Hydration Water on Rutile and Cassiterite Nanopowders Studied by Quasielastic Neutron Scattering and Molecular Dynamics Simulations. The Journal of Physical Chemistry C, 111(11): 4328-4341. https://doi.org/10.1021/jp067242r |
Mamontov, E., Vlcek, L., Wesolowski, D. J., et al., 2009. Suppression of the Dynamic Transition in Surface Water at Low Hydration Levels: A Study of Water on Rutile. Physical Review E, 79(5): 051504. https://doi.org/10.1103/physreve.79.051504 doi: 10.1103/PhysRevE.79.051504 |
Mamontov, E., Wesolowski, D. J., Vlcek, L., et al., 2008. Dynamics of Hydration Water on Rutile Studied by Backscattering Neutron Spectroscopy and Molecular Dynamics Simulation. The Journal of Physical Chemistry C, 112(32): 12334-12341. https://doi.org/10.1021/jp711965x |
Middleton, M., Li, K., de Beer, F., 2005. Spontaneous Imbibition Studies of Australian Reservoir Rocks with Neutron Radiography. Paper Presented at the SPE Western Regional Meeting, Society of Petroleum Engineers, Irvine, California https://www.onepetro.org/conference-paper/SPE-93634-MS |
Murphy, W. M., Oelkers, E. H., Lichtner, P. C., 1989. Surface Reaction Versus Diffusion Control of Mineral Dissolution and Growth Rates in Geochemical Processes. Chemical Geology, 78(3/4): 357-380. https://doi.org/10.1016/0009-2541(89)90069-7 http://www.sciencedirect.com/science/article/pii/0009254189900697 |
Penny, G. S., Ripley, H. E., Conway, M. W., et al., 1984. The Control and Modelling of Fluid Leak-off during Hydraulic Fracturing. Annual Technical Meeting, Petroleum Society of Canada, Calgary, Alberta https://www.onepetro.org/conference-paper/PETSOC-84-35-28 |
Perfect, E., Cheng, C. L., Kang, M., et al., 2014. Neutron Imaging of Hydrogen-Rich Fluids in Geomaterials and Engineered Porous Media: A Review. Earth-Science Reviews, 129: 120-135. https://doi.org/10.1016/j.earscirev.2013.11.012 |
Pordel Shahri, M., Jamialahmadi, M., Shadizadeh, S. R., 2012. New Normalization Index for Spontaneous Imbibition. Journal of Petroleum Science and Engineering, 82/83: 130-139. https://doi.org/10.1016/j.petrol.2012.01.017 |
Rietveld, H. M., 1969. A Profile Refinement Method for Nuclear and Magnetic Structures. Journal of Applied Crystallography, 2(2): 65-71. https://doi.org/10.1107/s0021889869006558 doi: 10.1107/S0021889869006558 |
Rodríguez-Valverde, M. ., Tirado Miranda, M., 2010. Derivation of Jurin's Law Revisited. European Journal of Physics, 32(1): 49-54. https://doi.org/10.1088/0143-0807/32/1/005 http://eric.ed.gov/?id=EJ907127 |
Schneider, C. A., Rasband, W. S., Eliceiri, K. W., 2012. NIH Image to ImageJ: 25 Years of Image Analysis. Nature Methods, 9(7): 671-675. https://doi.org/10.1038/nmeth.2089 |
Standnes, D. C., 2010. Scaling Group for Spontaneous Imbibition Including Gravity. Energy & Fuels, 24(5): 2980-2984. https://doi.org/10.1021/ef901563p doi: 10.1021/ef901563p |
Swinehart, D. F., 1962. The Beer-Lambert Law. Journal of Chemical Education, 39(7): 333. https://doi.org/10.1021/ed039p333 |
Tokunaga, T. K., Wan, J., 2013. Capillary Pressure and Mineral Wettability Influences on Reservoir CO2 Capacity. Reviews in Mineralogy and Geochemistry, 77(1): 481-503. https://doi.org/10.2138/rmg.2013.77.14 |
U. S. Energy Information Administration (EIA), 2017. Drilling Productivity Report. For Key Tight Oil and Shale Gas Regions. [2017-9-8] (2017-4). https: //www. eia. gov/petroleum/drilling/archive/2017/04/#tabs-summary-2 |
Wan, J. M., Kim, Y., Tokunaga, T. K., 2014. Contact Angle Measurement Ambiguity in Supercritical CO2-Water-Mineral Systems: Mica as an Example. International Journal of Greenhouse Gas Control, 31: 128-137. https://doi.org/10.13039/100000015 doi: 10.1016/j.ijggc.2014.09.029 |
Washburn, E. W., 1921. The Dynamics of Capillary Flow. Physical Review, 17(3): 273-283. https://doi.org/10.1103/physrev.17.273 doi: 10.1103/PhysRev.17.273 |
Wenzel, R. N., 1936. Resistance of Solid Surfaces to Wetting by Water. Industrial & Engineering Chemistry, 28(8): 988-994. https://doi.org/10.1021/ie50320a024 doi: 10.1021/ie50320a024 |
Xiao, Y., Yang, F. Z., Pitchumani, R., 2006. A Generalized Analysis of Capillary Flows in Channels. Journal of Colloid and Interface Science, 298(2): 880-888. https://doi.org/10.1016/j.jcis.2006.01.005 |
Yang, D. Y., Gu, Y., Tontiwachwuthikul, P., 2008. Wettability Determination of the Reservoir Brine—Reservoir Rock System with Dissolution of CO2 at High Pressures and Elevated Temperatures. Energy & Fuels, 22(1): 504-509. https://doi.org/10.1021/ef700383x doi: 10.1021/ef700383x |