Abbaszadeh, M. , Kazemi Nia Korrani, A. , Lopez-Salinas, J. L. , et al. , 2014. Experimentally-Based Empirical Foam Modeling. In: SPE Improved Oil Recovery Symposium, Society of Petroleum Engineers, Tulsa, Oklahoma, USA https: //www. mendeley. com/research-papers/experimentallybased-empirical-foam-modeling/ |
Ahmed, S., Elraies, K. A., Tan, I. M., et al., 2017. Experimental Investigation of Associative Polymer Performance for CO2 Foam Enhanced Oil Recovery. Journal of Petroleum Science and Engineering, 157: 971-979. https://doi.org/10.13039/501100005710 |
Alquriaishi, A. A., Shokir, E. M. E. M., 2011. Experimental Investigation of Miscible CO2 Flooding. Petroleum Science and Technology, 29(19): 2005-2016. https://doi.org/10.1080/10916461003662976 |
Cao, R. Y., Yang, H. J., Sun, W., et al., 2015. A New Laboratory Study on Alternate Injection of High Strength Foam and Ultra-Low Interfacial Tension Foam to Enhance Oil Recovery. Journal of Petroleum Science and Engineering, 125: 75-89. https://doi.org/10.13039/501100001809 |
Cui, L. , 2014. Application of Foam for Mobility Control in Enhanced Oil Recovery (EOR) Process: [Dissertation]. Rice University, Huston https: //scholarship. rice. edu/handle/1911/76425 |
Du, D. X., Wang, D. X., Jia, N. H., et al., 2016. Experiments on CO2 Foam Seepage Characteristics in Porous Media. Petroleum Exploration and Development, 43(3): 499-505. https://doi.org/10.1016/s1876-3804(16)30058-1 |
Ettinger, R. A., Radke, C. J., 1992. Influence of Texture on Steady Foam Flow in Berea Sandstone. SPE Reservoir Engineering, 7(1): 83-90. https://doi.org/10.2118/19688-pa |
Falls, A. H., Musters, J. J., Ratulowski, J., 1989. The Apparent Viscosity of Foams in Homogeneous Bead Packs. SPE Reservoir Engineering, 4(2): 155-164. https://doi.org/10.2118/16048-pa |
Farajzadeh, R., Andrianov, A., Krastev, R., et al., 2012. Foam-Oil Interaction in Porous Media: Implications for Foam Assisted Enhanced Oil Recovery. Advances in Colloid and Interface Science, 183/184: 1-13. https://doi.org/10.1016/j.cis.2012.07.002 |
Farajzadeh, R., Lotfollahi, M., Eftekhari, A. A., et al., 2015. Effect of Permeability on Implicit-Texture Foam Model Parameters and the Limiting Capillary Pressure. Energy & Fuels, 29(5): 3011-3018. https://doi.org/10.13039/100004378 |
Foroozesh, J., Jamiolahmady, M., 2016. Simulation of Carbonated Water Injection Coreflood Experiments: An Insight into the Wettability Effect. Fuel, 184: 581-589. https://doi.org/10.1016/j.fuel.2016.07.051 |
Foroozesh, J., Jamiolahmady, M., Sohrabi, M., 2016. Mathematical Modeling of Carbonated Water Injection for EOR and CO2 Storage with a Focus on Mass Transfer Kinetics. Fuel, 174: 325-332. https://doi.org/10.13039/501100004225 |
Foroozesh, J. , Jamiolahmady, M. , Sohrabi, M. , et al. , 2014. Non-equilibrium Based Compositional Simulation of Carbonated Water Injection EOR Technique. In: ECMOR XIV-14th European Conference on the Mathematics of Oil Recovery, Catania, United Kingdom https: //researchportal. hw. ac. uk/en/publications/non-equilibrium-based-compositional-simulation-of-carbonated-wate |
Green, D. W. , Willhite, G. P. , 1998. Enhanced Oil Recovery. Henry L. Doherty Memorial Fund of AIME. Society of Petroleum Engineers, Richardson, TX |
Gu, M., Mohanty, K. K., 2015. Rheology of Polymer-Free Foam Fracturing Fluids. Journal of Petroleum Science and Engineering, 134: 87-96. https://doi.org/10.13039/501100004342 |
Herzhaft, B., 1999. Rheology of Aqueous Foams: A Literature Review of some Experimental Works. Oil & Gas Science and Technology, 54(5): 587-596. https://doi.org/10.2516/ogst:1999050 |
Jones, S. A., van der Bent, V., Farajzadeh, R., et al., 2016. Surfactant Screening for Foam EOR: Correlation between Bulk and Core-Flood Experiments. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 500: 166-176. https://doi.org/10.1016/j.colsurfa.2016.03.072 |
Kapetas, L., Vincent Bonnieu, S., Danelis, S., et al., 2016. Effect of Temperature on Foam Flow in Porous Media. Journal of Industrial and Engineering Chemistry, 36: 229-237. https://doi.org/10.1016/j.jiec.2016.02.001 |
Kuuskraa, V. A., Godec, M. L., Dipietro, P., 2013. CO2 Utilization from "Next Generation" CO2 Enhanced Oil Recovery Technology. Energy Procedia, 37: 6854-6866. https://doi.org/10.1016/j.egypro.2013.06.618 |
Lee, H. O., Heller, J. P., 1990. Laboratory Measurements of CO2-Foam Mobility. SPE Reservoir Engineering, 5(2): 193-197. https://doi.org/10.2118/17363-pa |
Li, R. F., Yan, W., Liu, S. H., et al., 2010. Foam Mobility Control for Surfactant Enhanced Oil Recovery. SPE Journal, 15(4): 928-942. https://doi.org/10.2118/113910-pa |
Llave, F. , Chung, F. -H. , Louvier, R. , et al. , 1990. Foams as Mobility Control Agents for Oil Recovery by Gas Displacement. In: SPE/DOE Enhanced Oil Recovery Symposium, Society of Petroleum Engineers https: //www. onepetro. org/conference-paper/SPE-20245-MS |
Ma, K. , 2013. Transport of Surfactant and Foam in Porous Media for Enhanced Oil Recovery Processes: [Dissertation]. Rice University, Huston https: //scholarship. rice. edu/handle/1911/71996 |
Ma, K., Ren, G. W., Mateen, K., et al., 2015. Modeling Techniques for Foam Flow in Porous Media. SPE Journal, 20(3): 453-470. https://doi.org/10.2118/169104-pa |
Marsden, S. , 1986. Foams in Porous Media. U. S. Department of Energy https: //www. osti. gov/scitech/biblio/5866567 |
Nguyen, Q. P. , Alexandrov, A. V. , Zitha, P. L. , et al. , 2000. Experimental and Modeling Studies on Foam in Porous Media: A Review. In: SPE International Symposium on Formation Damage Control, Society of Petroleum Engineers, Lafayette, Louisiana https: //www. onepetro. org/conference-paper/SPE-58799-MS |
Osei-Bonsu, K., Shokri, N., Grassia, P., 2015. Foam Stability in the Presence and Absence of Hydrocarbons: From Bubble-to Bulk-Scale. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 481: 514-526. https://doi.org/10.1016/j.colsurfa.2015.06.023 |
Osei-Bonsu, K., Shokri, N., Grassia, P., 2016. Fundamental Investigation of Foam Flow in a Liquid-Filled Hele-Shaw Cell. Journal of Colloid and Interface Science, 462: 288-296. https://doi.org/10.13039/100006770 |
Pramudita, R. A., Ryoo, W. S., 2016. Viscosity Measurements of CO2-In-Water Foam with Dodecyl Polypropoxy Sulfate Surfactants for Enhanced Oil Recovery Application. Korea-Australia Rheology Journal, 28(3): 237-241. https://doi.org/10.1007/s13367-016-0024-5 |
Qin, J. S., Han, H. S., Liu, X. L., 2015. Application and Enlightenment of Carbon Dioxide Flooding in the United States of America. Petroleum Exploration and Development, 42(2): 232-240. https://doi.org/10.1016/s1876-3804(15)30010-0 |
Simjoo, M., Rezaei, T., Andrianov, A., et al., 2013. Foam Stability in the Presence of Oil: Effect of Surfactant Concentration and Oil Type. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 438: 148-158. https://doi.org/10.1016/j.colsurfa.2013.05.062 |
Stevenson, P., 2012. Foam Engineering: Fundamentals and Applications. John Wiley & Sons, New Zealand |
Sun, X., Liang, X. B., Wang, S. Z., et al., 2014. Experimental Study on the Rheology of CO2 Viscoelastic Surfactant Foam Fracturing Fluid. Journal of Petroleum Science and Engineering, 119: 104-111. https://doi.org/10.1016/j.petrol.2014.04.017 |
Sun, Y. G., Qi, X. Q., Sun, H. Y., et al., 2016. Understanding about how Different Foaming Gases Effect the Interfacial Array Behaviors of Surfactants and the Foam Properties. Langmuir, 32(30): 7503-7511. https://doi.org/10.13039/501100002855 |
Vincent-Bonnieu, S. , Jones, S. , 2014. Comparative Study of Foam Stability in Bulk and Porous Media: [Dissertation]. Delft University of Technology, TU Delft https: //repository. tudelft. nl/islandora/object/uuid: 18f25d68-06f4-4a1d-9e93-ed89c1213416?collection=education |
Wang, G. F., Zheng, X. J., Zhang, Y., et al., 2015. A New Screening Method of Low Permeability Reservoirs Suitable for CO2 Flooding. Petroleum Exploration and Development, 42(3): 390-396. https://doi.org/10.1016/s1876-3804(15)30030-6 |
Wang, J., Liu, H. Q., Ning, Z. F., et al., 2012. Experimental Research and Quantitative Characterization of Nitrogen Foam Blocking Characteristics. Energy & Fuels, 26(8): 5152-5163. https://doi.org/10.1021/ef300939j |
Xiao, C. , Balasubramanian, S. N. , Clapp, L. W. , 2016. Rheology of Supercritical CO2 Foam Stabilized by Nanoparticles. In: SPE Improved Oil Recovery Conference, Society of Petroleum Engineers, Tulsa, Oklahoma https: //www. onepetro. org/conference-paper/SPE-179621-MS |
Xu, X., Saeedi, A., Liu, K., 2016. Laboratory Studies on CO2 Foam Flooding Enhanced by a Novel Amphiphilic Ter-Polymer. Journal of Petroleum Science and Engineering, 138: 153-159. https://doi.org/10.1016/j.petrol.2015.10.025 |
Yan, W., Miller, C. A., Hirasaki, G. J., 2006. Foam Sweep in Fractures for Enhanced Oil Recovery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 282/283: 348-359. https://doi.org/10.1016/j.colsurfa.2006.02.067 |
Zeng, Y. C., Ma, K., Farajzadeh, R., et al., 2016. Effect of Surfactant Partitioning between Gaseous Phase and Aqueous Phase on CO2 Foam Transport for Enhanced Oil Recovery. Transport in Porous Media, 114(3): 777-793. https://doi.org/10.1007/s11242-016-0743-6 |
Zhang, Z. , Freedman, V. L. , Zhong, L. , 2009. Foam Transport in Porous Media—A Review. Pacific Northwest National Laboratory, Washington https: //digital. library. unt. edu/ark: /67531/metadc841157/ |
Zhou, M., Wang, C. W., Xing, T. T., et al., 2015. Studies on Foam Flooding for Saline Reservoirs after Polymer Flooding. Journal of Petroleum Science and Engineering, 135: 410-420. https://doi.org/10.1016/j.petrol.2015.09.020 |