Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 29 Issue 6
Nov 2018
Turn off MathJax
Article Contents
Jonny Wu, John Suppe. Proto-South China Sea Plate Tectonics Using Subducted Slab Constraints from Tomography. Journal of Earth Science, 2018, 29(6): 1304-1318. doi: 10.1007/s12583-017-0813-x
Citation: Jonny Wu, John Suppe. Proto-South China Sea Plate Tectonics Using Subducted Slab Constraints from Tomography. Journal of Earth Science, 2018, 29(6): 1304-1318. doi: 10.1007/s12583-017-0813-x

Proto-South China Sea Plate Tectonics Using Subducted Slab Constraints from Tomography

doi: 10.1007/s12583-017-0813-x
More Information
  • Corresponding author: Jonny Wu
  • Received Date: 21 Apr 2017
  • Accepted Date: 15 Jul 2017
  • Publish Date: 01 Dec 2018
  • The past size and location of the hypothesized proto-South China Sea vanished ocean basin has important plate-tectonic implications for Southeast Asia since the Mesozoic. Here we present new details on proto-South China Sea paleogeography using mapped and unfolded slabs from tomogra-phy. Mapped slabs included:the Eurasia-South China Sea slab subducting at the Manila trench; the northern Philippine Sea Plate slab subducting at the Ryukyu trench; and, a swath of detached, sub-horizontal, slab-like tomographic anomalies directly under the South China Sea at 450 to 700 km depths that we show is subducted 'northern proto-South China Sea' lithosphere. Slab unfolding revealed that the South China Sea lay directly above the 'northern Proto-South China Sea' with both extending 400 to 500 km to the east of the present Manila trench prior to subduction. Our slab-based plate reconstruction indicated the proto-South China Sea was consumed by double-sided subduction, as follows:(1) The 'northern proto-South China Sea' subducted in the Oligo-Miocene under the Dangerous Grounds and southward expanding South China Sea by in-place 'self subduction' similar to the western Mediterranean basins; (2) limited southward subduction of the proto-South China Sea under Borneo occurred pre-Oligocene, represented by the 800-900 km deep 'southern proto-South China Sea' slab.

     

  • loading
  • Bai, Y. L., Wu, S. G., Liu, Z., et al., 2015. Full-Fit Reconstruction of the South China Sea Conjugate Margins. Tectonophysics, 661: 121–135. https://doi.org/10.1016/j.tecto.2015.08.028
    Barckhausen, U., Engels, M., Franke, D., et al., 2014. Evolution of the South China Sea: Revised Ages for Breakup and Seafloor Spreading. Marine and Petroleum Geology, 58: 599–611. https://doi.org/10.1016/j.marpetgeo.2014.02.022
    Bezada, M. J., Humphreys, E. D., Toomey, D. R., et al., 2013. Evidence for Slab Rollback in Westernmost Mediterranean from Improved Upper Mantle Imaging. Earth and Planetary Science Letters, 368: 51–60. https://doi.org/10.1016/j.epsl.2013.02.024
    Boyden, J. A., Müller, R. D., Gurnis, M., et al., 2011. Next-Generation Plate-Tectonic Reconstructions Using GPlates. In: Keller, G. R., Baru, C., eds. Geoinformatics: Cyber Infrastructure for the Solid Earth Sciences. Cambridge University Press, Cambridge. 95–113
    Briais, A., Patriat, P., Tapponnier, P., 1993. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4): 6299–6328. https://doi.org/10.1029/92jb02280
    Cullen, A. B., 2010. Transverse Segmentation of the Baram-Balabac Basin, NW Borneo: Refining the Model of Borneo's Tectonic Evolution. Petroleum Geoscience, 16(1): 3–29. https://doi.org/10.1144/1354-079309-828
    Cullen, A. B., Zechmeister, M. S., Elmore, R. D., et al., 2012. Paleomagnetism of the Crocker Formation, Northwest Borneo: Implications for Late Cenozoic Tectonics. Geosphere, 8(5): 1146–1169. https://doi.org/10.1130/ges00750.1
    Domeier, M., Doubrovine, P. V., Torsvik, T. H., et al., 2016. Global Correlation of Lower Mantle Structure and Past Subduction. Geophysical Research Letters, 43(10): 4945–4953. https://doi.org/10.1002/2016gl068827
    Dziewonski, A. M., Anderson, D. L., 1981. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25(4): 297–356. https://doi.org/10.1016/0031-9201(81)90046-7
    Engdahl, E. R., van der Hilst, R., Buland, R., 1998. Global Teleseismic Earthquake Relocation with Improved Travel Times and Procedures for Depth Determination. Bulletin of the Seismological Society of America, 88(3): 722–743 http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=88/3/722
    Engdahl, E. R., Villaseñor, A., 2002. Global Seismicity: 1900–1999. In: Lee, W. H. K., Kanamori, H., Jennings, P. C., et al., eds., International Handbook of Earthquake and Engineering Seismology, Part A. Academic Press, Cambridge. 665–690
    Faccenna, C., Becker, T. W., Auer, L., et al., 2014. Mantle Dynamics in the Mediterranean. Reviews of Geophysics, 52(3): 283–332. https://doi.org/10.1002/2013rg000444
    Fan, J. K., Zhao, D. P., Dong, D. D., et al., 2017. P-Wave Tomography of Subduction Zones around the Central Philippines and Its Geodynamic Implications. Journal of Asian Earth Sciences, 146: 76–89. https://doi.org/10.1016/j.jseaes.2017.05.015
    Franke, D., Barckhausen, U., Heyde, I., et al., 2008. Seismic Images of a Collision Zone Offshore NW Sabah/Borneo. Marine and Petroleum Geology, 25(7): 606–624. https://doi.org/10.1016/j.marpetgeo.2007.11.004
    Fukao, Y., Obayashi, M., Inoue, H., et al., 1992. Subducting Slabs Stagnant in the Mantle Transition Zone. Journal of Geophysical Research: Solid Earth, 97(B4): 4809–4822. https://doi.org/10.1029/91jb02749
    Fuller, M., Ali, J. R., Moss, S. J., et al., 1999. Paleomagnetism of Borneo. Journal of Asian Earth Sciences, 17(1/2): 3–24. https://doi.org/10.1016/s0743-9547(98)00057-9
    Goes, S., Agrusta, R., van Hunen, J., et al., 2017. Subduction-Transition Zone Interaction: A Review. Geosphere, 13(3): 644–664. https://doi.org/10.1130/ges01476.1
    Hafkenscheid, E., Wortel, M. J. R., Spakman, W., 2006. Subduction History of the Tethyan Region Derived from Seismic Tomography and Tectonic Reconstructions. Journal of Geophysical Research: Solid Earth, 111(B8): B08401. https://doi.org/10.1029/2005jb003791
    Hall, R., 2002. Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pacific: Computer-Based Reconstructions, Model and Animations. Journal of Asian Earth Sciences, 20(4): 353–431. https://doi.org/10.1016/s1367-9120(01)00069-4
    Hall, R., 2012. Late Jurassic–Cenozoic Reconstructions of the Indonesian Region and the Indian Ocean. Tectonophysics, 570/571: 1–41. https://doi.org/10.1016/j.tecto.2012.04.021
    Hall, R., Spakman, W., 2015. Mantle Structure and Tectonic History of SE Asia. Tectonophysics, 658: 14–45. https://doi.org/10.1016/j.tecto.2015.07.003
    Hinz, K., Fritsch, J., Kempter, E. H. K., et al., 1989. Thrust Tectonics along the North-Western Continental Margin of Sabah/Borneo. Geologische Rundschau, 78(3): 705–730. https://doi.org/10.1007/bf01829317
    Holloway, N. H., 1982. North Palawan Block, Philippines—Its Relation to Asian Mainland and Role in Evolution of South China Sea. AAPG Bulletin, 66(9): 1355. https://doi.org/10.1306/03b5a7a5-16d1-11d7-8645000102c1865d
    Huang, Z. C., Zhao, D. P., Wang, L., 2015. P Wave Tomography and Anisotropy beneath Southeast Asia: Insight into Mantle Dynamics. Journal of Geophysical Research: Solid Earth, 120(7): 5154–5174. https://doi.org/10.1002/2015jb012098
    Hutchison, C. S., Bergman, S. C., Swauger, D. A., et al., 2000. A Miocene Collisional Belt in North Borneo: Uplift Mechanism and Isostatic Adjustment Quantified by Thermochronology. Journal of the Geological Society, 157(4): 783–793. https://doi.org/10.1144/jgs.157.4.783
    Hutchison, C. S., 2010. Oroclines and Paleomagnetism in Borneo and South-East Asia. Tectonophysics, 496(1/2/3/4): 53–67. https://doi.org/10.1016/j.tecto.2010.10.008
    Hutchison, C. S., 1996. The 'Rajang Accretionary Prism' and 'Lupar Line' Problem of Borneo. Geological Society, London, Special Publications, 106(1): 247–261. https://doi.org/10.1144/gsl.sp.1996.106.01.16
    Koulakov, I., 2011. High-Frequency P and S Velocity Anomalies in the Upper Mantle beneath Asia from Inversion of Worldwide Traveltime Data. Journal of Geophysical Research: Solid Earth, 116(B4): B04301. https://doi.org/10.1029/2010jb007938
    Legendre, C. P., Zhao, L., Chen, Q. F., 2015. Upper-Mantle Shear-Wave Structure under East and Southeast Asia from Automated Multimode Inversion of Waveforms. Geophysical Journal International, 203(1): 707–719. https://doi.org/10.1093/gji/ggv322
    Li, C., van der Hilst, R. D., Engdahl, E. R., et al., 2008. A New Global Model for P Wave Speed Variations in Earth's Mantle. Geochemistry, Geophysics, Geosystems, 9(5): Q05018. https://doi.org/10.1029/2007gc001806
    Li, C., van der Hilst, R. D., 2010. Structure of the Upper Mantle and Transition Zone beneath Southeast Asia from Traveltime Tomography. Journal of Geophysical Research: Solid Earth, 115(B7): B07308. https://doi.org/10.1029/2009jb006882
    Li, C.-F., Xu, X., Lin, J., et al., 2014. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12): 4958–4983. https://doi.org/10.1002/2014gc005567
    Lister, G. S., White, L. T., Hart, S., et al., 2012. Ripping and Tearing the Rolling-Back New Hebrides Slab. Australian Journal of Earth Sciences, 59(6): 899–911. https://doi.org/10.1080/08120099.2012.686454
    Lu, R.-Q., Suppe, J., He, D.-F., et al., 2013. Deep Subducting Slab Reconstruction and Its Geometry, Kinematics: A Case Study for the Tonga-Kermadec Slab from Tomography. Chinese Journal Geophysics, 56(11): 3837–3845 http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201311025.htm
    Obayashi, M., Yoshimitsu, J., Nolet, G., et al., 2013. Finite Frequency Whole Mantle P Wave Tomography: Improvement of Subducted Slab Images. Geophysical Research Letters, 40(21): 5652–5657. https://doi.org/10.1002/2013gl057401
    Pubellier, M., Morley, C. K., 2014. The Basins of Sundaland (SE Asia): Evolution and Boundary Conditions. Marine and Petroleum Geology, 58: 555–578. https://doi.org/10.1016/j.marpetgeo.2013.11.019
    Rangin, C., Spakman, W., Pubellier, M., et al., 1999. Tomographic and Geological Constraints on Subduction along the Eastern Sundaland Continental Margin (South-East Asia). Bulletin de la Societe Geologique de France, 170(6): 775–788 http://cn.bing.com/academic/profile?id=71759e5b4374c3ea1db043637eb97038&encoded=0&v=paper_preview&mkt=zh-cn
    Rawlinson, N., Fichtner, A., Sambridge, M., et al., 2014. Chapter One—Seismic Tomography and the Assessment of Uncertainty. In: Renata, D., ed., Advances in Geophysics. Elsevier, 55: 1–76. http://www.sciencedirect.com/science/article/pii/S0065268714000028
    Replumaz, A., Tapponnier, P., 2003. Reconstruction of the Deformed Collision Zone between India and Asia by Backward Motion of Lithospheric Blocks. Journal of Geophysical Research: Solid Earth, 108(B6): 2285. https://doi.org/10.1029/2001jb000661
    Schlüter, H. U., Hinz, K., Block, M., 1996. Tectono-Stratigraphic Terranes and Detachment Faulting of the South China Sea and Sulu Sea. Marine Geology, 130(1/2): 39–78. https://doi.org/10.1016/0025-3227(95)00137-9
    Seton, M., Müller, R. D., Zahirovic, S., et al., 2012. Global Continental and Ocean Basin Reconstructions since 200 Ma. Earth-Science Reviews, 113(3/4): 212–270. https://doi.org/10.1016/j.earscirev.2012.03.002
    Sibuet, J.-C., Yeh, Y.-C., Lee, C.-S., 2016. Geodynamics of the South China Sea. Tectonophysics, 692: 98–119. https://doi.org/10.1016/j.tecto.2016.02.022
    Sigloch, K., Mihalynuk, M. G., 2013. Intra-Oceanic Subduction Shaped the Assembly of Cordilleran North America. Nature, 496(7443): 50–56. https://doi.org/10.1038/nature12019
    Spakman, W., Wortel, M. J. R., 2004. Tomographic View on Western Mediterranean Geodynamics. In: Cavazza, W., Roure, F. M., Spakman, W., et al., eds., The TRANSMED Atlas, The Mediterranean Region from Crust to Mantle. Springer-Verlag, Heidelberg. 31–52
    Sun, W., Lin, C.-T., Zhang, C.-C., et al., 2016. Initiation and Evolution of the South China Sea: An Overview. Acta Geochimica, 35(3): 215–225 doi: 10.1007/s11631-016-0110-x
    Tan, E., Gurnis, M., Han, L. J., 2002. Slabs in the Lower Mantle and Their Modulation of Plume Formation. Geochemistry, Geophysics, Geosystems, 3(11): 1–24. https://doi.org/10.1029/2001gc000238
    Taylor, B., Hayes, D. E., 1983. Origin and History of the South China Sea Basin. In: Hayes, D. E., ed., The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2. American Geophysical Union, Washington D.C. Geophysical Monographs Series, 27: 23–56
    Torsvik, T. H., Müller, R. D., Van der Voo, R., et al., 2008. Global Plate Motion Frames: Toward a Unified Model. Reviews of Geophysics, 46(3): 44. https://doi.org/10.1029/2007rg000227
    van der Meer, D. G., Spakman, W., van Hinsbergen, D. J. J., et al., 2009. Towards Absolute Plate Motions Constrained by Lower-Mantle Slab Remnants. Nature Geoscience, 3(1): 36–40. https://doi.org/10.1038/ngeo708
    van der Meer, D. G., van Hinsbergen, D. J. J., Spakman, W., 2017. Atlas of the Underworld: Slab Remnants in the Mantle, Their Sinking History, and a New Outlook on Lower Mantle Viscosity. Tectonophysics. https://doi.org/10.1016/j.tecto.2017.10.004
    von Hagke, C., Philippon, M., Avouac, J.-P., et al., 2016. Origin and Time Evolution of Subduction Polarity Reversal from Plate Kinematics of Southeast Asia. Geology, 44(8): 659–662. https://doi.org/10.1130/g37821.1
    Wu, J., Suppe, J., Lu, R. Q., et al., 2016. Philippine Sea and East Asian Plate Tectonics since 52 Ma Constrained by New Subducted Slab Reconstruction Methods. Journal of Geophysical Research: Solid Earth, 121(6): 4670–4741. https://doi.org/10.1002/2016jb012923
    Yan, P., Liu, H. L., 2004. Tectonic-Stratigraphic Division and Blind Fold Structures in Nansha Waters, South China Sea. Journal of Asian Earth Sciences, 24(3): 337–348. https://doi.org/10.1016/j.jseaes.2003.12.005
    Zahirovic, S., Seton, M., Müller, R. D., 2014. The Cretaceous and Cenozoic Tectonic Evolution of Southeast Asia. Solid Earth, 5(1): 227–273. https://doi.org/10.5194/se-5-227-2014
    Zahirovic, S., Müller, R. D., Seton, M., et al., 2015. Tectonic Speed Limits from Plate Kinematic Reconstructions. Earth and Planetary Science Letters, 418: 40–52. https://doi.org/10.1016/j.epsl.2015.02.037
    Zahirovic, S., Matthews, K. J., Flament, N., et al., 2016. Tectonic Evolution and Deep Mantle Structure of the Eastern Tethys since the Latest Jurassic. Earth-Science Reviews, 162: 293–337. https://doi.org/10.1016/j.earscirev.2016.09.005
    Zhao, D. P., 2015. The 2011 Tohoku Earthquake (Mw 9.0) Sequence and Subduction Dynamics in Western Pacific and East Asia. Journal of Asian Earth Sciences, 98: 26–49. https://doi.org/10.1016/j.jseaes.2014.10.022
    Zhou, D., Ru, K., Chen, H.-Z., 1995. Kinematics of Cenozoic Extension on the South China Sea Continental Margin and Its Implications for the Tectonic Evolution of the Region. Tectonophysics, 251(1/2/3/4): 161–177. https://doi.org/10.1016/0040-1951(95)00018-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views(1178) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return