Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 29 Issue 6
Nov 2018
Turn off MathJax
Article Contents
Teodolina Lopez, Raphaël Antoine, José Darrozes, Michel Rabinowicz, David Baratoux. Development and Evolution of the Size of Polygonal Fracture Systems during Fluid-Solid Separation in Clay-Rich Deposits. Journal of Earth Science, 2018, 29(6): 1319-1334. doi: 10.1007/s12583-017-0814-9
Citation: Teodolina Lopez, Raphaël Antoine, José Darrozes, Michel Rabinowicz, David Baratoux. Development and Evolution of the Size of Polygonal Fracture Systems during Fluid-Solid Separation in Clay-Rich Deposits. Journal of Earth Science, 2018, 29(6): 1319-1334. doi: 10.1007/s12583-017-0814-9

Development and Evolution of the Size of Polygonal Fracture Systems during Fluid-Solid Separation in Clay-Rich Deposits

doi: 10.1007/s12583-017-0814-9
More Information
  • Corresponding author: Teodolina Lopez
  • Received Date: 10 Nov 2016
  • Accepted Date: 27 Mar 2017
  • Publish Date: 01 Dec 2018
  • In continental and oceanic conditions, clay-rich deposits are characterised by the development of polygonal fracture systems (PFS). PFS can increase the vertical permeability of clay-rich deposits (mean permeability ≤ 10-16 m2) and are pathways for fluids. On continents, the width of PFS ranges from centimeters to hundreds of meters, while in oceanic contexts they are up to a few kilometers large. These structures are linked to water-solid separation during deposition, consolidation and complete fluid squeeze of the clay horizon. During the last few decades, modeling of melt migration in partially molten plastic rocks led to rigorous quantifications of two-phase flows with a particular emphasis on 2D and 3D induced flow structures. The numerical modeling shows that the melt migrates on distances almost equal to a few times the compaction length L that depends on permeability and viscosity. Consequently, polygonal structures in partially molten plastic rocks are resulted from the melt-rock separation and their sizes are proportional to L. Applying these results to fluid-solid separation in clay-rich horizons, we show that (1) centimetric to kilometric PFS are resulted from the dramatic increase of L during compaction and (2), this process involves agglomerates with 100 μm to 1 mm size.

     

  • loading
  • Alba-Simionesco, C., Coasne, B., Dosseh, G., et al., 2006. Effects of Confinement on Freezing and Melting. Journal of Physics: Condensed Matter, 18(6): R15–R68. https://doi.org/10.1088/0953-8984/18/6/r01
    Alsharhan, A. S., Kendall, C. G. S. C., 2003. Holocene Coastal Carbonates and Evaporites of the Southern Arabian Gulf and their Ancient Analogues. Earth-Science Reviews, 61(3/4): 191–243. https://doi.org/10.1016/s0012-8252(02)00110-1
    Andresen, K. J., Huuse, M., 2011. 'Bulls-Eye' Pockmarks and Polygonal Faulting in the Lower Congo Basin: Relative Timing and Implications for Fluid Expulsion during Shallow Burial. Marine Geology, 279(1/2/3/4): 111–127. https://doi.org/10.1016/j.margeo.2010.10.016
    Baer, J. U., Kent, T. F., Anderson, S. H., 2009. Image Analysis and Fractal Geometry to Characterize Soil Desiccation Cracks. Geoderma, 154(1/2): 153–163. https://doi.org/10.1016/j.geoderma.2009.10.008
    Bercovici, D., Ricard, Y., Schubert, G., 2001. A Two-Phase Model for Compaction and Damage: 1. General Theory. Journal of Geophysical Research: Solid Earth, 106(B5): 8887–8906. https://doi.org/10.1029/2000jb900430
    Bernaud, D., Dormieux, L., Maghous, S., 2006. A Constitutive and Numerical Model for Mechanical Compaction in Sedimentary Basins. Computers and Geotechnics, 33(6/7): 316–329. https://doi.org/10.1016/j.compgeo.2006.05.004
    Bishop, A. W., Green, G. E., Garga, V. K., et al., 1971. A New Ring Shear Apparatus and Its Application to the Measurement of Residual Strength. Géotechnique, 21(4): 273–328. https://doi.org/10.1680/geot.1971.21.4.273
    Brinker, C. J., Schere, G. W., 1990. Sol-Gel Science: The Physic and Chemistry of Gel Processing. Academic Press, San Diego
    Buessem, W. R., Nagy, B., 1954. The Mechanism of the Deformation of Clay. Clays and Clay Minerals, 2(1): 480–491. https://doi.org/10.1346/ccmn.1953.0020138
    Carman, P. C., 1961. L'écoulement des Gaz à Travers les Milieux Poreux. Press Univ. de Fr., Paris
    Cartwright, J. A., 1994. Episodic Basin-Wide Hydrofracturing of Overpressured Early Cenozoic Mudrock Sequences in the North Sea Basin. Marine and Petroleum Geology, 11(5): 587–607. https://doi.org/10.1016/0264-8172(94)90070-1
    Cartwright, J. A., Lonergan, L., 1996. Volumetric Contraction during the Compaction of Mudrocks: A Mechanism for the Development of Regional-Scale Polygonal Fault Systems. Basin Research, 8(2): 183–193. https://doi.org/10.1046/j.1365-2117.1996.01536.x
    Cartwright, J. A., Dewhurst, D. N., 1998. Layer-Bound Compaction Faults in Fine-Grained Sediments. Geological Society of America Bulletin, 110(10): 1242–1257. https://doi.org/10.1130/0016-7606(1998)110<1242:lbcfif>2.3.co;2 doi: 10.1130/0016-7606(1998)110<1242:lbcfif>2.3.co;2
    Cartwright, J., James, D., Bolton, A., 2003. The Genesis of Polygonal Fault Systems: A Review. Geological Society, London, Special Publications, 216(1): 223–243. https://doi.org/10.1144/gsl.sp.2003.216.01.15
    Casagrande, A., 1932. The Structure of Clay and Its Importance in the Foundation Engineering. J. Boston Soc. Civil Eng., 19: 168
    Christidis, G. E., Dellisanti, F., Valdre, G., et al., 2005. Structural Modifications of Smectites Mechanically Deformed under Controlled Conditions. Clay Minerals, 40(4): 511–522. https://doi.org/10.1180/0009855054040188
    Connolly, J. A. D., Podladchikov, Y. Y., 2000. Temperature-Dependent Viscoelastic Compaction and Compartmentalization in Sedimentary Basins. Tectonophysics, 324(3): 137–168. https://doi.org/10.1016/s0040-1951(00)00084-6
    Connolly, J. A. D., Podladchikov, Y. Y., 2013. A Hydromechanical Model for Lower Crustal Fluid Flow. In: Metasomatism and the Chemical Transformation of Rock. Springer Berlin Heidelberg, Berlin, Heidelberg. 599–658 doi: 10.1007/978-3-642-28394-9_14
    Connolly, J. A. D., Podladchikov, Y. Y., 2014. An Analytical Solution for Solitary Porosity Waves: Dynamic Permeability and Fluidization of Nonlinear Viscous and Viscoplastic Rock. Geofluids, 15(1/2): 269–292. https://doi.org/10.1111/gfl.12110
    Davies, R., Cartwright, J., Rana, J., 1999. Giant Hummocks in Deep-Water Marine Sediments: Evidence for Large-Scale Differential Compaction and Density Inversion during Early Burial. Geology, 27(10): 907. https://doi.org/10.1130/0091-7613(1999)027<0907:ghidwm>2.3.co;2 doi: 10.1130/0091-7613(1999)027<0907:ghidwm>2.3.co;2
    Davies, R. J., Ireland, M. T., Cartwright, J. A., 2009. Differential Compaction due to the Irregular Topology of a Diagenetic Reaction Boundary: A New Mechanism for the Formation of Polygonal Faults. Basin Research, 21(3): 354–359. https://doi.org/10.1111/j.1365-2117.2008.00389.x
    Davies, R. J., Ireland, M. T., 2011. Initiation and Propagation of Polygonal Fault Arrays by Thermally Triggered Volume Reduction Reactions in Siliceous Sediment. Marine Geology, 289(1/2/3/4): 150–158. https://doi.org/10.1016/j.margeo.2011.05.005
    Dewhurst, D. N., Cartwright, J. A., Lonergan, L., 1999. The Development of Polygonal Fault Systems by Syneresis of Colloidal Sediments. Marine and Petroleum Geology, 16(8): 793–810. https://doi.org/10.1016/s0264-8172(99)00035-5
    De Paola, N., Collettini, C., Trippetta, F., et al., 2007. A Mechanical Model for Complex Fault Patterns Induced by Evaporite Dehydration and Cyclic Changes in Fluid Pressure. Journal of Structural Geology, 29(10): 1573–1584. https://doi.org/10.1016/j.jsg.2007.07.015
    Engelhardt, W. V., Gaida, K. H., 1963. Concentration Changes of Pore Solutions during Compaction of Clay Sediments. Journal of Sedimentary Research, 33(4): 919–930. https://doi.org/10.1306/74d70f74-2b21-11d7-8648000102c1865d
    Fowler, A. C., 1984. On the Transport of Moisture in Polythermal Glaciers. Geophysical & Astrophysical Fluid Dynamics, 28(2): 99–140. https://doi.org/10.1080/03091928408222846
    Gardien, V., Rabinowicz, M., Vigneresse, J. L., et al., 2016. Long-Lived Interaction between Hydrothermal and Magmatic Fluids in the Soultz-Sous-Forêts Granitic System (Rhine Graben, France). Lithos, 246/247: 110–127. https://doi.org/10.1016/j.lithos.2015.12.002
    Gay, A., Lopez, M., Cochonat, P., et al., 2004. Polygonal Faults-Furrows System Related to Early Stages of Compaction—Upper Miocene to Recent Sediments of the Lower Congo Basin. Basin Research, 16(1): 101–116. https://doi.org/10.1111/j.1365-2117.2003.00224.x
    Goulty, N. R., 2001. Polygonal Fault Networks in Fine-Grained Sediments—An Alternative to the Syneresis Mechanism. First Break, 19(2): 69–73. https://doi.org/10.1046/j.1365-2397.2001.00137.x
    Goulty, N. R., 2002. Mechanics of Layer-Bound Polygonal Faulting in Fine-Grained Sediments. Journal of the Geological Society, 159(3): 239–246. https://doi.org/10.1144/0016-764901-111
    Goulty, N. R., 2008. Geomechanics of Polygonal Fault Systems: A Review. Petroleum Geoscience, 14(4): 389–397. https://doi.org/10.1144/1354-079308-781
    Grégoire, M., Rabinowicz, M., Janse, A. J. A., 2006. Mantle Mush Compaction: A Key to Understand the Mechanisms of Concentration of Kimberlite Melts and Initiation of Swarms of Kimberlite Dykes. Journal of Petrology, 47(3): 631–646. https://doi.org/10.1093/petrology/egi090
    Haberlah, D., McTainsh, G. H., 2011. Quantifying Particle Aggregation in Sediments. Sedimentology, 58(5): 1208–1216. https://doi.org/10.1111/j.1365-3091.2010.01201.x
    Hamaker, H. C., 1937. The London—van Der Waals Attraction between Spherical Particles. Physica, 4(10): 1058–1072. https://doi.org/10.1016/s0031-8914(37)80203-7
    Hansen, D. M., Shimeld, J. W., Williamson, M. A., et al., 2004. Development of a Major Polygonal Fault System in Upper Cretaceous Chalk and Cenozoic Mudrocks of the Sable Subbasin, Canadian Atlantic Margin. Marine and Petroleum Geology, 21(9): 1205–1219. https://doi.org/10.1016/j.marpetgeo.2004.07.004
    Harris, R. C., 2004. Giant Desiccation Cracks in Arizona. Arizona Geological Survey, Arizona. Open-File Report 04-01. 1–93
    Henriet, J., De Batist, M., Van Vaerenbergh, W., et al., 1991. Seismic Facies and Clay Tectonic Features of the Ypresian Clay in the Southern North Sea. In: Proc. of the 'Intern. Symposium on the Ypresian Stage'. Bull. Belg. Ver. Geol., 97(3/4): 457–472 http://www.vliz.be/nl/imis?refid=199396
    Hibsch, C., Cartwright, J., Hansen, D. M., et al., 2003. Normal Faulting in Chalk: Tectonic Stresses vs. Compaction-related polygonal faulting. In: Van Rensbergen, P., Hillis, R. R., Maltman, A. J., et al., eds., Subsurface Sediment Mobilization. Geol. Soc. Spec. Publ., 216: 291–308 http://adsabs.harvard.edu/abs/2003GSLSP.216..291H
    Higgs, W. G., McClay, K. R., 1993. Analogue Sandbox Modelling of Miocene Extensional Faulting in the Outer Moray Firth. Geological Society, London, Special Publications, 71(1): 141–162. https://doi.org/10.1144/gsl.sp.1993.071.01.07
    Holdich, R. G., 2002. Fundamental of Particle Technology. Chap. 13 Collo ds and Agglomeration. Midland Information Technology and Publishing, Shepshed, Leicestershire
    Hooker, M. L., Herron, G. M., Penas, P., 1982. Effects of Residue Burning, Removal, and Incorporation on Irrigated Cereal Crop Yields and Soil Chemical Properties1. Soil Science Society of America Journal, 46(1): 122. https://doi.org/10.2136/sssaj1982.03615995004600010023x
    Hustoft, S., Mienert, J., Bünz, S., et al., 2007. High-Resolution 3D-Seismic Data Indicate Focussed Fluid Migration Pathways above Polygonal Fault Systems of the Mid-Norwegian Margin. Marine Geology, 245(1/2/3/4): 89–106. https://doi.org/10.1016/j.margeo.2007.07.004
    Kaila, A., 1952. Observations on the Effect of Nitrogen and Phosphorus upon the Humification of Straw. Acta Agralia Fennica, 78(2): 1–27
    Karig, D. E., Hou, G., 1992. High-Stress Consolidation Experiments and Their Geologic Implications. Journal of Geophysical Research, 97(B1): 289. https://doi.org/10.1029/91jb02247
    Kocurek, G., Hunter, R. E. 1986. Origin of Polygonal Fractures in Sand, Uppermost Navajo and Page Sandstones, Page, Arizona. SEPM Journal of Sedimentary Research, 56(6): 895–904. https://doi.org/10.1306/212f8a7b-2b24-11d7-8648000102c1865d
    Kopf, A., Behrmann, J. H., 2000. Extrusion Dynamics of Mud Volcanoes on the Mediterranean Ridge Accretionary Complex. In: Vendeville, B., Mart, Y., Vigneresse, J.-L., eds., From the Arctic to the Mediterranean: Salt, Shale, and Igneous Diapirs in and Around Europe. Geol. Soc. Spec. Publ., 174: 169–204 http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2000GSLSP.174..169K&db_key=PHY&link_type=ABSTRACT
    Kopf, A. J., 2002. Significance of Mud Volcanism. Reviews of Geophysics, 40(2). https://doi.org/10.1029/2000rg000093
    Kopf, A. J., Clennell, M. B., Brown, K. M., 2005. Physical Properties of Muds Extruded from Mud Volcanoes: Implications for Episodicity of Eruptions and Relationship to Seismicity. In: Martinelli, G., Panahi, B., eds., Mud Volcanoes, Geodynamics and Seismicity. 263–283 doi: 10.1007/1-4020-3204-8_24
    Lee-Desautel, R., 2005. Theory of van der Waals Forces as Applied to Particlate Materials. Educ. Reso. for Part. Techn.
    Li, H. P., Zhu, Y. L., Zhang, J. B., et al., 2004. Effects of Temperature, Strain Rate and Dry Density on Compressive Strength of Saturated Frozen Clay. Cold Regions Science and Technology, 39(1): 39–45. https://doi.org/10.1016/j.coldregions.2004.01.001
    Li, J. H., Zhang, L. M., 2011. Study of Desiccation Crack Initiation and Development at Ground Surface. Engineering Geology, 123(4): 347–358. https://doi.org/10.1016/j.enggeo.2011.09.015
    Li, X. J., Wang, P. X., Xu, C. Z., et al., 2008. Clay Minerals Distribution in Surface Sediments in Western South China Sea and Provenance. Marine Geol. Quatern. Geol., 28: 9–16 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz200801002
    Lifshitz, E. M., 1956. The Theory of Molecular Attractive Force Between Solids. Soviet Physics, 2(1): 73 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=482af8614c4511ed9d6f0f6193de68a5
    Lonergan, L., Cartwright, J., Jolly, R., 1998. The Geometry of Polygonal Fault Systems in Tertiary Mudrocks of the North Sea. Journal of Structural Geology, 20(5): 529–548. https://doi.org/10.1016/s0191-8141(97)00113-2
    Lowenstein, T. K., Hardie, L. A., 1985. Criteria for the Recognition of Salt-Pan Evaporites. Sedimentology, 32(5): 627–644. https://doi.org/10.1111/j.1365-3091.1985.tb00478.x
    Luo, X. R., Vasseur, G., 2002. Natural Hydraulic Cracking: Numerical Model and Sensitivity Study. Earth and Planetary Science Letters, 201(2): 431–446. https://doi.org/10.1016/s0012-821x(02)00711-2
    Lynch, J. M., Elliott, L. F., 1983. Aggregate Stabilization of Volcanic Ash and Soil during Microbial Degradation of Straw. Appl. Environ. Microbiol., 45(4): 1398–1401 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=PubMed000001966513
    Mangold, N., Allemand, P., Duval, P., et al., 2002. Experimental and Theoretical Deformation of Ice-Rock Mixtures: Implications on Rheology and Ice Content of Martian Permafrost. Planetary and Space Science, 50(4): 385–401. https://doi.org/10.1016/s0032-0633(02)00005-3
    Martin, J. P., 1942. The Effect of Composts and Compost Materials Upon the Aggregation of the Silt and Clay Particles of Collington Sandy Loam. Soil Science Society of America Journal, 7: 218–222. https://doi.org/10.2136/sssaj1943.036159950007000c0033x
    McKenzie, D., 1984. The Generation and Compaction of Partially Molten Rock. Journal of Petrology, 25(3): 713–765. https://doi.org/10.1093/petrology/25.3.713
    McGeary, R. K., 1961. Mechanical Packing of Spherical Particles. Journal of the American Ceramic Society, 44(10): 513–522. https://doi.org/10.1111/j.1151-2916.1961.tb13716.x
    Mondol, N. H., Bjørlykke, K., Jahren, J., et al., 2007. Experimental Mechanical Compaction of Clay Mineral Aggregates—Changes in Physical Properties of Mudstones during Burial. Marine and Petroleum Geology, 24(5): 289–311. https://doi.org/10.1016/j.marpetgeo.2007.03.006
    Moses, G. G., Rao, S. N., Rao, P. N., 2003. Undrained Strength Behaviour of a Cemented Marine Clay under Monotonic and Cyclic Loading. Ocean Engineering, 30(14): 1765–1789. https://doi.org/10.1016/s0029-8018(03)00018-0
    Murray, H. H., 1991. Overview—Clay Mineral Applications. Applied Clay Science, 5(5/6): 379–395. https://doi.org/10.1016/0169-1317(91)90014-z
    Neal, J. T., Langer, A. M., Kerr, P. F., 1968. Giant Desiccation Polygons of Great Basin Playas. Geological Society of America Bulletin, 79(1): 69. https://doi.org/10.1130/0016-7606(1968)79[69:gdpogb]2.0.co;2
    Neumann, M. G., Gessner, F., Schmitt, C. C., et al., 2002. Influence of the Layer Charge and Clay Particle Size on the Interactions between the Cationic Dye Methylene Blue and Clays in an Aqueous Suspension. Journal of Colloid and Interface Science, 255(2): 254–259. https://doi.org/10.1006/jcis.2002.8654
    Okamoto, A., Shimizu, H., 2015. Contrasting Fracture Patterns Induced by Volume-Increasing and -Decreasing Reactions: Implications for the Progress of Metamorphic Reactions. Earth and Planetary Science Letters, 417: 9–18. https://doi.org/10.1016/j.epsl.2015.02.015
    Osipov, V. I., 1975. Structural Bonds and the Properties of Clays. Bulletin of the International Association of Engineering Geology, 12(1): 13–20. https://doi.org/10.1007/bf02635423
    Osipov, V. I., Sokolov, V. N., 1978. Relation between the Microfabric of Clay Soils and Their Origin and Degree of Compaction. Bulletin of the International Association of Engineering Geology, 18(1): 73–81. https://doi.org/10.1007/bf02635351
    Pansu, M., Gautheyrou, J., 2006. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods. Springer-Verlag Berlin Heidelberg, New York
    Paszkowski, M., 2013. Some Aspects of Grease Flow in Lubrication Systems and Friction Nodes, Tribology—Fundamentals and Advancements. (2013-5-22) [2018-4-8]. https://mts.intechopen.com/books/tribology-fundamentals-and-advancements/some-aspects-of-grease-flow-in-lubrication-systems-and-friction-nodes
    Pratt, B. R., 1998. Syneresis Cracks: Subaqueous Shrinkage in Argillaceous Sediments Caused by Earthquake-Induced Dewatering. Sedimentary Geology, 117(1/2): 1–10. https://doi.org/10.1016/s0037-0738(98)00023-2
    Quaicoe, I., Nosrati, A., Skinner, W., et al., 2013. Agglomeration Behaviour and Product Structure of Clay and Oxide Minerals. Chemical Engineering Science, 98: 40–50. https://doi.org/10.1016/j.ces.2013.03.034
    Rabinowicz, M., Genthon, P., Ceuleneer, G., et al., 2001. Compaction in a Mantle Mush with High Melt Concentrations and the Generation of Magma Chambers. Earth and Planetary Science Letters, 188(3/4): 313–328. https://doi.org/10.1016/s0012-821x(01)00330-2
    Rabinowicz, M., Ricard, Y., Grégoire, M., 2002. Compaction in a Mantle with a very Small Melt Concentration: Implications for the Generation of Carbonatitic and Carbonate-Bearing High Alkaline Mafic Melt Impregnations. Earth and Planetary Science Letters, 203(1): 205–220. https://doi.org/10.1016/s0012-821x(02)00836-1
    Rabinowicz, M., Vigneresse, J. L., 2004. Melt Segregation under Compaction and Shear Channeling: Application to Granitic Magma Segregation in a Continental Crust. Journal of Geophysical Research: Solid Earth, 109(B4). https://doi.org/10.1029/2002jb002372
    Rabinowicz, M., Ceuleneer, G., 2005. The Effect of Sloped Isotherms on Melt Migration in the Shallow Mantle: A Physical and Numerical Model Based on Observations in the Oman Ophiolite. Earth and Planetary Science Letters, 229(3/4): 231–246. https://doi.org/10.1016/j.epsl.2004.09.039
    Rabinowicz, M., Toplis, M. J., 2009. Melt Segregation in the Lower Part of the Partially Molten Mantle Zone beneath an Oceanic Spreading Centre: Numerical Modelling of the Combined Effects of Shear Segregation and Compaction. Journal of Petrology, 50(6): 1071–1106. https://doi.org/10.1093/petrology/egp033
    Rabinowicz, M., Bystricky, M., Schmocker, M., et al., 2010. Development of Fluid Veins during Deformation of Fluid-Rich Rocks Close to the Brittle-Ductile Transition: Comparison between Experimental and Physical Models. Journal of Petrology, 51(10): 2047–2066. https://doi.org/10.1093/petrology/egq047
    Rasmussen, P. E., Allmaras, R. R., Rohde, C. R., et al., 1980. Crop Residue Influences on Soil Carbon and Nitrogen in a Wheat-Fallow System1. Soil Science Society of America Journal, 44(3): 596. https://doi.org/10.2136/sssaj1980.03615995004400030033x
    Räss, L., Yarushina, V. M., Simon, N. S. C., et al., 2014. Chimneys, Channels, Pathway Flow or Water Conducting Features—An Explanation from Numerical Modelling and Implications for CO2 Storage. Energy Procedia, 63: 3761–3774. https://doi.org/10.1016/j.egypro.2014.11.405
    Rayhani, M. H. T., Yanful, E. K., Fakher, A., 2008. Physical Modeling of Desiccation Cracking in Plastic Soils. Engineering Geology, 97(1/2): 25–31. https://doi.org/10.1016/j.enggeo.2007.11.003
    Rayhani, M. H., Yanful, E. K., Fakher, A., 2007. Desiccation-Induced Cracking and Its Effect on the Hydraulic Conductivity of Clayey Soils from Iran. Canadian Geotechnical Journal, 44(3): 276–283. https://doi.org/10.1139/t06-125
    Ribe, N. M., 1985. The Deformation and Compaction of Partial Molten Zones. Geophysical Journal International, 83(2): 487–501. https://doi.org/10.1111/j.1365-246x.1985.tb06499.x
    Roscoe, R., 1952. The Viscosity of Suspensions of Rigid Spheres. British Journal of Applied Physics, 3(8): 267–269. https://doi.org/10.1088/0508-3443/3/8/306
    Rutter, E. H., Wanten, P. H., 2000. Experimental Study of the Compaction of Phyllosilicate-Bearing Sand at Elevated Temperature and with Controlled Pore Water Pressure. Journal of Sedimentary Research, 70(1): 107–116. https://doi.org/10.1306/2dc40902-0e47-11d7-8643000102c1865d
    Rutter, E. H., Arkwright, J. C., Holloway, R. F., et al., 2003. Strains and Displacements in the Mam Tor Landslip, Derbyshire, England. Journal of the Geological Society, 160(5): 735–744. https://doi.org/10.1144/0016-764903-002
    Rutter, E. H., Green, S., 2011. Quantifying Creep Behaviour of Clay-Bearing Rocks below the Critical Stress State for Rapid Failure: Mam Tor Landslide, Derbyshire, England. Journal of the Geological Society, 168(2): 359–372. https://doi.org/10.1144/0016-76492010-133
    Schneider, F., Potdevin, J. L., Wolf, S., et al., 1996. Mechanical and Chemical Compaction Model for Sedimentary Basin Simulators. Tectonophysics, 263(1/2/3/4): 307–317. https://doi.org/10.1016/s0040-1951(96)00027-3
    Schwinka, V., Moertel, H., 1999. Physico-Chemical Properties of Illite Suspensions after Cycles of Freezing and Thawing. Clays and Clay Minerals, 47(6): 718–725. https://doi.org/10.1346/ccmn.1999.0470605
    Skempton, A. W., 1964. Long-Term Stability of Clay Slopes. Géotechnique, 14(2): 77–102. https://doi.org/10.1680/geot.1964.14.2.77
    Sergeyev, Y. M., Grabowska-Olszewska, B., Osipov, V. I., et al., 1980. The Classification of Microstructures of Clay Soils. Journal of Microscopy, 120(3): 237–260. https://doi.org/10.1111/j.1365-2818.1980.tb04146.x
    Ślizowski, J., Lankof, L., 2003. Salt-Mudstones and Rock-Salt Suitabilities for Radioactive-Waste Storage Systems: Rheological Properties. Applied Energy, 75(1/2): 137–144. https://doi.org/10.1016/s0306-2619(03)00026-6
    So, B.-D., Yuen, D. A., 2014. Stationary Points in Activation Energy for Heat Dissipated with a Power Law Temperature-Dependent Viscoelastoplastic Rheology. Geophysical Research Letters, 41(14): 4953–4960. https://doi.org/10.1002/2014gl060713
    Stuevold, L. M., Faerseth, R. B., Arnesen, L., et al., 2003. Polygonal Faults in the Ormen Lange Field, Møre Basin, Offshore Mid Norway. Geological Society, London, Special Publications, 216(1): 263–281. https://doi.org/10.1144/gsl.sp.2003.216.01.17
    Suetnova, E., Vasseur, G., 2000. 1-D Modelling Rock Compaction in Sedimentary Basins Using a Visco-Elastic Rheology. Earth and Planetary Science Letters, 178(3/4): 373–383. https://doi.org/10.1016/s0012-821x(00)00074-1
    Sweet, D. E., Soreghan, G. S., 2008. Polygonal Cracking in Coarse Clastics Records Cold Temperatures in the Equatorial Fountain Formation (Pennsylvanian–Permian, Colorado). Palaeogeography, Palaeoclimatology, Palaeoecology, 268(3/4): 193–204. https://doi.org/10.1016/j.palaeo.2008.03.046
    Sun, Q. L., Wu, S. G., Yao, G. S., et al., 2009. Characteristics and Formation Mechanism of Polygonal Faults in Qiongdongnan Basin, Northern South China Sea. Journal of Earth Science, 20(1): 180–192. https://doi.org/10.1007/s12583-009-0018-z
    Sun, Q. L., Wu, S. G., Lü, F. L., et al., 2010. Polygonal Faults and Their Implications for Hydrocarbon Reservoirs in the Southern Qiongdongnan Basin, South China Sea. Journal of Asian Earth Sciences, 39(5): 470–479. https://doi.org/10.1016/j.jseaes.2010.04.002
    Talbot, C. J., Rönnlund, P., Schmeling, H., et al., 1991. Diapiric Spoke Patterns. Tectonophysics, 188(1/2): 187–201. https://doi.org/10.1016/0040-1951(91)90322-j
    Tang, C.-S., Cui, Y.-J., Tang, A.-M., et al., 2010. Experiment Evidence on the Temperature Dependence of Desiccation Cracking Behavior of Clayey Soils. Engineering Geology, 114(3/4): 261–266. https://doi.org/10.1016/j.enggeo.2010.05.003
    Tang, C.-S., Shi, B., Liu, C., et al., 2011. Experimental Characterization of Shrinkage and Desiccation Cracking in Thin Clay Layer. Applied Clay Science, 52(1/2): 69–77. https://doi.org/10.1016/j.clay.2011.01.032
    Tewksbury, B. J., Hogan, J. P., Kattenhorn, S. A., et al., 2014. Polygonal Faults in Chalk: Insights from Extensive Exposures of the Khoman Formation, Western Desert, Egypt: Reply. Geology, 42(6): 479–482. https://doi.org/10.1130/G35362.1
    Vasseur, G., Djeran-Maigre, I., Grunberger, D., et al., 1995. Evolution of Structural and Physical Parameters of Clays during Experimental Compaction. Marine and Petroleum Geology, 12(8): 941–954. https://doi.org/10.1016/0264-8172(95)98857-2
    van Olphen, H., 1977. An Introduction to Clay Colloid Chemistry: For Clay Technologists, Geologists, and Soil Scientists. 2nd ed. John Wiley, New York
    Watterson, J., Walsh, J., Nicol, A., et al., 2000. Geometry and Origin of a Polygonal Fault System. Journal of the Geological Society, 157(1): 151–162. https://doi.org/10.1144/jgs.157.1.151
    Wei, K. S., Cui, H. Y., Ye, S. F., et al., 2001. High-Precision Sequence Stratigraphy in Qiongdongnan Basin. Earth Science—Journal of China University of Geosciences, 20: 59–66 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200101010
    Weinberger, R., 1999. Initiation and Growth of Cracks during Desiccation of Stratified Muddy Sediments. Journal of Structural Geology, 21(4): 379–386. https://doi.org/10.1016/s0191-8141(99)00029-2
    Wiggins, C., Spiegelman, M., 1995. Magma Migration and Magmatic Solitary Waves in 3-D. Geophysical Research Letters, 22(10): 1289–1292. https://doi.org/10.1029/95gl00269
    Yarushina, V. M., Podladchikov, Y. Y., 2015. (De)compaction of Porous Viscoelastoplastic Media: Model Formulation. Journal of Geophysical Research: Solid Earth, 120(6): 4146–4170. https://doi.org/10.1002/2014jb011258
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views(808) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return