Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 29 Issue 6
Nov 2018
Turn off MathJax
Article Contents
Weibing Qin, Shuangxi Zhang, Mengkui Li, Tengfei Wu, Chaoyu Zhang. Distribution of Intra-Crustal Low Velocity Zones beneath Yunnan from Seismic Ambient Noise Tomography. Journal of Earth Science, 2018, 29(6): 1409-1418. doi: 10.1007/s12583-017-0815-8
Citation: Weibing Qin, Shuangxi Zhang, Mengkui Li, Tengfei Wu, Chaoyu Zhang. Distribution of Intra-Crustal Low Velocity Zones beneath Yunnan from Seismic Ambient Noise Tomography. Journal of Earth Science, 2018, 29(6): 1409-1418. doi: 10.1007/s12583-017-0815-8

Distribution of Intra-Crustal Low Velocity Zones beneath Yunnan from Seismic Ambient Noise Tomography

doi: 10.1007/s12583-017-0815-8
More Information
  • Corresponding author: Shuangxi Zhang
  • Received Date: 30 Mar 2017
  • Accepted Date: 02 Aug 2017
  • Publish Date: 01 Dec 2018
  • Previous studies have reached consensus that low velocity zones are widespread in the crust beneath Yunnan region. However, the relationships between the low velocity zones and large faults, earthquake distribution are less investigated by available studies. By analyzing the seismic ambient noise recorded by Yunnan Seismic Networks and Tengchong volcano array, we construct a 3D crustal shear wave velocity model for the Yunnan region, which provides more details of the distribution of intra-crustal low velocity zones all over Yunnan. The distribution of low velocity zones shows different features at different depths. At shallow depths, the results are well correlated with near surface geological features. With increasing depth, the low velocity zones are gradually concentrated on the northern part of our study area, most likely reflecting variations in crustal thickness beneath the Yunnan region. The low velocity zones are truncated at depth by several large faults in Yunnan. It is interesting that most strong earthquakes (Ms ≥ 5.0) occurred in Yunnan are distributed in low velocity zones or the transition zones between low and high velocity anomalies within the upper-to-middle crust. The crustal structure is composed of a brittle, seismically active upper-to-middle crust and a warm, aseismic lower crust.

     

  • loading
  • Backus, G., Gilbert, F., 1968. The Resolving Power of Gross Earth Data. Geophysical Journal International, 16(2):169-205. https://doi.org/10.1111/j.1365-246x.1968.tb00216.x
    Bai, D. H., Unsworth, M. J., Meju, M. A., et al., 2010. Crustal Deformation of the Eastern Tibetan Plateau Revealed by Magnetotelluric Imaging. Nature Geoscience, 3(5):358-362. https://doi.org/10.1038/ngeo830
    Bao, X. W., Sun, X. X., Xu, M. J., et al., 2015. Two Crustal Low-Velocity Channels beneath SE Tibet Revealed by Joint Inversion of Rayleigh Wave Dispersion and Receiver Functions. Earth and Planetary Science Letters, 415(5):16-24. https://doi.org/10.1016/j.epsl.2015.01.020
    Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., et al., 2007. Processing Seismic Ambient Noise Data to Obtain Reliable Broad-Band Surface Wave Dispersion Measurements. Geophysical Journal International, 169(3):1239-1260. https://doi.org/10.1111/j.1365-246x.2007.03374.x
    Cheng, C., Chen, L., Yao, H. J., et al., 2013. Distinct Variations of Crustal Shear Wave Velocity Structure and Radial Anisotropy beneath the North China Craton and Tectonic Implications. Gondwana Research, 23(1):25-38. https://doi.org/10.1016/j.gr.2012.02.014
    Dziewonski, A. M., Anderson, D. L., 1981. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25(4):297-356. https://doi.org/10.1016/0031-9201(81)90046-7
    Fang, L. H., Wu, J. P., Ding, Z. F., et al., 2010. High Resolution Rayleigh Wave Group Velocity Tomography in North China from Ambient Seismic Noise. Geophysical Journal International, 16(2):1171-1182. https://doi.org/10.1111/j.1365-246x.2010.04571.x
    Herrmann, R. B., Ammon, C. J., 2004. Surface Waves, Receiver Functions and Crustal Structure. Computer Programs in Seismology, Version, 3.30.[2018-4-9]. http://www.eas.slu.edu/eqc/eqccps.html
    He, Z. Q., Ye, T. L., Su, W., 2005. 3-D Velocity Structure of the Middle and Upper Crust in the Yunnan Region, China. Pure and Applied Geophysics, 162(12):2355-2368. https://doi.org/10.1007/s00024-005-2780-x
    Hu, H. X., Gao, S. Y., 1993. The Investigation of Fine Velocity Structure of the Basement Layer of Earth's Crust in Western Yunnan Region. Earthquake Research in China, 9(4):356-363 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003894210
    Hu, J. F., Su, Y. J., Zhu, X. G., et al., 2005a. S-Wave Velocity and Poisson's Ratio Structure of Crust in Yunnan and Its Implication. Science in China Series D:Earth Sciences, 48(2):210-218. https://doi.org/10.1360/03yd0062
    Hu, J. F., Zhu, X. G., Xia, J. Y., et al., 2005b. Using Surface Wave and Receiver Function to Jointly Inverse the Crust-Mantle Velocity Structure in the West Yunnan Area. Chinese Journal of Geophysics, 48(5):1148-1155. https://doi.org/10.1002/cjg2.758
    Huang, J. L., Zhao, D. P., Zheng, S. H., 2002. Lithospheric Structure and Its Relationship to Seismic and Volcanic Activity in Southwest China. Journal of Geophysical Research:Solid Earth, 107(B10):ESE 13-1-ESE 13-14. https://doi.org/10.1029/2000jb000137
    Kan, R. J., Hu, H. X., Zeng, R. S., et al., 1986. Crustal Structure of Yunnan Province, People's Republic of China, from Seismic Refraction Profiles. Science, 234(4775):433-437. https://doi.org/10.1126/science.234.4775.433
    Kennett, B. L. N., Engdahl, E. R., Buland, R., 1995. Constraints on Seismic Velocities in the Earth from Traveltimes. Geophysical Journal International, 122(1):108-124. https://doi.org/10.1111/j.1365-246x.1995.tb03540.x
    Lei, J. S., Zhao, D. P., Su, Y. J., 2009. Insight into the Origin of the Tengchong Intraplate Volcano and Seismotectonics in Southwest China from Local and Teleseismic Data. Journal of Geophysical Research, 114(B5):B05302. https://doi.org/10.1029/2008jb005881
    Leloup, P. H., Ricard, Y., Battaglia, J., et al., 1999. Shear Heating in Continental Strike-Slip Shear Zones:Model and Field Examples. Geophysical Journal International, 136(1):19-40. https://doi.org/10.1046/j.1365-246x.1999.00683.x
    Li, H. Y., Liu, X., Li, X. F., et al., 2011. Rayleigh Wave Group Velocity Distribution in Ningxia. Journal of Earth Science, 22(1):117-123. https://doi.org/10.1007/s12583-011-0162-0
    Li, H. Y., Su, W., Wang, C. Y., et al., 2009. Ambient Noise Rayleigh Wave Tomography in Western Sichuan and Eastern Tibet. Earth and Planetary Science Letters, 282(1/2/3/4):201-211. https://doi.org/10.1016/j.epsl.2009.03.021
    Li, Y. H., Wu, Q. J., Zhang, R. Q., et al., 2008. The Crust and Upper Mantle Structure beneath Yunnan from Joint Inversion of Receiver Functions and Rayleigh Wave Dispersion Data. Physics of the Earth and Planetary Interiors, 170(1/2):134-146. https://doi.org/10.1016/j.pepi.2008.08.006
    Li, Y. H., Wu, Q. J., Tian, X. B., et al., 2009. Crustal Structure in the Yunnan Region Determined by Modeling Receiver Functures. Chinese Journal of Geophysics, 52(1):67-80 (in Chinese with English Abstract) https://www.researchgate.net/publication/234175501_Crustal_Structure_of_the_Caucasus_and_Caspian_Region_Using_Gravity_and_Receiver_Functions
    Lobkis, O. I., Weaver, R. L., 2001. On the Emergence of the Green's Function in the Correlations of a Diffuse Field. The Journal of the Acoustical Society of America, 110(6):3011-3017. https://doi.org/10.1121/1.1417528
    Moschetti, M. P., Ritzwoller, M. H., Shapiro, N. M., 2007. Surface Wave Tomography of the Western United States from Ambient Seismic Noise:Rayleigh Wave Group Velocity Maps. Geochemistry, Geophysics, Geosystems, 8(8). https://doi.org/10.1029/2007gc001655
    Paul, A., Campillo, M., Margerin, L., et al., 2005. Empirical Synthesis of Time-Asymmetrical Green Functions from the Correlation of Coda Waves. Journal of Geophysical Research, 110(B8):B08302. https://doi.org/10.1029/2004jb003521
    Qin, J. Z., Qian, X. D., Huangfu, G., 1996. The Seismicity Feature of the Volcanic Area in Tengchong. Seismol. Geomagn. Obs. Res., 17:19-27 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600061906
    Ritzwoller, M. H., Levshin, A. L., 1998. Eurasian Surface Wave Tomography:Group Velocities. Journal of Geophysical Research:Solid Earth, 103(B3):4839-4878. https://doi.org/10.1029/97jb02622
    Roux, P., Sabra, K. G., Kuperman, W. A., et al., 2005. Ambient Noise cross Correlation in Free Space:Theoretical Approach. The Journal of the Acoustical Society of America, 117(1):79-84. https://doi.org/10.1121/1.1830673
    Royden, L. H., Burchfiel, B. C., King, R. W., et al., 1997. Surface Deformation and Lower Crustal Flow in Eastern Tibet. Science, 276(5313):788-790. https://doi.org/10.1126/science.276.5313.788
    Royden, L. H., Burchfiel, B. C., van der Hilst, R. D., 2008. The Geological Evolution of the Tibetan Plateau. Science, 321(5892):1054-1058. https://doi.org/10.1126/science.1155371
    Sabra, K. G., Gerstoft, P., Roux, P., et al., 2005a. Extracting Time-Domain Green's Function Estimates from Ambient Seismic Noise. Geophysical Research Letters, 32(3):L03310. https://doi.org/10.1029/2004gl021862
    Sabra, K. G., Gerstoft, P., Roux, P., et al., 2005b. Surface Wave Tomography from Microseisms in Southern California. Geophysical Research Letters, 32(14):L14311. https://doi.org/10.1029/2005gl023155
    Schärer, U., Zhang, L. S., Tapponnier, P., 1994. Duration of Strike-Slip Movements in Large Shear Zones:The Red River Belt, China. Earth and Planetary Science Letters, 126(4):379-397. https://doi.org/10.1016/0012-821x(94)90119-8
    Snieder, R., 2004. Extracting the Green's Function from the Correlation of Coda Waves:A Derivation Based on Stationary Phase. Physical Review E, 69(4):046610. https://doi.org/10.1103/physreve.69.046610
    Wang, C. Y., Chan, W. W., Mooney, W. D., 2003. Three-Dimensional Velocity Structure of Crust and Upper Mantle in Southwestern China and Its Tectonic Implications. Journal of Geophysical Research:Solid Earth, 108(B9):2442. https://doi.org/10.1029/2002jb001973
    Wang, C. Y., Huangfu, G., 2004. Crustal Structure in Tengchong Volca-no-Geothermal Area, Western Yunnan, China. Tectonophysics, 380(1/2):69-87. https://doi.org/10.1016/j.tecto.2003.12.001
    Wang, Q., Gao, Y., 2014. Rayleigh Wave Phase Velocity Tomography and Strong Earthquake Activity on the Southeastern Front of the Tibetan Plateau. Science China Earth Sciences, 57(10):2532-2542. https://doi.org/10.1007/s11430-014-4908-2
    Wang, Y., 2001. Heat Flow Pattern and Lateral Variations of Lithosphere Strength in China Mainland:Constraints on Active Deformation. Physics of the Earth and Planetary Interiors, 126(3/4):121-146. https://doi.org/10.1016/s0031-9201(01)00251-5
    Wei, W., Sun, R. M., Shi, Y. L., 2010. P-Wave Tomographic Images beneath Southeastern Tibet:Investigating the Mechanism of the 2008 Wenchuan Earthquake. Science China Earth Sciences, 53(9):1252-1259. https://doi.org/10.1007/s11430-010-4037-5
    Wessel, P., Smith, W. H. F., 1998. New, Improved Version of Generic Mapping Tools Released. EOS, Transactions American Geophysical Union, 79(47):579-579. https://doi.org/10.1029/98eo00426
    Wu, J. P., Ming, Y. H., 2001. The S Wave Velocity Structure beneath Digital Seismic Stations of Yunnan Province Inferred from Teleseismic Receiver Function Modeling. Chinese Journal of Geophysics, 44(2):228-237 (in Chinese with English Abstract) doi: 10.1002/cjg2.135/full
    Xu, L. L., Rondenay, S., van der Hilst, R. D., 2007. Structure of the Crust beneath the Southeastern Tibetan Plateau from Teleseismic Receiver Functions. Physics of the Earth and Planetary Interiors, 165(3/4):176-193. https://doi.org/10.1016/j.pepi.2007.09.002
    Xu, X. M., Li, H. Y., Gong, M., et al., 2011. Three-Dimensional S-Wave Velocity Structure in Eastern Tibet from Ambient Noise Rayleigh and Love Wave Tomography. Journal of Earth Science, 22(2):195-204. https://doi.org/10.1007/s12583-011-0172-y
    Xu, Y., Yang, X. T., Liu, J. H., 2013. Tomographic Study of Crustal Velocity Structures in the Yunnan Region Southwest China. Chinese Journal of Geophysics, 56(6):1904-1914 (in Chinese with English Abstract). https://doi.org/10.6038/cjg20130613
    Yang, Y. J., Li, A. B., Ritzwoller, M. H., 2008. Crustal and Uppermost Mantle Structure in Southern Africa Revealed from Ambient Noise and Teleseismic Tomography. Geophysical Journal International, 174(1):235-248. https://doi.org/10.1111/j.1365-246x.2008.03779.x
    Yanovskaya, T. B., Ditmar, P. G., 1990. Smoothness Criteria in Surface Wave Tomography. Geophysical Journal International, 102(1):63-72. https://doi.org/10.1111/j.1365-246x.1990.tb00530.x
    Yanovskaya, T. B., Kizima, E. S., Antonova, L. M., 1998. Structure of the Crust in the Black Sea and Adjoining Regions from Surface Wave Data. Journal of Seismology, 2(4):303-316. https://doi.org/10.1023/1009716017960
    Yao, H. J., Beghein, C., van der Hilst, R. D., 2008. Surface Wave Array Tomography in SE Tibet from Ambient Seismic Noise and Two-Station Analysis-Ⅱ. Crustal and Upper-Mantle Structure. Geophysical Journal International, 173(1):205-219. https://doi.org/10.1111/j.1365-246x.2007.03696.x
    Yao, H. J., van der Hilst, R. D., de Hoop, M. V., 2006. Surface-Wave Array Tomography in SE Tibet from Ambient Seismic Noise and Two-Station Analysis-I. Phase Velocity Maps. Geophysical Journal International, 166(2):732-744. https://doi.org/10.1111/j.1365-246x.2006.03028.x
    Yao, H. J., van der Hilst, R. D., Montagner, J. P., 2010. Heterogeneity and Anisotropy of the Lithosphere of SE Tibet from Surface Wave Array Tomography. Journal of Geophysical Research, 115(B12):B12307. https://doi.org/10.1029/2009jb007142
    Yao, H. J., Xu, G. M., Zhu, L. B., et al., 2005. Mantle Structure from Inter-Station Rayleigh Wave Dispersion and its Tectonic Implication in Western China and Neighboring Regions. Physics of the Earth and Planetary Interiors, 148(1):39-54. https://doi.org/10.1016/j.pepi.2004.08.006
    Zhang, X., Wang, Y. H., 2009. Crustal and Upper Mantle Velocity Structure in Yunnan, Southwest China. Tectonophysics, 471(3/4):171-185. https://doi.org/10.1016/j.tecto.2009.02.009
    Zhang, Z. J., Bai, Z. M., Wang, C. Y., et al., 2005a. Crustal Structure of Gondwana-and Yangtze-Typed Blocks:An Example by Wide-Angle Seismic Profile from Menglian to Malong in Western Yunnan. Science in China Series D:Earth Sciences, 48(11):1828-1836. https://doi.org/10.1360/03yd0547
    Zhang, Z. J., Bai, Z. M., Wang, C. Y., et al., 2005b. The Crustal Structure under Sanjiang and Its Dynamic Implications:Revealed by Seismic Reflection/Refraction Profile between Zhefang and Binchuan, Yunnan. Science in China Series D:Earth Sciences, 48(9):1329-1336. https://doi.org/10.1360/01yd0567
    Zhao, D. P., Ochi, F., Hasegawa, A., et al., 2000. Evidence for the Location and Cause of Large Crustal Earthquakes in Japan. Journal of Geo-physical Research:Solid Earth, 105(B6):13579-13594. https://doi.org/10.1029/2000jb900026
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views(680) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return