Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 29 Issue 1
Jan 2018
Turn off MathJax
Article Contents
Shaopeng Dong, Peizhen Zhang, Huiping Zhang, Wenjun Zheng, Huixian Chen. Drainage Responses to the Activity of the Langshan Range-Front Fault and Tectonic Implications. Journal of Earth Science, 2018, 29(1): 193-209. doi: 10.1007/s12583-017-0902-8
Citation: Shaopeng Dong, Peizhen Zhang, Huiping Zhang, Wenjun Zheng, Huixian Chen. Drainage Responses to the Activity of the Langshan Range-Front Fault and Tectonic Implications. Journal of Earth Science, 2018, 29(1): 193-209. doi: 10.1007/s12583-017-0902-8

Drainage Responses to the Activity of the Langshan Range-Front Fault and Tectonic Implications

doi: 10.1007/s12583-017-0902-8
More Information
  • Corresponding author: Shaopeng Dong, spdong@ies.ac.cn
  • Received Date: 27 Oct 2016
  • Accepted Date: 08 Apr 2017
  • Publish Date: 01 Feb 2018
  • Langshan, a monoclinic mountain, which started to uplift since Oligocene, bounds the northwest margin of the Hetao Basin. The continuous activity of the active normal Langshan range-front fault forms the typical basin-and-range landform in Langshan area and controls the landform evolution of Langshan. Langshan is an ideal place to study relationship between quantitative geomorphological index and active deformation. According to study on knickpoints, fitting on longitudinal channel profiles and steepness index, we demonstrate that the main controlling factors on distribution of normalized steepness index of channels are not climate (precipitation), lithology, sediment flux, but tectonic factor, or the activity of Langshan range-front fault. The short channels in southeast flank, whose lengths are shorter than 16 km, may be still in the non-steady status. If not considering these short channels, the distribution of normalized steepness index along the Langshan range-front fault appears like M-shape pattern, while the normalized steepness index in the middle section is higher than those at both ends. This pattern is well consistent with geometrical segmentation model of the Langshan range-front fault. Combining previous active tectonic research on Langshan range-front fault, which demonstrates the Langshan range-front fault has been in the stage of linkup, we reasonably infer the Langshan range-front fault now is the result of linkup of both fault which continuously bilaterally extended independently. Our tectonic geomorphological study also supports the conclusion that the Langshan range-front fault has been in the stage of linkup. The formation of several knickpoints due to tectonic factor may have been caused by slip-rate variation because of linkup of both independent faults. Based on cognition above, we also proposed the geological and geomorphological evolutionary model of the Langshan range-front fault since Oligocene.

     

  • loading
  • Ackermann, R. V., Schlische, R. W., Withjack, M. O., 2001. The Geometric and Statistical Evolution of Normal Fault Systems: An Experimental Study of the Effects of Mechanical Layer Thickness on Scaling Laws. Journal of Structural Geology, 23(11): 1803-1819. https://doi.org/10.1016/s0191-8141(01)00028-1
    Arrowsmith, J. R., Zielke, O., 2009. Tectonic Geomorphology of the San Andreas Fault Zone from High Resolution Topography: An Example from the Cholame Segment. Geomorphology, 113(1/2): 70-81. https://doi.org/10.1016/j.geomorph.2009.01.002
    Blevins, M., 2008. Deciphering Controls on Polyphase Intraplate Deformation in the Ertomiao Region, Lang Shan, North-Central China: [Dissertation]. Louisiana State University, Baton Rouge http://www.openthesis.org/documents/Deciphering-Controls-Polyphase-Intraplate-Deformation-528177.html
    Boulton, S. J., Whittaker, A. C., 2009. Quantifying the Slip Rates, Spatial Distribution and Evolution of Active Normal Faults from Geomorphic Analysis: Field Examples from an Oblique-Extensional Graben, Southern Turkey. Geomorphology, 104(3/4): 299-316. https://doi.org/10.1016/j.geomorph.2008.09.007
    Bull, W. B., 1977. Tectonic Geomorphology North and South of the Garlock Fault, California. Geomorphology in Arid Regions, Proceeding 8th Annual Geomorphology Symposium. State University New York at Binghamton, Binghamton. 115-137 https://www.researchgate.net/publication/279894548_Tectonic_geomorphology_north_and_south_of_the_Garlock_fault_California
    Burbank, D. W., Anderson, R. S., 2011. Tectonic Geomorphology. John Wiley & Sons, Chichester. 454
    Chen, L., 2002. The Research on Paleoearthquake, the Recerrence Rule of Strong Earthquakes and Possible Sites of Strong Earthquakes in the Future of Hetao Basin: [Dissertation]. Institute of Geology, China Earthquake Administration, Beijing (in Chinese with English Abstract)
    Chen, Y., 2004. Morphotectoic Features of Taiwan Mountain Belt Based on Hypsometric Integral, Topographic Fractals and SL Index, Tainan: [Dissertation]. Cheng Kung University, Tainan
    Chen, Y., Song, G., Chen, Z., 2006. Stream Power Incision Model for Non-steady State Orogens. Chinese Science Bulletin, 51 (7) : 865-869 (in Chinese)
    Chen, Y. C., Sung, Q., Cheng, K. Y., 2003. Along-Strike Variations of Morphotectonic Features in the Western Foothills of Taiwan: Tectonic Implications Based on Stream-Gradient and Hypsometric Analysis. Geomorphology, 56(1/2): 109-137. https://doi.org/10.1016/s0169-555x(03)00059-x
    Cheng, S., Li, C., Yang, G., et al., 2006. The Denudational-Surface Sequence and Controls on the Landscape Development in the Langshan Mountains-Seertengshan Mountains, Inner Mongolia. Quaternary Sciences, 26(1): 99-107 (in Chinese with English Abstract) https://www.sciencedirect.com/science/article/pii/S0169555X15000288
    Crosby, C. J., Arrowsmith, J. R., Prentice, C. S., 2007. Application of LiDAR Data to Constraining a Late Pleistocene Slip Rate and Vertical Deformation of the Northern San Andreas Fault, Fort Ross to Mendocino, California, USA: [Dissertation]. Arizona State University, Phoenix
    Deng, Q., 2007. Active Tectonic Map of China. Earthquake Press, Beijing (in Chinese)
    Deng, Q., Cheng, S., Min, W., et al., 1999. Discussion on Cenozoic Tectonics and Dynamics of Ordos Block. Journal of Geomechanics, 5(3): 13-21 (in Chinese with English Abstract) doi: 10.1007/s11589-004-0026-0
    Densmore, A. L., Dawers, N. H., Gupta, S., et al., 2003. Landscape Evolution at Extensional Relay Zones. Journal of Geophysical Research: Solid Earth, 108(B5): B52273. https://doi.org/10.1029/2001jb001741
    Dong, S. P., 2016. Late Quaternary Tectonic Activity and Paleoseismology along the Langshan Range-Front Fault: [Dissertation]. Institute of Geology, China Earthquake Administration, Beijing (in Chinese with English Abstract)
    Dong, S. P., Zhang, P. Z., Zheng, W., et al., Paleoseismic and Slip-Rate Observations along the Langshan Range-Front Fault, Hetao Basin, China. (in Press)
    Duvall, A., Kirby, E., Burbank, D., 2004. Tectonic and Lithologic Controls on Bedrock Channel Profiles and Processes in Coastal California. Journal of Geophysical Research, 109(F3): F03002. https://doi.org/10.1029/2003jf000086
    Farr, T. G., Rosen, P. A., Caro, E., et al., 2007. The Shuttle Radar Topography Mission. Reviews of Geophysics, 45(2): RG2004. https://doi.org/10.1029/2005rg000183
    Geology Bureau of Inner Mongolia Municipality (GBIMM), 1976. Regional Geological Map of Inner Mongolia, Scale 1 : 200 000. Seismological Press, Beijing (in Chinese)
    Hack, J. T., 1957. Studies of Longitudinal Stream Profiles in Virginia and Maryland. US Government Printing Office, Washington. 294 https://www.researchgate.net/publication/247663680_Studies_of_longitudinal_profiles_in_Virginia_and_Maryland
    Hack, J. T., 1973. Stream-Profile Analysis and Stream-Gradient Index. Journal of Research of the US Geological Survey, 1(4): 421-429
    Hare, P. W., Gardner, T., 1985. Geomorphic Indicators of Vertical Neotectonism along Converging Plate Margins, Nicoya Peninsula, Costa Rica. Allen and Unwin, Boston. 75-104 https://www.researchgate.net/publication/312533071_Geomorphic_indicators_of_vertical_neotectonism_along_converging_plate_margins_Nicoya_Peninsula_Costa_Rica
    Howard, A. D., Kerby, G., 1983. Channel Changes in Badlands. Geological Society of America Bulletin, 94(6): 739-752. https://doi.org/10.1130/0016-7606(1983)94<739:ccib>2.0.co;2 doi: 10.1130/0016-7606(1983)94<739:ccib>2.0.co;2
    Howard, A. D., 1994. A Detachment-Limited Model of Drainage Basin Evolution. Water Resources Research, 30(7): 2261-2285. https://doi.org/10.1029/94wr00757
    Howard, A. D., Dietrich, W. E., Seidl, M. A., 1994. Modeling Fluvial Erosion on Regional to Continental Scales. Journal of Geophysical Research: Solid Earth, 99(B7): 13971-13986. https://doi.org/10.1029/94jb00744
    Hu, X. F., Pan, B. T., Kirby, E., et al., 2010. Spatial Differences in Rock Uplift Rates Inferred from Channel Steepness Indices along the Northern Flank of the Qilian Mountain, Northeast Tibetan Plateau. Chinese Science Bulletin, 55(27/28): 3205-3214. https://doi.org/10.1007/s11434-010-4024-4
    Jackson, J., McKenzie, D., 1983. The Geometrical Evolution of Normal Fault Systems. Journal of Structural Geology, 5(5): 471-482. https://doi.org/10.1016/0191-8141(83)90053-6
    Jia, L. Y., Zhang, X. J., He, Z. X., et al., 2015. Late Quaternary Climatic and Tectonic Mechanisms Driving River Terrace Development in an Area of Mountain Uplift: A Case Study in the Langshan Area, Inner Mongolia, Northern China. Geomorphology, 234: 109-121. https://doi.org/10.13039/501100004613
    Jia, L. Y., Zhang, X. J., Ye, P. S., et al., 2016. Development of the Alluvial and Lacustrine Terraces on the Northern Margin of the Hetao Basin, Inner Mongolia, China: Implications for the Evolution of the Yellow River in the Hetao Area since the Late Pleistocene. Geomorphology, 263: 87-98. https://doi.org/10.1016/j.geomorph.2016.03.034
    Kirby, E., Whipple, K. X., 2012. Expression of Active Tectonics in Erosional Landscapes. Journal of Structural Geology, 44: 54-75. https://doi.org/10.1016/j.jsg.2012.07.009
    Kirby, E., Whipple, K. X., 2001. Quantifying Differential Rock-Uplift Rates Via Stream Profile Analysis. Geology, 29(5): 415-418. https://doi.org/10.1130/0091-7613(2001)029<0415:qdrurv>2.0.co;2 doi: 10.1130/0091-7613(2001)029<0415:qdrurv>2.0.co;2
    Kirby, E., Whipple, K. X., Tang, W. Q., et al., 2003. Distribution of Active Rock Uplift along the Eastern Margin of the Tibetan Plateau: Inferences from Bedrock Channel Longitudinal Profiles. Journal of Geophysical Research: Solid Earth, 108(B4). https://doi.org/10.1029/2001jb000861
    Li, Y., Ran, Y., Chen, L., et al., 2015. The Latest Surface Rupture Events on the Major Active Faults and Great Historical Earthquakes in Hetao Fault-Depression Zone. Seismol. Geol., 37(1): 110-125. http://dx.doi.org/10.3969/j.issn.0253-4967.2015.01.009 (in Chinese with English abstract)
    Li, X., Wang, J., Xiong, R., et al., 2016. The Response of the Change Channel Steepness Index to the Difference of Uplift Rate in the Liupanshan Mountain Area. Quaternary Sciences, 36(2): 443-452 (in Chinese with English Abstract) https://pubs.geoscienceworld.org/gsa/geology/article/36/5/367/29716/geomorphic-response-to-uplift-along-the-dragon-s
    Manighetti, I., King, G., Sammis, C. G., 2004. The Role of Off-Fault Damage in the Evolution of Normal Faults. Earth and Planetary Science Letters, 217(3/4): 399-408. https://doi.org/10.1016/s0012-821x(03)00601-0
    Moglen, G. E., Bras, R. L., 1995. The Effect of Spatial Heterogeneities on Geomorphic Expression in a Model of Basin Evolution. Water Resources Research, 31(10): 2613-2623. https://doi.org/10.1029/95wr02036
    Molnar, P., Anderson, R. S., Anderson, S. P., 2007. Tectonics, Fracturing of Rock, and Erosion. Journal of Geophysical Research, 112(F3). https://doi.org/10.1029/2005jf000433
    Montgomery, D. R., Foufoula-Georgiou, E., 1993. Channel Network Source Representation Using Digital Elevation Models. Water Resources Research, 29(12): 3925-3934. https://doi.org/10.1029/93wr02463
    Montgomery, D. R., 2001. Slope Distributions, Threshold Hillslopes, and Steady-State Topography. American Journal of Science, 301(4/5): 432-454. https://doi.org/10.2475/ajs.301.4-5.432
    Papanikolaou, I. D., Roberts, G. P., 2007. Geometry, Kinematics and Deformation Rates along the Active Normal Fault System in the Southern Apennines: Implications for Fault Growth. Journal of Structural Geology, 29(1): 166-188. https://doi.org/10.1016/j.jsg.2006.07.009
    Poage, M. A., Chamberlain, C. P., 2001. Empirical Relationships between Elevation and the Stable Isotope Composition of Precipitation and Surface Waters: Considerations for Studies of Paleoelevation Change. American Journal of Science, 301(1): 1-15. https://doi.org/10.2475/ajs.301.1.1
    Rao, G., Chen, P., Hu, J. M., et al., 2016. Timing of Holocene Paleo-Earthquakes along the Langshan Piedmont Fault in the Western Hetao Graben, North China: Implications for Seismic Risk. Tectonophysics, 677/678: 115-124. https://doi.org/10.13039/501100001809
    Rãdoane, M., Rãdoane, N., Dumitriu, D., 2003. Geomorphological Evolution of Longitudinal River Profiles in the Carpathians. Geomorphology, 50(4): 293-306. https://doi.org/10.1016/s0169-555x(02)00194-0
    Research Group on "Active Fault Zone around Ordos", 1988. Active Fault Zone around Ordos. Earthquake Publishing House, Beijing (in Chinese)
    Roberts, G. P., Michetti, A. M., 2004. Spatial and Temporal Variations in Growth Rates along Active Normal Fault Systems: An Example from the Lazio-Abruzzo Apennines, Central Italy. Journal of Structural Geology, 26(2): 339-376. https://doi.org/10.1016/s0191-8141(03)00103-2
    Rockwell, T. K., Keller, E. A., Clark, M. N., et al., 1984. Chronology and Rates of Faulting of Ventura River Terraces, California. Geological Society of America Bulletin, 95(12): 1466-1474. https://doi.org/10.1130/0016-7606(1984)95<1466:carofo>2.0.co;2 doi: 10.1130/0016-7606(1984)95<1466:carofo>2.0.co;2
    Schumm, S. A., Schumm, S. A., Dumont, J. F., et al., 2002. Active Tectonics and Alluvial Rivers. Cambridge University Press, Cambridge
    Sklar, L., Dietrich, W. E., 1998. River Longitudinal Profiles and Bedrock Incision Models: Stream Power and the Influence of Sediment Supply. In: Tinkler, K. J., Wohl, E. E., eds., Rivers over Rock: Fluvial Processes in Bedrock Channels. American Geophysical Union. 237-260
    Snow, R. S., Slingerland, R. L., 1987. Mathematical Modeling of Graded River Profiles. The Journal of Geology, 95(1): 15-33. https://doi.org/10.1086/629104
    Snow, R. S., Slingerland, R. L., 1990. Stream Profile Adjustment to Crustal Warping: Nonlinear Results from a Simple Model. The Journal of Geology, 98(5): 699-708. https://doi.org/10.1086/629434
    Snyder, N. P., Whipple, K. X., Tucker, G. E., et al., 2000. Landscape Response to Tectonic Forcing: Digital Elevation Model Analysis of Stream Profiles in the Mendocino Triple Junction Region, Northern California. Geological Society of America Bulletin, 112(8): 1250-1263. https://doi.org/10.1130/0016-7606(2000)112<1250:lrttfd>2.0.co;2 doi: 10.1130/0016-7606(2000)112<1250:lrttfd>2.0.co;2
    Snyder, N. P., Whipple, K. X., Tucker, G. E., et al., 2003. Channel Response to Tectonic Forcing: Field Analysis of Stream Morphology and Hydrology in the Mendocino Triple Junction Region, Northern California. Geomorphology, 53(1/2): 97-127. https://doi.org/10.1016/s0169-555x(02)00349-5
    Stock, J. D., Montgomery, D. R., 1999. Geologic Constraints on Bedrock River Incision Using the Stream Power Law. Journal of Geophysical Research: Solid Earth, 104(B3): 4983-4993. https://doi.org/10.1029/98jb02139
    Strahler, A. N., 1952. Hypsometric (Area-Altitude) Analysis of Erosional Topography. Geological Society of America Bulletin, 63(11): 1117-1142. https://doi.org/10.1130/0016-7606(1952)63[1117:haaoet]2.0.co;2
    Summerfield, M. A., 2000. Geomorphology & Global Tectonics. John Wiley & Sons Inc., Hoboken
    Tarboton, D. G., Bras, R. L., Rodriguez-Iturbe, I., 1989. Scaling and Elevation in River Networks. Water Resources Research, 25(9): 2037-2051. https://doi.org/10.1029/wr025i009p02037
    Wallace, R. E., 1977. Profiles and Ages of Young Fault Scarps, North-Central Nevada. Geological Society of America Bulletin, 88(9): 1267-1281. https://doi.org/10.1130/0016-7606(1977)88<1267:paaoyf>2.0.co;2 doi: 10.1130/0016-7606(1977)88<1267:paaoyf>2.0.co;2
    Wang, N., Han, Z., Li, X., et al., 2015. Tectonic Uplift of Mt. Lushan Indicated by the Steepness Indices of the River Longitudinal Profiles. Acta Geographica Sinica, 70(9): 1516-1525 (in Chinese with English Abstract) doi: 10.1007/BF02872174
    Wen, X. Z., 2001. Earthquake Behavior of Variable Rupture-Scale on Active Faults and Application of the Cascade-Rupturing Model. Acta Seismologica Sinica, 14(4): 404-416. https://doi.org/10.1007/s11589-001-0118-z
    Whipple, K. X., Tucker, G. E., 1999. Dynamics of the Stream-Power River Incision Model: Implications for Height Limits of Mountain Ranges, Landscape Response Timescales, and Research Needs. Journal of Geophysical Research: Solid Earth, 104(B8): 17661-17674. https://doi.org/10.1029/1999jb900120
    Whipple, K. X., 2004. Bedrock Rivers and the Geomorphology of Active Orogens. Annual Review of Earth and Planetary Sciences, 32(1): 151-185. https://doi.org/10.1146/annurev.earth.32.101802.120356
    Whipple, K. X., Hancock, G. S., Anderson, R. S., 2000. River Incision into Bedrock: Mechanics and Relative Efficacy of Plucking, Abrasion, and Cavitation. Geological Society of America Bulletin, 112(3): 490-503. https://doi.org/10.1130/0016-7606(2000)112<490:riibma>2.0.co;2 doi: 10.1130/0016-7606(2000)112<490:riibma>2.0.co;2
    Whittaker, A. C., Attal, M., Cowie, P. A., et al., 2008. Decoding Temporal and Spatial Patterns of Fault Uplift Using Transient River Long Profiles. Geomorphology, 100(3/4): 506-526. https://doi.org/10.1016/j.geomorph.2008.01.018
    Wobus, C., Whipple, K. X., Kirby, E., et al., 2006. Tectonics from Topography: Procedures, Promise, and Pitfalls. Geological Society of America Special Papers, 398: 55-74 https://www.researchgate.net/profile/Eric_Kirby2/publication/228740545_Tectonics_from_topography_Procedures_promise_and_pitfalls/links/57d75a4a08ae6399a395aca6.pdf
    Xia, X. P., Sun, M., Zhao, G. C., et al., 2006. U-Pb and Hf Isotopic Study of Detrital Zircons from the Wulashan Khondalites: Constraints on the Evolution of the Ordos Terrane, Western Block of the North China Craton. Earth and Planetary Science Letters, 241(3/4): 581-593. https://doi.org/10.1016/j.epsl.2005.11.024
    Yang, Y. T., Li, W., Ma, L., 2005. Tectonic and Stratigraphic Controls of Hydrocarbon Systems in the Ordos Basin: A Multicycle Cratonic Basin in Central China. AAPG Bulletin, 89(2): 255-269. https://doi.org/10.1306/10070404027
    Zhao, H., Li, Y., Yang, J., et al., 2009. The Longitudinal Profiles of the Ten Rivers in North Tianshan Mountains and Their Tectonic Significance.Acta Geographica Sinica, 64(5): 563-570 (in Chinese with English Abstract) https://www.researchgate.net/publication/287843213_The_longitudinal_profiles_of_the_ten_rivers_in_north_tianhan_mountains_and_their_tectonic_significance
    Zhu, R. X., Chen, L., Wu, F. Y., et al., 2011. Timing, Scale and Mechanism of the Destruction of the North China Craton. Science China Earth Sciences, 54(6): 789-797. https://doi.org/10.1007/s11430-011-4203-4
    Zhu, R. X., Xu, Y. G., Zhu, G., et al., 2012. Destruction of the North China Craton. Science China Earth Sciences, 55(10): 1565-1587. https://doi.org/10.1007/s11430-012-4516-y
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views(968) PDF downloads(174) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return