Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 29 Issue 6
Nov 2018
Turn off MathJax
Article Contents
Shu Li, Zhenming Peng, Hao Wu. Prestack Multi-Gather Simultaneous Inversion of Elastic Parameters Using Multiple Regularization Constraints. Journal of Earth Science, 2018, 29(6): 1359-1371. doi: 10.1007/s12583-017-0905-7
Citation: Shu Li, Zhenming Peng, Hao Wu. Prestack Multi-Gather Simultaneous Inversion of Elastic Parameters Using Multiple Regularization Constraints. Journal of Earth Science, 2018, 29(6): 1359-1371. doi: 10.1007/s12583-017-0905-7

Prestack Multi-Gather Simultaneous Inversion of Elastic Parameters Using Multiple Regularization Constraints

doi: 10.1007/s12583-017-0905-7
Funds:

the key projects of Hunan Provincial Department of Education 16A174

the National Natural Science Foundation of China 41301460

the National Natural Science Foundation of China 61775030

the National Natural Science Foundation of China 61571096

the National Natural Science Foundation of China 61362018

the National Natural Science Foundation of China 41274127

More Information
  • Corresponding author: Zhenming Peng
  • Received Date: 27 Sep 2016
  • Accepted Date: 06 Mar 2017
  • Publish Date: 01 Dec 2018
  • Inversion of Young's modulus, Poisson's ratio and density from pre-stack seismic data has been proved to be feasible and effective. However, the existing methods do not take full advantage of the prior information. Without considering the lateral continuity of the inversion results, these methods need to invert the reflectivity first. In this paper, we propose multi-gather simultaneous inversion for pre-stack seismic data. Meanwhile, the total variation (TV) regularization, L1 norm regularization and initial model constraint are used. In order to solve the objective function contains L1 norm, TV norm and L2 norm, we develop an algorithm based on split Bregman iteration. The main advantages of our method are as follows:(1) The elastic parameters are calculated directly from objective function rather than from their reflectivity, therefore the stability and accuracy of the inversion process can be ensured. (2) The inversion results are more in accordance with the prior geological information. (3) The lateral continuity of the inversion results are improved. The proposed method is illustrated by theoretical model data and experimented with a 2-D field data.

     

  • loading
  • Baraniuk, R., 2007. Compressive Sensing. IEEE Signal Processing Magazine, 24(4):118-121. https://doi.org/10.1109/msp.2007.4286571 doi: 10.1109/MSP.2007.4286571
    Chen, S. S., Donoho, D. L., Saunders, M. A., 2001. Atomic Decomposition by Basis Pursuit. SIAM Review, 43(1):129-159. https://doi.org/10.1137/s003614450037906x doi: 10.1137/S003614450037906X
    Donoho, D. L., 2006. Compressed Sensing. IEEE Transactions on Information Theory, 52(4):1289-1306. https://doi.org/10.1109/TIT.2006.871582
    Gholami, A., 2015. Nonlinear Multichannel Impedance Inversion by Total-Variation Regularization. Geophysics, 80(5):R217-R224. https://doi.org/10.1190/geo2015-0004.1 10.1190/geo2015-0004.1
    Goldstein, T., Osher, S., 2009. The Split Bregman Method for L1-Regularized Problems. SIAM Journal on Imaging Sciences, 2(2):323-343. https://doi.org/10.1137/080725891
    Hamid, H., Pidlisecky, A., 2015. Multitrace Impedance Inversion with Lateral Constraints. Geophysics, 80(6):M101-M111. https://doi.org/10.1190/geo2014-0546.1 10.1190/geo2014-0546.1
    Harris, N. B., Miskimins, J. L., Mnich, C. A., 2011. Mechanical Anisotropy in the Woodford Shale, Permian Basin:Origin, Magnitude, and Scale. The Leading Edge, 30(3):284-291. https://doi.org/10.1190/1.3567259
    Huang, W., Zhou, H. W., 2015. Least-Squares Seismic Inversion with Stochastic Conjugate Gradient Method. Journal of Earth Science, 26(4):463-470. https://doi.org/10.1007/s12583-015-0553-8
    Mavko, G., Mukerji, T., Dvorkin, J., 2009. The Rock Physics Handbook:Tools for Seismic Analysis of Porous Media. Cambridge University Press, New York. 23. https://doi.org/10.1017/CBO9780511626753
    Pérez, D. O., Velis, D. R., Sacchi, M. D., 2014. Blocky Inversion of Prestack Seismic Data Using Mixed-Norms. 2014 SEG Annual Meeting, Denver. 3106-3111. https: //doi.org/10.1190/segam2014-0801.1
    Rickman, R., Mullen, M. J., Petre, J. E., et al., 2008. A Practical Use of Shale Petrophysics for Stimulation Design Optimization: All Shale Plays are not Clones of the Barnett Shale. SPE Annual Technical Conference and Exhibition, Halliburton. 21-24. https://doi.org/10.2118/115258-MS
    Rudin, L. I., Osher, S., Fatemi, E., 1992. Nonlinear Total Variation Based Noise Removal Algorithms. Physica D:Nonlinear Phenomena, 60(1/2/3/4):259-268. https://doi.org/10.1016/0167-2789(92)90242-f 10.1016/0167-2789(92)90242-f
    Russell, B. H., Dommico, S., 1988. Introduction to Seismic Inversion Methods. Society of Exploration Geophysicists, Tulsa. https://doi.org/10.1190/1.9781560802303
    Russell, B. H., 2014. Prestack Seismic Amplitude Analysis:An Integrated Overview. Interpretation, 2(2):SC19-SC36. https://doi.org/10.1190/int-2013-0122.1 doi: 10.1190/INT-2013-0122.1
    Sena, A., Castillo, G., Chesser, K., et al., 2011. Seismic Reservoir Characterization in Resource Shale Plays:Stress Analysis and Sweet Spot Discrimination. The Leading Edge, 30(7):758-764. https://doi.org/10.1190/1.3609090
    Walker, C., Ulrych, T. J., 1983. Autoregressive Recovery of the Acoustic Impedance. Geophysics, 48(10):1338-1350. https://doi.org/10.1190/1.1441414
    Yilmaz, Ö., 2001. Seismic Data Analysis. Society of Exploration Geophysicists, Tulsa. 1809. https://doi.org/10.1190/1.9781560801580
    Yin, X. Y., Liu, X. J., Zong, Z. Y., 2015. Pre-Stack Basis Pursuit Seismic Inversion for Brittleness of Shale. Petroleum Science, 12(4):618-627. https://doi.org/10.1007/s12182-015-0056-3
    Yuan, S. Y., Wang, S. X., Luo, C. M., et al., 2015. Simultaneous Multitrace Impedance Inversion with Transform-Domain Sparsity Promotion. Geophysics, 80(2):R71-R80. https://doi.org/10.1190/geo2014-0065.1
    Zhang, F. C., Dai, R. H., Liu, H. Q., 2014. Seismic Inversion Based on L1-Norm Misfit Function and Total Variation Regularization. Journal of Applied Geophysics, 109:111-118. https://doi.org/10.1016/j.jappgeo.2014.07.024
    Zhang, J., Liu, H. S., Tong, S. Y., et al., 2015. Estimation of Elastic Parameters Using Two-Term Fatti Elastic Impedance Inversion. Journal of Earth Science, 26(4):556-566. https://doi.org/10.1007/s12583-015-0564-5
    Zhang, R., Sen, M. K., Srinivasan, S., 2013. A Prestack Basis Pursuit Seismic Inversion. Geophysics, 78(1):R1-R11. https://doi.org/10.1190/geo2011-0502.1 http://adsabs.harvard.edu/abs/2012Geop...78R...1Z
    Zong, Z.-Y., Yin, X.-Y., Zhang, F., et al., 2012. Reflection Coefficient Equation and Pre-Stack Seismic Inversion with Young's Modulus and Poisson Ratio. Chinese Journal of Geophysics, 55(11):3786-3794. https://doi.org/10.6038/j.issn.0001-5733.2012.11.025(in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201211025
    Zong, Z.-Y., Yin, X.-Y., Wu, G. C., 2013. Elastic Impedance Parameterization and Inversion with Young's Modulus and Poisson's Ratio. Geophysics, 78(6):N35-N42. https://doi.org/10.1190/geo2012-0529.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)

    Article Metrics

    Article views(595) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return