Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 29 Issue 3
Aug 2018
Turn off MathJax
Article Contents
Youwei Chen, Ruizhong Hu, Xianwu Bi, Shaohua Dong, Yue Xu, Ting Zhou. Zircon U-Pb Ages and Sr-Nd-Hf Isotopic Characteristics of the Huichizi Granitic Complex in the North Qinling Orogenic Belt and Their Geological Significance Zircon U-Pb Ages and Sr-Nd-Hf Isotopic Characteristics of the Huichizi Granitic Complex in the North Qinling Orogenic Belt and Their Geological Significance. Journal of Earth Science, 2018, 29(3): 492-507. doi: 10.1007/s12583-017-0906-6
Citation: Youwei Chen, Ruizhong Hu, Xianwu Bi, Shaohua Dong, Yue Xu, Ting Zhou. Zircon U-Pb Ages and Sr-Nd-Hf Isotopic Characteristics of the Huichizi Granitic Complex in the North Qinling Orogenic Belt and Their Geological Significance Zircon U-Pb Ages and Sr-Nd-Hf Isotopic Characteristics of the Huichizi Granitic Complex in the North Qinling Orogenic Belt and Their Geological Significance. Journal of Earth Science, 2018, 29(3): 492-507. doi: 10.1007/s12583-017-0906-6

Zircon U-Pb Ages and Sr-Nd-Hf Isotopic Characteristics of the Huichizi Granitic Complex in the North Qinling Orogenic Belt and Their Geological Significance Zircon U-Pb Ages and Sr-Nd-Hf Isotopic Characteristics of the Huichizi Granitic Complex in the North Qinling Orogenic Belt and Their Geological Significance

doi: 10.1007/s12583-017-0906-6
More Information
  • Corresponding author: Ruizhong Hu, huruizhong@vip.gyig.ac.cn
  • Received Date: 20 Jun 2016
  • Accepted Date: 01 May 2017
  • Publish Date: 01 Jun 2018
  • The Huichizi granite complex is the largest Paleozoic Ⅰ-type intrusion located in the North Qinling orogenic belt (NQB). In this study, we present systematic geochemical element data, zircon U-Pb ages, Lu-Hf isotopic data, and Sr-Nd isotopic data for the Huichizi granites. In terms of mineral and chemical compositions, these granites are biotite monzonitic and alkali-feldspar granites, both of which are characterized by high SiO2 and total alkali contents and low MgO, TiO2, and TFeO contents. These granites are weakly peraluminous (A/CNK values are 1-1.06 for biotite monzonitic granites and 1.04-1.09 for alkali-feldspar granites) and possess the geochemical characteristics of adakitic rocks, e.g., high Sr contents (319 ppm-633 ppm), Sr/Y ratios (18.5-174), and (La/Yb)N ratios (17.6-57) and low MgO (0.04 wt.%-0.83 wt.%), Y (3.0 ppm-17.2 ppm), and heavy rare-earth element (HREE) contents. This indicates that these rocks were most likely derived from the partial melting of a thickened lower crust. In situ zircon U-Pb dating of these granites yields Early Caledonian ages (437 Ma for biotite monzonitic granites and 424 Ma for alkali-feldspar granites), indicating that the Huichizi granitic complex is the product of multi-periodic magmatism. The positive but varying zircon εHf(t) values (+0.6 to +8.5) suggest that this thickened lower crust was mainly juvenile, i.e., accreted from depleted mantle during the Neo-Mesoproterozoic Period, but involved the ancient recycled crust. Biotite monzonitic granites formed during crust thickening at the extrusion stage, whereas the alkali granites formed during crust thickening at the extension stage (post extrusion). The Huichizi granite complex witnessed the process of extrusion to extension because of the collision between the NCB and the Qinling microcontinent in the Caledonian.

     

  • loading
  • Amelin, Y., Lee, D. C., Halliday, A. N., et al., 1999. Nature of the Earth's Earliest Crust from Hafnium Isotopes in Single Detrital Zircons. Nature, 399(6733): 252-255. https://doi.org/10.1038/20426
    Bader, T., Ratschbacher, L., Franz, L., et al., 2013. The Heart of China Revisited, Ⅰ. Proterozoic Tectonics of the Qin Mountains in the Core of Supercontinent Rodinia. Tectonics, 32(3): 661-687. https://doi.org/10.1002/tect.20024
    Beard, J. S., Lofgren, G. E., 1991. Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3, and 6.9 kb. Journal of Petrology, 32(2): 365-401. https://doi.org/10.1093/petrology/32.2.365
    Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. https://doi.org/10.1007/s00410-002-0364-7
    Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1/2): 243-258. https://doi.org/10.1016/s0012-821x(97)00040-x
    Bottazzi, P., Tiepolo, M., Vannucci, R., et al., 1999. Distinct Site Preferences for Heavy and Light REE in Amphibole and the Prediction of Amph/L D REE. Contributions to Mineralogy and Petrology, 137(1/2): 36-45. https://doi.org/10.1007/s004100050580
    Cao, Y., Song, S. G., Su, L., et al., 2016. Highly Refractory Peridotites in Songshugou, Qinling Orogen: Insights into Partial Melting and Melt/Fluid-Rock Reactions in Forearc Mantle. Lithos, 252/253: 234-254. https://doi.org/10.13039/501100001809
    Castillo, P. R., 2006. An Overview of Adakite Petrogenesis. Chinese Science Bulletin, 51(3): 257-268. https://doi.org/10.1007/s11434-006-0257-7
    Castillo, P. R., Janney, P. E., Solidum, R. U., 1999. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting. Contributions to Mineralogy and Petrology, 134(1): 33-51. https://doi.org/10.1007/s004100050467
    Chen, D. L., 2004. LA-ICP-MS Zircon U-Pb Dating for High-Pressure Basic Granulite from North Qinling and Its Geological Significance. Chinese Science Bulletin, 49(21): 2296-2304 (in Chinese) doi: 10.1360/03wd0544
    Chen, D. L., Liu, L., 2011. New Data on the Chronology of Eclogite Andassociated Rock from Guanpo Area, North Qinling Orogeny and Its Constraint on Nature of North Qinling HP-UHP Eclogite Terrane. Earth Science Frontiers, 18(2): 158-168 (in Chinese with English abstract) https://www.researchgate.net/publication/284697932_New_data_on_the_chronology_of_eclogite_and_associated_rock_from_Guanpo_Area_North_Qinling_orogeny_and_its_constraint_on_nature_of_North_Qinling_HP-UHP_eclogite_terrane
    Chen, D. L., Ren, Y. F., Gong, X. K., et al., 2015. Identification and Its Geological Significance of Eclogite Insongshugou, the North Qinling. Acta Petrologica Sinica, 31(7): 1841-1854 (in Chinese with English Abstract) http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20150703
    Chen, N. S., Han, Y. Q., You, Z. D., et al., 1991. Whole-Rock Sm-Nd, Rb-Sr, and Single Grain Zircon Pb-Pb Dating of Complex Rocks from the Interior of the Qinling Orogenic Belt, Western Henan and Its Crustal Evolution. Geochemica, 20(3): 219-228 (in Chinese with English Abstract) https://www.deepdyve.com/lp/elsevier/tectonic-evolution-of-the-qinling-orogenic-belt-central-china-new-QC3wh8lyCu
    Chen, Y. J., 2010. Indosinian Tectonic Setting, Magmatism and Metallogenesis in Qinling Orogen, Central China. Geology in China, 37(4): 854-866 (in Chinese with English Abstract) https://www.deepdyve.com/lp/wiley/episodic-triassic-magmatism-in-the-western-south-qinling-orogen-0LWmM0xpKw
    Cheng, H., Zhang, C., Vervoort, J. D., et al., 2011. Geochronology of the Transition of Eclogite to Amphibolite Facies Metamorphism in the North Qinling Orogen of Central China. Lithos, 125(3/4): 969-983. https://doi.org/10.1016/j.lithos.2011.05.010
    Cheng, H., Zhang, C., Vervoort, J. D., et al., 2012. Timing of Eclogite Facies Metamorphism in the North Qinling by U-Pb and Lu-Hf Geochronology. Lithos, 136-139: 46-59. https://doi.org/10.1016/j.lithos.2011.06.003
    Chung, S. L., Liu, D. Y., Ji, J. Q., et al., 2003. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust beneath Southern Tibet. Geology, 31(11): 1021. https://doi.org/10.1130/g19796.1
    Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0
    Ding, X., Hu, Y. H., Zhang, H., et al., 2013. Major Nb/Ta Fractionation Recorded in Garnet Amphibolite Facies Metagabbro. The Journal of Geology, 121(3): 255-274. https://doi.org/10.1086/669978
    Ding, X., Lundstrom, C., Huang, F., et al., 2009. Natural and Experimental Constraints on Formation of the Continental Crust Based on Niobium-Tantalum Fractionation. International Geology Review, 51(6): 473-501. https://doi.org/10.1080/00206810902759749
    Diwu, C. R., Sun, Y., Liu, L., et al., 2010. The Disintegration of Kuanping Group in North Qinling Orogenic Belts and Neo-Proterozoic N-MORB. Acta Petrologica Sinica, 26(7): 2025-2038 (in Chinese with English Abstract) http://www.oalib.com/paper/1473530
    Diwu, C. R., Sun, Y., Zhao, Y., et al., 2014. Geochronological, Geochemical, and Nd-Hf Isotopic Studies of the Qinling Complex, Central China: Implications for the Evolutionary History of the North Qinling Orogenic Belt. Geoscience Frontiers, 5(4): 499-513. https://doi.org/10.1016/j.gsf.2014.04.001
    Dong, Y. P., Genser, J., Neubauer, F., et al., 2011a. U-Pb and 40Ar/39Ar Geochronological Constraints on the Exhumation History of the North Qinling Terrane, China. Gondwana Research, 19(4): 881-893. https://doi.org/10.1016/j.gr.2010.09.007
    Dong, Y. P., Zhang, G. W., Hauzenberger, C., et al., 2011b. Palaeozoic Tectonics and Evolutionary History of the Qinling Orogen: Evidence from Geochemistry and Geochronology of Ophiolite and Related Volcanic Rocks. Lithos, 122(1/2): 39-56. https://doi.org/10.13039/501100001809
    Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011c. Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 41(3): 213-237. https://doi.org/10.1016/j.jseaes.2011.03.002
    Dong, Y. P., Santosh, M., 2016. Tectonic Architecture and Multiple Orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1): 1-40. https://doi.org/10.13039/501100001809
    Dong, Y. P., Yang, Z., Liu, X. M., et al., 2014. Neoproterozoic Amalgamation of the Northern Qinling Terrain to the North China Craton: Constraints from Geochronology and Geochemistry of the Kuanping Ophiolite. Precambrian Research, 255: 77-95. https://doi.org/10.13039/501100001809
    Dong, Y. P., Zhang, X. N., Liu, X. M., et al., 2015. Propagation Tectonics and Multiple Accretionary Processes of the Qinling Orogen. Journal of Asian Earth Sciences, 104: 84-98. https://doi.org/10.13039/501100001809
    Dostal, J., Chatterjee, A. K., 2000. Contrasting Behaviour of Nb/Ta and Zr/Hf Ratios in a Peraluminous Granitic Pluton (Nova Scotia, Canada). Chemical Geology, 163(1-4): 207-218. https://doi.org/10.1016/s0009-2541(99)00113-8
    Feeley, T. C., Hacker, M. D., 1995. Intracrustal Derivation of Na-Rich Andesitic and Dacitic Magmas: An Example from Volcán Ollagüe, Andean Central Volcanic Zone. The Journal of Geology, 103(2): 213-225. https://doi.org/10.1086/629737
    Foley, S. F., Barth, M. G., Jenner, G. A., 2000. Rutile/Melt Partition Coefficients for Trace Elements and an Assessment of the Influence of Rutile on the Trace Element Characteristics of Subduction Zone Magmas. Geochimica et Cosmochimica Acta, 64(5): 933-938. https://doi.org/10.1016/s0016-7037(99)00355-5
    Foley, S., Tiepolo, M., Vannucci, R., 2002. Growth of Early Continental Crust Controlled by Melting of Amphibolite in Subduction Zones. Nature, 417(6891): 837-840. https://doi.org/10.1038/nature00799
    Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892-897. https://doi.org/10.1038/nature03162
    Green, T. H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chemical Geology, 120(3/4): 347-359. https://doi.org/10.1016/0009-2541(94)00145-x
    Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3/4): 237-269. https://doi.org/10.1016/s0024-4937(02)00082-8
    Guo, F., Nakamuru, E., Fan, W., et al., 2007. Generation of Palaeocene Adakitic Andesites by Magma Mixing, Yanji Area, NE China. Journal of Petrology, 48(4): 661-692. https://doi.org/10.1093/petrology/egl077
    Hacker, B. R., Ratschbacher, L., Liou, J. G., 2004. Subduction, Collision and Exhumation in the Ultrahigh-Pressure Qinling-Dabie Orogen. Geological Society, London, Special Publications, 226(1): 157-175. https://doi.org/10.1144/gsl.sp.2004.226.01.09
    Hoskin, P. W. O., Black, L. P., 2002. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4): 423-439. https://doi.org/10.1046/j.1525-1314.2000.00266.x
    Hu, J. M., Cui, J. T., Meng, Q. R., et al., 2004. The U-Pb Age of Zircons Separated from the Zhashui Granite in Qinling Orogen and Its Significance. Geological Review, 50(3): 323-329 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200403016.htm
    Huang, F., He, Y. S., 2010. Partial Melting of the Dry Mafic Continental Crust: Implications for Petrogenesis of C-Type Adakites. Chinese Science Bulletin, 55(22): 2428-2439. https://doi.org/10.1007/s11434-010-3224-2
    Huang, X. L., Xu, Y. G., Lan, J. B., et al., 2009. Neoproterozoic Adakitic Rocks from Mopanshan in the Western Yangtze Craton: Partial Melts of a Thickened Lower Crust. Lithos, 112(3/4): 367-381. https://doi.org/10.1016/j.lithos.2009.03.028
    Jochum, K. P., Seufert, H. M., Spettel, B., et al., 1986. The Solar-System Abundances of Nb, Ta, and Y, and the Relative Abundances of Refractory Lithophile Elements in Differentiated Planetary Bodies. Geochimica et Cosmochimica Acta, 50(6): 1173-1183. https://doi.org/10.1016/0016-7037(86)90400-x
    Kay, R. W., Kay, S. M., 2002. Andean Adakites: Three Ways to Make them. Acta Petrologica Sinica, 18(2): 303-311 (in Chinese with English Abstract) https://www.researchgate.net/profile/Suzanne_Kay/publication/241599917_Andean_Adakites_Products_of_Slab_Melting_Magma_Evolution_in_Thickened_Crust_and_Crustal_Recycling_by_Forearc_Subduction_Erosion/links/5563b0f308ae9963a11ef32f.pdf?disableCoverPage=true
    Kröner, A., Zhang, G. W., Sun, Y., 1993. Granulites in the Tongbai Area, Qinling Belt, China: Geochemistry, Petrology, Single Zircon Geochronology, and Implications for the Tectonic Evolution of Eastern Asia. Tectonics, 12(1): 245-255. https://doi.org/10.1029/92tc01788
    Lei, M., 2010. Petrogenesis of Granites and Their Relation to Tectonic Evolution of Orogenin the East Part of Qinling Orogenic Belt: [Dissertation]. Chinese Academy of Geological Sciences, Beijing. 1-162 (in Chinese)
    Li, N., Chen, Y. J., Santosh, M., et al., 2015. Compositional Polarity of Triassic Granitoids in the Qinling Orogen, China: Implication for Termination of the Northernmost Paleo-Tethys. Gondwana Research, 27(1): 244-257. https://doi.org/10.13039/501100001809
    Li, S. Z., Kusky, T. M., Wang, L., et al., 2007. Collision Leading to Multiple-Stage Large-Scale Extrusion in the Qinling Orogen: Insights from the Mianlue Suture. Gondwana Research, 12(1/2): 121-143. https://doi.org/10.1016/j.gr.2006.11.011
    Li, W., Wang, T., Wang, X., 2001. Source of Huichizi Granitoid Complex Pluton in Northern Qinling, Central China: Constrained in Element and Isotopic Geochemistry. Earth ScienceJournal of China University of Geosciences, 26(3): 269-278 (in Chinese with English Abstract) doi: 10.1007/s12583-017-0906-6
    Li, W., Wang, T., Wang, X., et al., 2000. Single Zircon Dating of the Huichizi Complex, North Qinling: Its Geological Significance. Regional Geology of China, 19(2):172-174 (in Chinese with English Abstract)
    Liang, J. L., Ding, X., Sun, X. M., et al., 2009. Nb/Ta Fractionation Observed in Eclogites from the Chinese Continental Scientific Drilling Project. Chemical Geology, 268(1/2): 27-40. https://doi.org/10.1016/j.chemgeo.2009.07.006
    Liu, B. X., 2014. Magmatism and Crustal Evolution in the Eastern North Qinling Terrain: [Dissertation]. University of Science and Technology of China, Hefei. 90-162 (in Chinese with English Abstract)
    Liu, J. F., Sun, Y., Tong, L. X., et al., 2009. Emplacement Age of the Songshugou Ultramafic Massif in the Qinling Orogenic Belt, and Geologic Implications. International Geology Review, 51(1): 58-76. https://doi.org/10.1080/00206810802650576
    Liu, L., Chen, D. L., Sun, Y., et al., 2003. Discovery of Relic Majoritic Garnet in Felsic Metamorphic Rocks of Qinling Complex, North Qinling Orogenic Belt, China. Alice Wain Memorial Western Norway Eclogite Field Symposium, Selje, Western Noway. 1: 82
    Liu, L., Liao, X. Y., Zhang, C. L., et al., 2013. Multi-Metamorphic Timings of HP-UHP Rocks in the North Qinling and Their Geological Implications. Acta Petrologica Sinica, 29(5): 1634-1656 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201305015.htm
    Liu, L., Yang, J. X., Chen, D. L., et al., 2010. Progress and Controversy in the Study of HP-UHP Metamorphic Terranes in the West and Middle Central China Orogen. Journal of Earth Science, 21(5): 581-597. https://doi.org/10.1007/s12583-010-0128-7
    Liu, Q., Wu, Y. B., Wang, H., et al., 2014. Zircon U-Pb Ages and Hf Isotope Compositions of Migmatites from the North Qinling Terrane and Their Geological Implications. Journal of Metamorphic Geology, 32(2): 177-193. https://doi.org/10.1111/jmg.12065
    Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
    Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434-010-3052-4
    Lu, S. N., Chen, Z. H., Xiang, Z. Q., 2006. U-Pb Ages of Detrital Zircons from the Para-Metamorphic Rocks of the Qinling Group and Their Geological Significance. Earth Science Frontiers, 13(6): 303-310 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY200606038.htm
    Lu, S. N., Li, H. K., Chen, Z. H., et al., 2003. Neoproterozoic Geological Evolution of the Qinling Orogen and Respond to Events of Rodinia Supercontinents. Geology Publishing House, Beijing. 1-193 (in Chinese)
    Lu, S. N., Yu, H. F., Li, H. K., et al., 2009. Precambrian Geology of Central Orogen (Western and Middle Part). Geology Publishing House, Beijing. 203 (in Chinese)
    Lu, X. X., Dong, Y., Chang, Q. L., et al., 1996. Indosinian Shahewan Rapakivi Granite in Qinling and Its Dynamic Significance. Science in China(Series D: Earth Sciences, 39(3): 266-272 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JDXG199603004.htm
    Lu, X. X., Dong, Y., Wei, X. D., et al., 1999. Age of Tuwushan A-Type Granite in the East Qinling and Its Tectonic Implications. Chinese Science Bulletin, 44(9): 975-978 (in Chinese with English Abstract) https://www.researchgate.net/profile/Zhiwei_Bao/publication/225443203_Geochronology_and_geochemistry_of_the_Fangcheng_Neoproterozoic_alkali-syenites_in_East_Qinling_orogen_and_its_geodynamic_implications/links/5423b3250cf26120b7a6d1dd.pdf?disableCoverPage=true
    Ludwig, K. R., 2003. User's Manual for Isoplot 3. 00. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, CA Special Publication, Berkeley. 1-10
    Ma, L., Wang, B. D., Jiang, Z. Q., et al., 2014. Petrogenesis of the Early Eocene Adakitic Rocks in the Napuri Area, Southern Lhasa: Partial Melting of Thickened Lower Crust during Slab Break-off and Implications for Crustal Thickening in Southern Tibet. Lithos, 196/197: 321-338. https://doi.org/10.1016/j.lithos.2014.02.011
    Macpherson, C. G., Dreher, S. T., Thirlwall, M. F., 2006. Adakites without Slab Melting: High Pressure Differentiation of Island Arc Magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3/4): 581-593. https://doi.org/10.1016/j.epsl.2005.12.034
    Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2
    Martin, H., 1999. Adakitic Magmas: Modern Analogues of Archaean Granitoids. Lithos, 46(3): 411-429. https://doi.org/10.1016/s0024-4937(98)00076-0
    Martin, H., Smithies, R. H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 79(1/2): 1-24. https://doi.org/10.1016/j.lithos.2004.04.048
    Mattauer, M., Matte, P., Malavieille, J., et al., 1985. Tectonics of the Qinling Belt: Build-up and Evolution of Eastern Asia. Nature, 317(6037): 496-500. https://doi.org/10.1038/317496a0
    Meng, Q. R., Zhang, G. W., 1999. Timing of Collision of the North and South China Blocks: Controversy and Reconciliation. Geology, 27(2): 123. https://doi.org/10.1130/0091-7613(1999)027<0123:tocotn>2.3.co;2 doi: 10.1130/0091-7613(1999)027<0123:tocotn>2.3.co;2
    Meng, Q. R., Zhang, G. W., 2000. Geologic Framework and Tectonic Evolution of the Qinling Orogen, Central China. Tectonophysics, 323(3/4): 183-196. https://doi.org/10.1016/s0040-1951(00)00106-2
    Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
    Moyen, J. F., 2009. High Sr/Y and La/Yb Ratios: The Meaning of the "Adakitic Signature". Lithos, 112(3/4): 556-574. https://doi.org/10.1016/j.lithos.2009.04.001
    Muir, R. J., Weaver, S. D., Bradshaw, J. D., et al., 1995. The Cretaceous Separation Point Batholith, New Zealand: Granitoid Magmas Formed by Melting of Mafic Lithosphere. Journal of the Geological Society, 152(4): 689-701. https://doi.org/10.1144/gsjgs.152.4.0689
    Peacock, S. M., Rushmer, T., Thompson, A. B., 1994. Partial Melting of Subducting Oceanic Crust. Earth and Planetary Science Letters, 121(1/2): 227-244. https://doi.org/10.1016/0012-821x(94)90042-6
    Pearce, J. A., Harris, N. B. W, Tindle, A. G, 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
    Petford, N., Atherton, M., 1996. Na-Rich Partial Melts from Newly Underplated Basaltic Crust: The Cordillera Blanca Batholith, Peru. Journal of Petrology, 37(6): 1491-1521. https://doi.org/10.1093/petrology/37.6.1491
    Prouteau, G., Scaillet, B., Pichavant, M., et al., 2001. Evidence for Mantle Metasomatism by Hydrous Silicic Melts Derived from Subducted Oceanic Crust. Nature, 410(6825): 197-200. https://doi.org/10.1038/35065583
    Qi, L., Hu, J., Gregoire, D. C., 2000. Determination of Trace Elements in Granites by Inductively Coupled Plasma Mass Spectrometry. Talanta, 51(3): 507-513. https://doi.org/10.1016/S0039-9140(99)00318-5
    Qian, J. H., Yang, X. Q., Liu, L., et al., 2013. Zircon U-Pb Dating, Mineral Inclusions, Lu-Hf Isotopic Data and Their Geological Significance of Garnet Amphibolite from Songshugou, North Qinling. Acta Petrologica Sinica, 29(9): 3087-3098 (in Chinese with English Abstract) doi: 10.1007/s12583-017-0906-6
    Qian, Q., Hermann, J., 2013. Partial Melting of Lower Crust at 10-15 kbar: Constraints on Adakite and TTG Formation. Contributions to Mineralogy and Petrology, 165(6): 1195-1224. https://doi.org/10.1007/s00410-013-0854-9
    Qin, J. F., 2010. Petrogenesis and Geodynamic Implications of the Late-Triassic Granitoids from the Qinling Orogenic Belt: [Dissertation]. Northwest University, Xi'an. 78-163 (in Chinese with English Abstract)
    Qin, J. F., Lai, S. C., Li, Y. F., 2007. Genesis of the Indosinian Guangtoushan Adakitic Biotite Plagiogranite in the Mianxian-Lueyang (Mianlue) Suture, South Qinling, China, and Its Tectonic Implications. Geological Bulletin of China, 26(4): 466-471 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200704012.htm
    Qin, J. F., Lai, S. C., Li, Y. F., 2013. Multi-Stage Granitic Magmatism during Exhumation of Subducted Continental Lithosphere: Evidence from the Wulong Pluton, South Qinling. Gondwana Research, 24(3/4): 1108-1126. https://doi.org/10.1016/j.gr.2013.02.005
    Qin, Z. W., Wu, Y. B., Siebel, W., et al., 2015. Genesis of Adakitic Granitoids by Partial Melting of Thickened Lower Crust and Its Implications for Early Crustal Growth: A Case Study from the Huichizi Pluton, Qinling Orogen, Central China. Lithos, 238: 1-12. https://doi.org/10.13039/501100001809
    Rapp, R. P., Shimizu, N., Norman, M. D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356. https://doi.org/10.1016/s0009-2541(99)00106-0
    Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891
    Rapp, R. P., Watson, E. B., Miller, C. F., 1991. Partial Melting of Amphibolite/Eclogite and the Origin of Archean Trondhjemites and Tonalites. Precambrian Research, 51(1-4): 1-25. https://doi.org/10.1016/0301-9268(91)90092-o
    Ratschbacher, L., Hacker, B. R., Calvert, A., et al., 2003. Tectonics of the Qinling (Central China): Tectonostratigraphy, Geochronology, and Deformation History. Tectonophysics, 366(1/2): 1-53. https://doi.org/10.1016/s0040-1951(03)00053-2
    Ren, J. S., Niu, B. G., Liu, Z. G., 1999. Soft Collision, Superposition Orogeny and Polycyclic Suturing. Earth Science Frontiers, 6(3): 85-93 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY199903010.htm
    Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry, 3: 1-64 http://minersoc.org/pages/Archive-MM/Volume_58A/58A-2-959.pdf
    Rushmer, T., 1991. Partial Melting of Two Amphibolites: Contrasting Experimental Results under Fluid-Absent Conditions. Contributions to Mineralogy and Petrology, 107(1): 41-59. https://doi.org/10.1007/bf00311184
    Scherer, E., 2001. Calibration of the Lutetium-Hafnium Clock. Science, 293(5530): 683-687. https://doi.org/10.1126/science.1061372
    Sen, C., Dunn, T., 1994. Dehydration Melting of a Basaltic Composition Amphibolite at 1.5 and 2.0 GPa: Implications for the Origin of Adakites. Contributions to Mineralogy and Petrology, 117(4): 394-409. https://doi.org/10.1007/bf00307273
    Shi, Y., Yu, J. H., Santosh, M., 2013. Tectonic Evolution of the Qinling Orogenic Belt, Central China: New Evidence from Geochemical, Zircon U-Pb Geochronology and Hf Isotopes. Precambrian Research, 231(5): 19-60. https://doi.org/10.1016/j.precamres.2013.03.001
    Shi, Y., Yu, J. H., Xu, X. S., et al., 2009. Geoehrenology and Geochemistry of the Qinling Group in the Eastern Qinling Orogen. Acta Petrologica Sinica, 25(10): 2651-2670 (in Chinese with English Abstract) http://www.oalib.com/paper/1472735
    Smithies, R. H., 2000. The Archaean Tonalite-Trondhjemite-Granodiorite (TTG) Series is not an Analogue of Cenozoic Adakite. Earth and Planetary Science Letters, 182(1): 115-125. https://doi.org/10.1016/s0012-821x(00)00236-3
    Stern, C. R., Kilian, R., 1996. Role of the Subducted Slab, Mantle Wedge and Continental Crust in the Generation of Adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology, 123(3): 263-281. https://doi.org/10.1007/s004100050155
    Streck, M. J., Leeman, W. P., Chesley, J., 2007. High-Magnesian Andesite from Mount Shasta: A Product of Magma Mixing and Contamination, not a Primitive Mantle Melt. Geology, 35(4): 351. https://doi.org/10.1130/g23286a.1
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Sun, W. D., Li, S. G., Chen, Y. D., et al., 2002. Timing of Synorogenic Granitoids in the South Qinling, Central China: Constraints on the Evolution of the Qinling-Dabie Orogenic Belt. The Journal of Geology, 110(4): 457-468. https://doi.org/10.1086/340632
    Sun, Y., Lu, X., Han, S., et al., 1996. Composition and Formation of Paleozoic Erlangping Ophiolitic Slab, North Qinling: Evidence from Geology and Geochemistry. Science in China Series D: Earth Sciences, 39(Sl): 50-59 http://www.cnki.com.cn/Article/CJFDTOTAL-JDXG1996S1006.htm
    Sun, W. D., Li, S. G., Sun, Y., et al., 1996. Chronology and Geochemistry of a Lava Pillow in the Erlangping Group at Xixia in the Northern Qinling Mountains. Geological Review, 42(6): 144-153 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP199602006.htm
    Vervoort, J. D., Blichert-Toft, J., 1999. Evolution of the Depleted Mantle: Hf Isotope Evidence from Juvenile Rocks through Time. Geochimica et Cosmochimica Acta, 63(3/4): 533-556. https://doi.org/10.1016/s0016-7037(98) 00274-9 doi: 10.1016/s0016-7037(98)00274-9
    Vervoort, J. D., Patchett, P. J., 1996. Behavior of Hafnium and Neodymium Isotopes in the Crust: Constraints from Precambrian Crustally Derived Granites. Geochimica et Cosmochimica Acta, 60(19): 3717-3733. https://doi.org/10.1016/0016-7037(96)00201-3
    Wan, Y. S., Liu, D. Y., Dong, C. Y., et al., 2011. SHRIMP Zircon Dating of Meta-Sedimentary Rock from the Qinling Group in the North of Xixia, North Qinling Orogenic Belt: Constraints on Complex Histories of Source Region and Timing of Deposition and Metamorphism. Acta Petrologica Sinica, 27(4): 1172-1178 (in Chinese with English Abstract) http://www.oalib.com/paper/1474051
    Wang, H., Wu, Y. B., Gao, S., et al., 2011. Eclogite Origin and Timings in the North Qinling Terrane, and Their Bearing on the Amalgamation of the South and North China Blocks. Journal of Metamorphic Geology, 29(9): 1019-1031. https://doi.org/10.1111/j.1525-1314.2011.00955.x
    Wang, H., Wu, Y. B., Gao, S., et al., 2013. Continental Origin of Eclogites in the North Qinling Terrane and Its Tectonic Implications. Precambrian Research, 230: 13-30. https://doi.org/10.1016/j.precamres.2012.12.010
    Wang, H., Wu, Y. B., Gao, S., et al., 2014a. Deep Subduction of Continental Crust in Accretionary Orogen: Evidence from U-Pb Dating on Diamond-Bearing Zircons from the Qinling Orogen, Central China. Lithos, 190/191(3): 420-429. https://doi.org/10.1016/j.lithos.2013.12.021
    Wang, H., Wu, Y. B., Li, C. R., et al., 2014b. Recycling of Sediment into the Mantle Source of K-Rich Mafic Rocks: Sr-Nd-Hf-O Isotopic Evidence from the Fushui Complex in the Qinling Orogen. Contributions to Mineralogy and Petrology, 168(4): 1-19. https://doi.org/10.1007/s00410-014-1062-y
    Wang, H., Wu, Y. B., Gao, S., et al., 2016. Continental Growth through Accreted Oceanic Arc: Zircon Hf-O Isotope Evidence for Granitoids from the Qinling Orogen. Geochimica et Cosmochimica Acta, 182: 109-130. https://doi.org/10.13039/501100001809
    Wang, Q., Wyman, D. A., Xu, J. F., et al., 2006. Petrogenesis of Cretaceous Adakitic and Shoshonitic Igneous Rocks in the Luzong Area, Anhui Province (Eastern China): Implications for Geodynamics and Cu-Au Mineralization. Lithos, 89(3/4): 424-446. https://doi.org/10.1016/j.lithos.2005.12.010
    Wang, Q., Wyman, D. A., Xu, J. F., et al., 2007. Partial Melting of Thickened or Delaminated Lower Crust in the Middle of Eastern China: Implications for Cu-Au Mineralization. The Journal of Geology, 115(2): 149-161. https://doi.org/10.1086/510643
    Wang, Q., Xu, J. F., Jian, P., et al., 2005. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 47(1): 119-144. https://doi.org/10.1093/petrology/egi070
    Wang, T., Hu, N. G., Pei, X. Z., et al., 1997. The Composition, Tectonic Framework and Evolution of Qinling Complex, Central China. Acta Geoscientia Sinica, 18(4): 345-351 (in Chinese with English Abstract) https://www.deepdyve.com/lp/elsevier/geologic-framework-and-tectonic-evolution-of-the-qinling-orogen-eZtNnctRPs
    Wang, T., Wang, X. X., Li, W. P., 2000. Evaluation of Multiple Emplacement Mechanisms: The Huichizi Granite Pluton, Qinling Orogenic Belt, Central China. Journal of Structural Geology, 22(4): 505-518. https://doi.org/10.1016/s0191-8141(99)00169-8
    Wang, T., Wang, X. X., Tian, W., et al., 2009. North Qinling Paleozoic Granite Associations and Their Variation in Space and Time: Implications for Orogenic Processes in the Orogens of Central China. Science in China Series D: Earth Sciences, 52(9): 1359-1384. https://doi.org/10.1007/s11430-009-0129-5
    Wang, X. X., Wang, T., Zhang, C. L., 2013. Neoproterozoic, Paleozoic, and Mesozoic Granitoid Magmatism in the Qinling Orogen, China: Constraints on Orogenic Process. Journal of Asian Earth Sciences, 72(4): 129-151. https://doi.org/10.1016/j.jseaes.2012.11.037
    Wang, X. X., Wang, T., Zhang, C. L., 2015. Granitoid Magmatism in the Qinling Orogen, Central China and Its Bearing on Orogenic Evolution. Science China: Earth Sciences, 58(9): 1497-1512. https://doi.org/10.1007/s11430-015-5150-2
    Wareham, C. D., Millar, I. L., Vaughan, A. P. M., 1997. The Generation of Sodic Granite Magmas, Western Palmer Land, Antarctic Peninsula. Contributions to Mineralogy and Petrology, 128(1): 81-96. https://doi.org/10.1007/s004100050295
    Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards and Geoanalytical Research, 19(1): 1-23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x
    Wolde, B., Team, G. G. G., 1996. Tonalite-Trondhjemite-Granite Genesis by Partial Melting of Newly Underplated Basaltic Crust: An Example from the Neoproterozoic Birbir Magmatic Arc, Western Ethiopia. Precambrian Research, 76(1/2): 3-14. https://doi.org/10.1016/0301-9268(95)00016-x
    Wolf, M. B., Wyllie, P. J., 1994. Dehydration-Melting of Amphibolite at 10 kbar: The Effects of Temperature and Time. Contributions to Mineralogy and Petrology, 115(4): 369-383. https://doi.org/10.1007/bf00320972
    Wu, F. Y., Li, X. H., Yang, J. H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200706000.htm
    Wu, F. Y., Yang, Y. H., Xie, L. W., et al., 2006. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology. Chemical Geology, 234(1/2): 105-126. https://doi.org/10.1016/j.chemgeo.2006.05.003
    Wu, Y. B., Hanchar, J. M., Gao, S., et al., 2009. Age and Nature of Eclogites in the Huwan Shear Zone, and the Multi-Stage Evolution of the Qinling-Dabie-Sulu Orogen, Central China. Earth and Planetary Science Letters, 277(3/4): 345-354. https://doi.org/10.1016/j.epsl.2008.10.031
    Wu, Y. B., Zheng, Y. F., 2013. Tectonic Evolution of a Composite Collision Orogen: An Overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu Orogenic Belt in Central China. Gondwana Research, 23(4): 1402-1428. https://doi.org/10.13039/501100002855
    Xiong, X. L., 2006. Trace Element Evidence for Growth of Early Continental Crust by Melting of Rutile-Bearing Hydrous Eclogite. Geology, 34(11): 945-948. https://doi.org/10.1130/g22711a.1
    Xiong, X. L., Adam, J., Green, T. H., 2005. Rutile Stability and Rutile/Melt HFSE Partitioning during Partial Melting of Hydrous Basalt: Implications for TTG Genesis. Chemical Geology, 218(3/4): 339-359. https://doi.org/10.1016/j.chemgeo.2005.01.014
    Xiong, X. L., Adam, J., Green, T. H., et al., 2006. Trace Element Characteristics of Partial Melts Produced by Melting of Metabasalts at High Pressures: Constraints on the Formation Condition of Adakitic Melts. Science in China Series D: Earth Sciences, 49(9): 915-925. https://doi.org/10.1007/s11430-006-0915-2
    Xiong, X. L., Keppler, H., Audétat, A., et al., 2011. Partitioning of Nb and Ta between Rutile and Felsic Melt and the Fractionation of Nb/Ta during Partial Melting of Hydrous Metabasalt. Geochimica et Cosmochimica Acta, 75(7): 1673-1692. https://doi.org/10.1016/j.gca.2010.06.039
    Xiong, X. L., Keppler, H., Audétat, A., et al., 2009. Experimental Constraints on Rutile Saturation during Partial Melting of Metabasalt at the Amphibolite to Eclogite Transition, with Applications to TTG Genesis. American Mineralogist, 94(8/9): 1175-1186. https://doi.org/10.2138/am.2009.3158
    Xu, B., Grove, M., Wang, C. Q., et al., 2000. 40Ar/39Ar Thermochronology from the Northwestern Dabie Shan: Constraints on the Evolution of Qinling-Dabie Orogenic Belt, East-Central China. Tectonophysics, 322(3/4): 279-301. https://doi.org/10.1016/s0040-1951(00)00092-5
    Xue, F., Lerch, M. F., Kröner, A., et al., 1996. Tectonic Evolution of the East Qinling Mountains, China, in the Palaeozoic: A Review and New Tectonic Model. Tectonophysics, 253(3/4): 271-284. https://doi.org/10.1016/0040-1951(95)00060-7
    Yan, Q. R., Wang, Z. Q., Yan, Z., et al., 2009. Tectonic Affinity and Timing of Two Types of Amphibolites within the Qinling Group, North Qinling Orogenic Belt. Acta Petrologica Sinica, 25(9): 2177-2194 (in Chinese with English Abstract) http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20090912
    Yan, Z., Wang, Z. Q., Yan, Q. R., et al., 2006a. Devonian Sedimentary Environments and Provenance of the Qinling Orogen: Constraints on Late Paleozoic Southward Accretionary Tectonics of the North China Craton. International Geology Review, 48(7): 585-618. https://doi.org/10.2747/0020-6814.48.7.585
    Yan, Z., Wang, Z., Wang, T., et al., 2006b. Provenance and Tectonic Setting of Clastic Deposits in the Devonian Xicheng Basin, Qinling Orogen, Central China. Journal of Sedimentary Research, 76(3): 557-574. https://doi.org/10.2110/jsr.2006.046
    Yang, J. S., Liu, F. L., Wu, C., et al., 2005. Two Ultrahigh-Pressure Metamorphic Events Recognized in the Central Orogenic Belt of China: Evidence from the U-Pb Dating of Coesite-Bearing Zircons. International Geology Review, 47(4): 327-343. https://doi.org/10.2747/0020-6814.47.4.327
    Yang, J. S., Xu, Z. Q., Dobrzhinetskaya, L. F., et al., 2003. Discovery of Metamorphic Diamonds in Central China: An Indication of a>4 000-km-Long Zone of Deep Subduction Resulting from Multiple Continental Collisions. Terra Nova, 15(6): 370-379. https://doi.org/10.1046/j.1365-3121.2003.00511.x
    Yang, J. S., Xu, Z. Q., Pei, X. Z., et al., 2002. Discovery of Diamond in North Qinling: Evidence for a Giant UHPM Belt across Central China and Recognition of Paleozoic and Mesozoic Dual Deep Subduction between North China and Yangtze Plates. Acta Geologica Sinica, 76(4): 484-495 (in Chinese with English Abstract)
    Yang, L., Chen, F. K., Yang, Y. Z., et al., 2010. Zircon U-Pb Ages of the Qinling Group in Danfeng Area: Recording Mesoproterozoic and Neoproterozoic Magmatism and Early Paleozoic Metamorphism in the North Qinling Terrain. Acta Petrologica Sinica, 26(5): 1589-1603 (in Chinese with English Abstract) https://www.researchgate.net/publication/279712851_Zircon_U-Pb_ages_of_the_Qinling_Group_in_Danfeng_area_Recording_Mesoproterozoic_and_Neoproterozoic_magmatism_and_Early_Paleozoic_metamorphism_in_the_North_Qinling_terrain
    Yu, H., Zhang, H. F., Li, X. H., et al., 2016. Tectonic Evolution of the North Qinling Orogen from Subduction to Collision and Exhumation: Evidence from Zircons in Metamorphic Rocks of the Qinling Group. Gondwana Research, 30(1): 65-78. https://doi.org/10.1016/j.gr.2015.07.003
    Zhai, X. M., Day, H. W., Hacker, B. R., et al., 1998. Paleozoic Metamorphism in the Qinling Orogen, Tongbai Mountains, Central China. Geology, 26(4): 371. https://doi.org/10.1130/0091-7613(1998)026<0371:pmitqo>2.3.co;2 doi: 10.1130/0091-7613(1998)026<0371:pmitqo>2.3.co;2
    Zhang, B. R., Zhang, H. F., Zhao, Z. D., et al., 1996. Geochemical Subdivision and Evolution of the Lithosphere in East Qinling and Adjacent Regions-Implications for Tectonics. Science in China Series D: Earth Sciences, 39(3): 245-255 (in Chinese with English Abstract) https://www.deepdyve.com/lp/elsevier/tectonic-evolution-of-the-qinling-orogenic-belt-central-china-new-QC3wh8lyCu
    Zhang, C. L., Liu, L., Wang, T., et al., 2013. Granitic Magmatism Related to Early Paleozoic Continental Collision in North Qinling. Chinese Science Bulletin, 58(35): 4405-4410. https://doi.org/10.1007/s11434-013-6064-z
    Zhang, C. L., Liu, L., Zhang, G. W., et al., 2004. Determination of Neoproterozoic Post-Collisional Granites in the North Qinling Mountains and Its Tectonic Significance. Earth Science Frontiers, 11(3): 33-42 (in Chinese with English Abstract) http://en.cnki.com.cn/article_en/cjfdtotal-dxqy200403005.htm
    Zhang, C. L., Zhang, G. W., Yan, Y. X., et al., 2005. Origin and Dynamic Significance of Guangtoushan Granitic Plutons to the North of Mianlue Zone in Southern Qinling. Acta Petrologica Sinica, 21(3): 711-720 (in Chinese with English Abstract) http://www.oalib.com/paper/1472084
    Zhang, G. B., Niu, Y. L., Song, S. G., et al., 2015. Trace Element Behavior and P-T-t Evolution during Partial Melting of Exhumed Eclogite in the North Qaidam UHPM Belt (NW China): Implications for Adakite Genesis. Lithos, 226: 65-80. https://doi.org/10.13039/501100001809
    Zhang, G. W., 1988. Formation and Evolution of the Qinling Orogen. Northwest University Press, Xi'an. 1-192 (in Chinese with English Abstract)
    Zhang, G. W., Dong, Y. P., Lai, S. C., et al., 2004. Mianlue Tectonic Zone and Mianlue Suture Zone on Southern Margin of Qinling-Dabie Orogenic Belt. Science in China Series D: Earth Sciences, 47(4): 300-316. https://doi.org/10.1360/02yd0526
    Zhang, G. W., Meng, Q. R., Lai, S. C., 1995. Tectonics and Structure of the Qinling Orogenic Belt. Science in China: Series B, 11(38): 1379-1394 (in Chinese with English Abstract) http://www.researchgate.net/publication/285320000_Structure_and_tectonics_of_the_Qinling_Orogenic_belt
    Zhang, G. W., Meng, Q. R., Yu, Z. P., et al., 1996. Orogenesis and Dynamics of Qinling Orogen. Science in China Series D: Earth Sciences, 26(3): 193-200 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-JDXG199603000.htm
    Zhang, G. W., Zhang, B. R., Yuan, X. C., et al., 2001. Qinling Orogenic Belt and Continental Dynamics. Science Press, Beijing (in Chinese with English Abstract)
    Zhang, H. F., Zhang, B. R., Luo, T. S., 1994. Discussion on the Source of the Materials of the Huichizi Granite Pluton in Northern Qinling Mountains, China. Journal of Mineralogy and Petrology, 14(1): 67-73 (in Chinese with English Abstract) https://www.deepdyve.com/lp/elsevier/evaluation-of-multiple-emplacement-mechanisms-the-huichizi-granite-kMWHPKwVAz
    Zhang, Z. Q., Liu, D. Y., Fu, G. M., 1994. Isotopic Geochronology of Metamorphic Strata in North Qinling. Geological Publishing House, Beijing (in Chinese with English Abstract)
    Zhang, Z. Q., Zhang, G. W., Liu, D. Y., et al., 2006. Isotopic Geochoronology and Geochemistry of Ophiolites, Granites and Clasti Sedimentary Rocks in the Qinling-Dabie Orogenic Belt. Geological Publishing House, Beijing (in Chinese)
    Zhang, Z. Q., Zhang, G. W., Tang, S. H., et al., 1999. Age of the Shahewan Rapakivi Granite in the Qinling Orogen, China, and Its Constraints on the End Time of the Main Orogenic Stage of this Orogen. Chinese Science Bulletin, 44(21): 2001-2004. https://doi.org/10.1007/bf02887128
    Zheng, Y. F., Zhang, L. F., McClelland, W. C., et al., 2012. Processes in Continental Collision Zones: Preface. Lithos, 136-139(4): 1-9. https://doi.org/10.1016/j.lithos.2011.11.020
    Zhou, Z. J., Mao, S. D., Chen, Y. J., et al., 2016. U-Pb Ages and Lu-Hf Isotopes of Detrital Zircons from the Southern Qinling Orogen: Implications for Precambrian to Phanerozoic Tectonics in Central China. Gondwana Research, 35(4): 323-337. https://doi.org/10.13039/501100001809
    Zhu, X. Y., Chen, F. K., Li, S. Q., et al., 2011. Crustal Evolution of the North Qinling Terrain of the Qinling Orogen, China: Evidence from Detrital Zircon U-Pb Ages and Hf Isotopic Composition. Gondwana Research, 20(1): 194-204. https://doi.org/10.1016/j.gr.2010.12.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views(763) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return