Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 29 Issue 2
Mar 2018
Turn off MathJax
Article Contents
Bi Zhu, Shaoyong Jiang, Daohui Pi, Lu Ge, Jinghong Yang. Trace Elements Characteristics of Black Shales from the Ediacaran Doushantuo Formation, Hubei Province, South China: Implications for Redox and Open vs. Restricted Basin Conditions. Journal of Earth Science, 2018, 29(2): 342-352. doi: 10.1007/s12583-017-0907-5
Citation: Bi Zhu, Shaoyong Jiang, Daohui Pi, Lu Ge, Jinghong Yang. Trace Elements Characteristics of Black Shales from the Ediacaran Doushantuo Formation, Hubei Province, South China: Implications for Redox and Open vs. Restricted Basin Conditions. Journal of Earth Science, 2018, 29(2): 342-352. doi: 10.1007/s12583-017-0907-5

Trace Elements Characteristics of Black Shales from the Ediacaran Doushantuo Formation, Hubei Province, South China: Implications for Redox and Open vs. Restricted Basin Conditions

doi: 10.1007/s12583-017-0907-5
More Information
  • Corresponding author: Shaoyong Jiang, shyjiang@cug.edu.cn
  • Received Date: 06 Oct 2016
  • Accepted Date: 07 Feb 2017
  • Publish Date: 01 Feb 2018
  • In the present study, we carried out trace element analyses of black shales of the Ediacaran Doushantou Formation from two sections (Jiulongwan, Baiguoyuan) in Hubei Province, South China. Mo-U characteristics of black shales from the two sections and compiled Mo-U data of Doushantuo black shales from sections of a variety of sedimentary facies described the temporal/spatial variability in the redox conditions of paleo-seawater during deposition of the Doushantuo Formation. Changes in Mo-U patterns of the Doushantuo Member Ⅱ (DST2) shales of open marine environments are consistent with a shift from a predominately oxic to a predominately anoxic ocean during their deposition. Mo-U patterns of the DST2 black shales from intra-shelf sections reflect basin restriction may have happened in the intra-shelf basin and are compatible with the redox-stratified model of the intra-shelf basin. Mo-U patterns of black shales of the Doushantuo Member Ⅳ (DST4) reveal that the shales from intra-shelf sections have more pronounced Mo enrichment and more significant enrichment of Mo over U than the slope shales, indicating the operation of a Mn particulate shuttle in the intra-shelf basin. High Mo/TOC ratios of the DST4 at the intra-shelf sections, in combination with similar Mo-TOC patterns of the DST4 from both intra-shelf and slope sections, indicate the intra-shelf basin was well connected to the open ocean during deposition of the DST4.

     

  • loading
  • Algeo, T. J., Lyons, T. W., 2006. Mo-Total Organic Carbon Covariation in Modern Anoxic Marine Environments: Implications for Analysis of Paleoredox and Paleohydrographic Conditions. Paleoceanography, 21(1): 279–298. https://doi.org/10.1029/2004pa001112
    Algeo, T. J., Maynard, J. B., 2004. Trace-Element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-Type Cyclothems. Chemical Geology, 206(3/4): 289–318. https://doi.org/10.1016/j.chemgeo.2003.12.009
    Algeo, T. J., Rowe, H., 2012. Paleoceanographic Applications of Trace-Metal Concentration Data. Chemical Geology, 324/325: 6–18. https://doi.org/10.1016/j.chemgeo.2011.09.002
    Algeo, T. J., Tribovillard, N., 2009. Environmental Analysis of Paleoceanographic Systems Based on Molybdenum-Uranium Covariation. Chemical Geology, 268(3/4): 211–225. https://doi.org/10.13039/100000001
    Algeo, T. J., 2004. Can Marine Anoxic Events Draw down the Trace Element Inventory of Seawater?. Geology, 32(12): 1057. https://doi.org/10.1130/g20896.1
    Anbar, A. D., Duan, Y., Lyons, T. W., et al., 2007. A Whiff of Oxygen before the Great Oxidation Event?. Science, 317(5846): 1903–1906. https://doi.org/10.1126/science.1140325
    Bjerrum, C. J., Canfield, D. E., 2011. Towards a Quantitative Understanding of the Late Neoproterozoic Carbon Cycle. Proceedings of the National Academy ofSciences, 108(14): 5542–5547. https://doi.org/10.1073/pnas.1101755108
    Brasier, M., Antciliffe, J., 2004. Paleobiology: Decoding the Ediacaran Enigma. Science, 305(5687): 1115–1117. https://doi.org/10.1126/science.1102673
    Bristow, T. F., Kennedy, M. J., Derkowski, A., et al., 2009. Mineralogical Constraints on the Paleoenvironments of the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences, 106(32): 13190–13195. https://doi.org/10.1073/pnas.0901080106
    Canfield, D. E., Poulton, S. W., Narbonne, G. M., 2007. Late-Neoproterozoic Deep-Ocean Oxygenation and the Rise of Animal Life. Science, 315(5808): 92–95. https://doi.org/10.1126/science.1135013
    Chen, X., Ling, H. F., Vance, D., et al., 2015. Rise to Modern Levels of Ocean Oxygenation Coincided with the Cambrian Radiation of Animals. Nature Communications, 6: 7142. https://doi.org 10.1038/ncomms8142
    Condon, D., Zhu, M., Bowring, S., et al., 2005. U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science, 308(5718): 95–98. https://doi.org/10.1126/science.1107765
    Crusius, J., Calvert, S., Pedersen, T., et al., 1996. Rhenium and Molybdenum Enrichments in Sediments as Indicators of Oxic, Suboxic and Sulfidic Conditions of Deposition. Earth and Planetary Science Letters, 145(1–4): 65–78. https://doi.org/10.1016/s0012-821x(96)00204-x
    Fan, H. F., Zhu, X. K., Wen, H. J., et al., 2014. Oxygenation of Ediacaran Ocean Recorded by Iron Isotopes. Geochimica et Cosmochimica Acta, 140: 80–94. https://doi.org/10.1016/j.gca.2014.05.029
    Fike, D. A., Grotzinger, J. P., Pratt, L. M., et al., 2006. Oxidation of the Ediacaran Ocean. Nature, 444(7120): 744–747. https://doi.org/10.1038/nature05345
    Guo, Q. J., Shields, G. A., Liu, C. Q., et al., 2007. Trace Element Chemostratigraphy of Two Ediacaran–Cambrian Successions in South China: Implications for Organosedimentary Metal Enrichment and Silicification in the Early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1/2): 194–216. https://doi.org/10.1016/j.paleo.2007.03.016
    Halverson, G. P., Dudás, F. ., Maloof, A. C., et al., 2007. Evolution of the 87Sr/86Sr Composition of Neoproterozoic Seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, 256(3/4): 103–129. https://doi.org/10.1016/j.paleo.2007.02.028
    Halverson, G. P., Wade, B. P., Hurtgen, M. T., et al., 2010. Neoproterozoic Chemostratigraphy. Precambrian Research, 182(4): 337–350. https://doi.org/10.1016/j.precamres.2010.04.007
    Hatch, J. R., Leventhal, J. S., 1992. Relationship between Inferred Redox Potential of the Depositional Environment and Geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A.. Chemical Geology, 99(1/2/3): 65–82. https://doi.org/10.1016/0009-2541(92)90031-y
    Jiang, G. Q., Shi, X. Y., Zhang, S. H., et al., 2011. Stratigraphy and Paleogeography of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) in South China. Gondwana Research, 19(4): 831–849. https://doi.org/10.1016/j.gr.2011.01.006
    Jones, B., Manning, D. A. C., 1994. Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chemical Geology, 111(1/2/3/4): 111–129. https://doi.org/10.1016/0009-2541(94)90085-x
    Kendall, B., Komiya, T., Lyons, T. W., et al., 2015. Uranium and Molybdenum Isotope Evidence for an Episode of Widespread Ocean Oxygenation during the Late Ediacaran Period. Geochimica et Cosmochimica Acta, 156: 173–193. https://doi.org/10.13039/100000001
    Kendall, B. S., 2008. Rhenium-Osmium Geochronology of Precambrian Organic-Rich Sedimentary Rocks, Systematics and Applications: [Dissertation]. University of Alberta, Edmonton, Alberta. 59
    Kendall, B., Creaser, R. A., Selby, D., 2009. 187Re-187Os Geochronology of Precambrian Organic-Rich Sedimentary Rocks. Geological Society, London, Special Publications, 326(1): 85–107. https://doi.org/10.1144/SP326.5
    Knoll, A. H., Walter, M. R., Narbonne, G. M., et al., 2004. Geology: A New Period for the Geologic Time Scale. Science, 305(5684): 621–622. https://doi.org/10.1126/science.1098803
    Knoll, A., Walter, M., Narbonne, G., et al., 2006. The Ediacaran Period: A New Addition to the Geologic Time Scale. Lethaia, 39(1): 13–30. https://doi.org/10.1080/00241160500409223
    Li, C., Love, G. D., Lyons, T. W., et al., 2010. A Stratified Redox Model for the Ediacaran Ocean. Science, 328(5974): 80–83. https://doi.org/10.1126/science.1182369
    Li, C., Zhu, M. Y., Chu, X. L., 2016. Preface: Atmospheric and Oceanic Oxygenation and Evolution of Early Life on Earth: New Contributions from China. Journal of Earth Science, 27(2): 167–169. https://doi.org/10.1007/s12583-016-0697-1
    Liu, P. J., Yin, C. Y., Gao, L. Z., et al., 2009. New Material of Microfossils from the Ediacaran Doushantuo Formation in the Zhangcunping Area, Yichang, Hubei Province and its Zircon SHRIMP U-Pb Age. Science Bulletin, 54(6): 1058–1064. https://doi.org/10.1007/s11434-008-0589-6
    Liu, P. J., Chen, S. M., Zhu, M. Y., et al., 2014. High-Resolution Biostratigraphic and Chemostratigraphic Data from the Chenjiayuanzi Section of the Doushantuo Formation in the Yangtze Gorges Area, South China: Implication for Subdivision and Global Correlation of the Ediacaran System. Precambrian Research, 249: 199–214. https://doi.org/10.1016/j.precamres.2014.05.014
    Liu, P. J., Yin, C. Y., Chen, S. M., et al., 2013. The Biostratigraphic Succession of Acanthomorphic Acritarchs of the Ediacaran Doushantuo Formation in the Yangtze Gorges Area, South China and Its Biostratigraphic Correlation with Australia. Precambrian Research, 225: 29–43. https://doi.org/10.1016/j.precamres.2011.07.009
    Lyons, T. W., Reinhard, C. T., Planavsky, N. J., 2014. The Rise of Oxygen in Earth's Early Ocean and Atmosphere. Nature, 506(7488): 307–315. https://doi.org/10.1038/nature13068
    McArthur, J. M., Algeo, T. J., van de Schootbrugge, B., et al., 2008. Basinal Restriction, Black Shales, Re-Os Dating, and the Early Toarcian (Jurassic) Oceanic Anoxic Event. Paleoceanography, 23(4): PA4217. https://doi.org/10.1029/2008pa001607
    McCall, G. J. H., 2006. The Vendian (Ediacaran) in the Geological Record: Enigmas in Geology's Prelude to the Cambrian Explosion. Earth-Science Reviews, 77(1/2/3): 1–229. https://doi.org/10.1016/j.earscirev.2005.08.004
    McFadden, K. A., Huang, J., Chu, X., et al., 2008. Pulsed Oxidation and Biological Evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences, 105(9): 3197–3202. https://doi.org/10.1073/pnas.0708336105
    Mi, T. W., Lin, L., Pang, Y. C., et al., 2010. The Sequence Stratigraphy and Genesis of Phosphorites of Doushantuo Formation at Baiguoyuan, Yichang, Hubei. Acta Sedimentologica Sinica, 28(3): 471–480 (in Chinese with English Abstract) https://www.researchgate.net/publication/288846791_The_sequence_stratigraphy_and_genesis_of_phosphorites_of_Doushantuo_Formation_at_Baiguoyuan_Yichang_Hubei
    Och, L. M., Cremonese, L., Shields-Zhou, G. A., et al., 2015. Palaeoceanographic Controls on Spatial Redox Distribution over the Yangtze Platform during the Ediacaran–Cambrian Transition. Sedimentology, 63(2): 378–410. https://doi.org/10.13039/501100001659
    Perkins, R. B., Piper, D. Z., Mason, C. E., 2008. Trace-Element Budgets in the Ohio/Sunbury Shales of Kentucky: Constraints on Ocean Circulation and Primary Productivity in the Devonian–Mississippian Appalachian Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 265(1/2): 14–29. https://doi.org/10.1016/j.paleo.2008.04.012
    Reinhard, C. T., Planavsky, N. J., Robbins, L. J., et al., 2013. Proterozoic Ocean Redox and Biogeochemical Stasis. Proceedings of the National Academy of Sciences, 110(14): 5357–5362. https://doi.org/10.1073/pnas.1208622110
    Ries, J. B., Fike, D. A., Pratt, L. M., et al., 2009. Superheavy Pyrite (34Spyr > 34SCAS) in the Terminal Proterozoic Nama Group, Southern Namibia: A Consequence of Low Seawater Sulfate at the Dawn of Animal Life. Geology, 37(8): 743–746. https://doi.org/10.1130/g25775a.1
    Rimmer, S. M., 2004. Geochemical Paleoredox Indicators in Devonian–Mississippian Black Shales, Central Appalachian Basin (USA). Chemical Geology, 206(3/4): 373–391. https://doi.org/10.1016/j.chemgeo.2003.12.029
    Sahoo, S. K., Planavsky, N. J., Jiang, G., et al., 2016. Oceanic Oxygenation Events in the Anoxic Ediacaran Ocean. Geobiology, 14(5): 457–468. https://doi.org/10.13039/501100001809
    Sahoo, S. K., Planavsky, N. J., Kendall, B., et al., 2012. Ocean Oxygenation in the Wake of the Marinoan Glaciation. Nature, 489(7417): 546–549. https://doi.org/10.1038/nature11445
    Scott, C., Lyons, T. W., Bekker, A., et al., 2008. Tracing the Stepwise Oxygenation of the Proterozoic Ocean. Nature, 452(7186): 456–459. https://doi.org/10.1038/nature06811
    Tribovillard, N., Algeo, T. J., Baudin, F., et al., 2012. Analysis of Marine Environmental Conditions Based Onmolybdenum-Uranium Covariation—Applications to Mesozoic Paleoceanography. Chemical Geology, 324–325: 46–58. https://doi.org/10.1016/j.chemgeo.2011.09.009
    Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1/2): 12–32. https://doi.org/10.1016/j.chemgeo.2006.02.012
    Vernhet, E., Reijmer, J. J. G., 2010. Sedimentary Evolution of the Ediacaran Yangtze Platform Shelf (Hubei and Hunan Provinces, Central China). Sedimentary Geology, 225(3/4): 99–115. https://doi.org/10.1016/j.sedgeo.2010.01.005
    Wignall, P. B., Twitchett, R. J., 1996. Oceanic Anoxia and the End Permian Mass Extinction. Science, 272(5265): 1155–1158. https://doi.org/10.1126/science.272.5265.1155
    Xiao, S. H., Muscente, A. D., Chen, L., et al., 2014. The Weng'an Biota and the Ediacaran Radiation of Multicellular Eukaryotes. National Science Review, 1(4): 498–520. https://doi.org/10.1093/nsr/nwu061
    Xiao, S. H., Yuan, X. L., Steiner, M., et al., 2002. Macroscopic Carbonaceous Compressions in a Terminal Proterozoic Shale: A Systematic Reassessment of the Miaohe Biota, South China. Journal of Paleontology, 76(2): 347–376. https://doi.org/10.1666/0022-3360(2002)076<0347:mcciat>2.0.co;2 doi: 10.1666/0022-3360(2002)076<0347:mcciat>2.0.co;2
    Xiao, S. H., Knoll, A. H., 2007. Fossil Preservation in the Neoproterozoic Doushantuo Phosphorite Lagerst tte, South China. Lethaia, 32(3): 219–238. https://doi.org/10.1111/j.1502-3931.1999.tb00541.x
    Yin, L. M., Zhu, M. Y., Knoll, A. H., et al., 2007. Doushantuo Embryos Preserved Inside Diapause Egg Cysts. Nature, 446(7136): 661–663. https://doi.org/10.1038/nature05682
    Zhai, L. N., Wu, C. D., Ye, Y., et al., 2016. Marine Redox Variations during the Ediacaran–Cambrian Transition on the Yangtze Platform, South China. Geological Journal. https://doi.org/10.1002/gj.2878
    Zheng, Y., Anderson, R. F., van Geen, A., et al., 2000. Authigenic Molybdenum Formation in Marine Sediments: A Link to Pore Water Sulfide in the Santa Barbara Basin. Geochimica et Cosmochimica Acta, 64(24): 4165–4178. https://doi.org/10.1016/s0016-7037(00)00495-6
    Zhou, C. M., Jiang, S. Y., 2009. Palaeoceanographic Redox Environments for the Lower Cambrian Hetang Formation in South China: Evidence from Pyrite Framboids, Redox Sensitive Trace Elements, and Sponge Biota Occurrence. Palaeogeography, Palaeoclimatology, Palaeoecology, 271(3/4): 279–286. https://doi.org/10.1016/j.paleo.2008.10.024
    Zhou, C. M., Xie, G. W., McFadden, K., et al., 2007. The Diversification and Extinction of Doushantuo-Pertatataka Acritarchs in South China: Causes and Biostratigraphic Significance. Geological Journal, 42(3/4): 229–262. https://doi.org/10.1002/gj.1062
    Zhu, B., Becker, H., Jiang, S. Y., et al., 2013. Re-Os Geochronology of Black Shales from the Neoproterozoic Doushantuo Formation, Yangtze Platform, South China. Precambrian Research, 225(2013): 67–76. https://doi.org/10.1016/j.precamres.2012.02.002
    Zhu, M. Y., Zhang, J. M., Steiner, M., et al., 2003. Sinian-Cambrian Stratigraphic Framework for Shallow-to Deep-Water Environments of the Yangtze Platform: An Integrated Approach. Progress in Natural Science, 13(12): 951–960. https://doi.org/10.1080/10020070312331344710
    Zhu, M. Y., Lu, M., Zhang, J. M., et al., 2013. Carbon Isotope Chemostratigraphy and Sedimentary Facies Evolution of the Ediacaran Doushantuo Formation in Western Hubei, South China. Precambrian Research, 225(1): 7–28. https://doi.org/10.1016/j.precamres.2011.07.019
    Zhu, M. Y., Zhang, J. M., Yang, A. H., 2007. Integrated Ediacaran (Sinian) Chronostratigraphy of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1/2): 7–61. https://doi.org/10.1016/j.paleo.2007.03.025
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views(666) PDF downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return