| Algeo, T. J., Lyons, T. W., 2006. Mo-Total Organic Carbon Covariation in Modern Anoxic Marine Environments: Implications for Analysis of Paleoredox and Paleohydrographic Conditions. Paleoceanography, 21(1): 279–298.  https://doi.org/10.1029/2004pa001112 | 
		
				
				| Algeo, T. J., Maynard, J. B., 2004. Trace-Element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-Type Cyclothems. Chemical Geology, 206(3/4): 289–318.  https://doi.org/10.1016/j.chemgeo.2003.12.009 | 
		
				
				| Algeo, T. J., Rowe, H., 2012. Paleoceanographic Applications of Trace-Metal Concentration Data. Chemical Geology, 324/325: 6–18.  https://doi.org/10.1016/j.chemgeo.2011.09.002 | 
		
				
				| Algeo, T. J., Tribovillard, N., 2009. Environmental Analysis of Paleoceanographic Systems Based on Molybdenum-Uranium Covariation. Chemical Geology, 268(3/4): 211–225.  https://doi.org/10.13039/100000001 | 
		
				
				| Algeo, T. J., 2004. Can Marine Anoxic Events Draw down the Trace Element Inventory of Seawater?. Geology, 32(12): 1057.  https://doi.org/10.1130/g20896.1 | 
		
				
				| Anbar, A. D., Duan, Y., Lyons, T. W., et al., 2007. A Whiff of Oxygen before the Great Oxidation Event?. Science, 317(5846): 1903–1906.  https://doi.org/10.1126/science.1140325 | 
		
				
				| Bjerrum, C. J., Canfield, D. E., 2011. Towards a Quantitative Understanding of the Late Neoproterozoic Carbon Cycle. Proceedings of the National Academy ofSciences, 108(14): 5542–5547.  https://doi.org/10.1073/pnas.1101755108 | 
		
				
				| Brasier, M., Antciliffe, J., 2004. Paleobiology: Decoding the Ediacaran Enigma. Science, 305(5687): 1115–1117.  https://doi.org/10.1126/science.1102673 | 
		
				
				| Bristow, T. F., Kennedy, M. J., Derkowski, A., et al., 2009. Mineralogical Constraints on the Paleoenvironments of the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences, 106(32): 13190–13195.  https://doi.org/10.1073/pnas.0901080106 | 
		
				
				| Canfield, D. E., Poulton, S. W., Narbonne, G. M., 2007. Late-Neoproterozoic Deep-Ocean Oxygenation and the Rise of Animal Life. Science, 315(5808): 92–95.  https://doi.org/10.1126/science.1135013 | 
		
				
				| Chen, X., Ling, H. F., Vance, D., et al., 2015. Rise to Modern Levels of Ocean Oxygenation Coincided with the Cambrian Radiation of Animals. Nature Communications, 6: 7142.  https://doi.org 10.1038/ncomms8142 | 
		
				
				| Condon, D., Zhu, M., Bowring, S., et al., 2005. U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science, 308(5718): 95–98.  https://doi.org/10.1126/science.1107765 | 
		
				
				| Crusius, J., Calvert, S., Pedersen, T., et al., 1996. Rhenium and Molybdenum Enrichments in Sediments as Indicators of Oxic, Suboxic and Sulfidic Conditions of Deposition. Earth and Planetary Science Letters, 145(1–4): 65–78.  https://doi.org/10.1016/s0012-821x(96)00204-x | 
		
				
				| Fan, H. F., Zhu, X. K., Wen, H. J., et al., 2014. Oxygenation of Ediacaran Ocean Recorded by Iron Isotopes. Geochimica et Cosmochimica Acta, 140: 80–94.  https://doi.org/10.1016/j.gca.2014.05.029 | 
		
				
				| Fike, D. A., Grotzinger, J. P., Pratt, L. M., et al., 2006. Oxidation of the Ediacaran Ocean. Nature, 444(7120): 744–747.  https://doi.org/10.1038/nature05345 | 
		
				
				| Guo, Q. J., Shields, G. A., Liu, C. Q., et al., 2007. Trace Element Chemostratigraphy of Two Ediacaran–Cambrian Successions in South China: Implications for Organosedimentary Metal Enrichment and Silicification in the Early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1/2): 194–216.  https://doi.org/10.1016/j.paleo.2007.03.016 | 
		
				
				| Halverson, G. P., Dudás, F.  ., Maloof, A. C., et al., 2007. Evolution of the 87Sr/86Sr Composition of Neoproterozoic Seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, 256(3/4): 103–129.  https://doi.org/10.1016/j.paleo.2007.02.028 | 
		
				
				| Halverson, G. P., Wade, B. P., Hurtgen, M. T., et al., 2010. Neoproterozoic Chemostratigraphy. Precambrian Research, 182(4): 337–350.  https://doi.org/10.1016/j.precamres.2010.04.007 | 
		
				
				| Hatch, J. R., Leventhal, J. S., 1992. Relationship between Inferred Redox Potential of the Depositional Environment and Geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A.. Chemical Geology, 99(1/2/3): 65–82.  https://doi.org/10.1016/0009-2541(92)90031-y | 
		
				
				| Jiang, G. Q., Shi, X. Y., Zhang, S. H., et al., 2011. Stratigraphy and Paleogeography of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) in South China. Gondwana Research, 19(4): 831–849.  https://doi.org/10.1016/j.gr.2011.01.006 | 
		
				
				| Jones, B., Manning, D. A. C., 1994. Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chemical Geology, 111(1/2/3/4): 111–129.  https://doi.org/10.1016/0009-2541(94)90085-x | 
		
				
				| Kendall, B., Komiya, T., Lyons, T. W., et al., 2015. Uranium and Molybdenum Isotope Evidence for an Episode of Widespread Ocean Oxygenation during the Late Ediacaran Period. Geochimica et Cosmochimica Acta, 156: 173–193.  https://doi.org/10.13039/100000001 | 
		
				
				| Kendall, B. S., 2008. Rhenium-Osmium Geochronology of Precambrian Organic-Rich Sedimentary Rocks, Systematics and Applications: [Dissertation]. University of Alberta, Edmonton, Alberta. 59 | 
		
				
				| Kendall, B., Creaser, R. A., Selby, D., 2009. 187Re-187Os Geochronology of Precambrian Organic-Rich Sedimentary Rocks. Geological Society,  London,  Special Publications, 326(1): 85–107.  https://doi.org/10.1144/SP326.5 | 
		
				
				| Knoll, A. H., Walter, M. R., Narbonne, G. M., et al., 2004. Geology: A New Period for the Geologic Time Scale. Science, 305(5684): 621–622.  https://doi.org/10.1126/science.1098803 | 
		
				
				| Knoll, A., Walter, M., Narbonne, G., et al., 2006. The Ediacaran Period: A New Addition to the Geologic Time Scale. Lethaia, 39(1): 13–30.  https://doi.org/10.1080/00241160500409223 | 
		
				
				| Li, C., Love, G. D., Lyons, T. W., et al., 2010. A Stratified Redox Model for the Ediacaran Ocean. Science, 328(5974): 80–83.  https://doi.org/10.1126/science.1182369 | 
		
				
				| Li, C., Zhu, M. Y., Chu, X. L., 2016. Preface: Atmospheric and Oceanic Oxygenation and Evolution of Early Life on Earth: New Contributions from China. Journal of Earth Science, 27(2): 167–169.  https://doi.org/10.1007/s12583-016-0697-1 | 
		
				
				| Liu, P. J., Yin, C. Y., Gao, L. Z., et al., 2009. New Material of Microfossils from the Ediacaran Doushantuo Formation in the Zhangcunping Area, Yichang, Hubei Province and its Zircon SHRIMP U-Pb Age. Science Bulletin, 54(6): 1058–1064.  https://doi.org/10.1007/s11434-008-0589-6 | 
		
				
				| Liu, P. J., Chen, S. M., Zhu, M. Y., et al., 2014. High-Resolution Biostratigraphic and Chemostratigraphic Data from the Chenjiayuanzi Section of the Doushantuo Formation in the Yangtze Gorges Area, South China: Implication for Subdivision and Global Correlation of the Ediacaran System. Precambrian Research, 249: 199–214.  https://doi.org/10.1016/j.precamres.2014.05.014 | 
		
				
				| Liu, P. J., Yin, C. Y., Chen, S. M., et al., 2013. The Biostratigraphic Succession of Acanthomorphic Acritarchs of the Ediacaran Doushantuo Formation in the Yangtze Gorges Area, South China and Its Biostratigraphic Correlation with Australia. Precambrian Research, 225: 29–43.  https://doi.org/10.1016/j.precamres.2011.07.009 | 
		
				
				| Lyons, T. W., Reinhard, C. T., Planavsky, N. J., 2014. The Rise of Oxygen in Earth's Early Ocean and Atmosphere. Nature, 506(7488): 307–315.  https://doi.org/10.1038/nature13068 | 
		
				
				| McArthur, J. M., Algeo, T. J., van de Schootbrugge, B., et al., 2008. Basinal Restriction, Black Shales, Re-Os Dating, and the Early Toarcian (Jurassic) Oceanic Anoxic Event. Paleoceanography, 23(4): PA4217.  https://doi.org/10.1029/2008pa001607 | 
		
				
				| McCall, G. J. H., 2006. The Vendian (Ediacaran) in the Geological Record: Enigmas in Geology's Prelude to the Cambrian Explosion. Earth-Science Reviews, 77(1/2/3): 1–229.  https://doi.org/10.1016/j.earscirev.2005.08.004 | 
		
				
				| McFadden, K. A., Huang, J., Chu, X., et al., 2008. Pulsed Oxidation and Biological Evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences, 105(9): 3197–3202.  https://doi.org/10.1073/pnas.0708336105 | 
		
				
				| Mi, T. W., Lin, L., Pang, Y. C., et al., 2010. The Sequence Stratigraphy and Genesis of Phosphorites of Doushantuo Formation at Baiguoyuan, Yichang, Hubei. Acta Sedimentologica Sinica, 28(3): 471–480 (in Chinese with English Abstract) https://www.researchgate.net/publication/288846791_The_sequence_stratigraphy_and_genesis_of_phosphorites_of_Doushantuo_Formation_at_Baiguoyuan_Yichang_Hubei | 
		
				
				| Och, L. M., Cremonese, L., Shields-Zhou, G. A., et al., 2015. Palaeoceanographic Controls on Spatial Redox Distribution over the Yangtze Platform during the Ediacaran–Cambrian Transition. Sedimentology, 63(2): 378–410.  https://doi.org/10.13039/501100001659 | 
		
				
				| Perkins, R. B., Piper, D. Z., Mason, C. E., 2008. Trace-Element Budgets in the Ohio/Sunbury Shales of Kentucky: Constraints on Ocean Circulation and Primary Productivity in the Devonian–Mississippian Appalachian Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 265(1/2): 14–29.  https://doi.org/10.1016/j.paleo.2008.04.012 | 
		
				
				| Reinhard, C. T., Planavsky, N. J., Robbins, L. J., et al., 2013. Proterozoic Ocean Redox and Biogeochemical Stasis. Proceedings of the National Academy of Sciences, 110(14): 5357–5362.  https://doi.org/10.1073/pnas.1208622110 | 
		
				
				| Ries, J. B., Fike, D. A., Pratt, L. M., et al., 2009. Superheavy Pyrite (34Spyr > 34SCAS) in the Terminal Proterozoic Nama Group, Southern Namibia: A Consequence of Low Seawater Sulfate at the Dawn of Animal Life. Geology, 37(8): 743–746.  https://doi.org/10.1130/g25775a.1 | 
		
				
				| Rimmer, S. M., 2004. Geochemical Paleoredox Indicators in Devonian–Mississippian Black Shales, Central Appalachian Basin (USA). Chemical Geology, 206(3/4): 373–391.  https://doi.org/10.1016/j.chemgeo.2003.12.029 | 
		
				
				| Sahoo, S. K., Planavsky, N. J., Jiang, G., et al., 2016. Oceanic Oxygenation Events in the Anoxic Ediacaran Ocean. Geobiology, 14(5): 457–468.  https://doi.org/10.13039/501100001809 | 
		
				
				| Sahoo, S. K., Planavsky, N. J., Kendall, B., et al., 2012. Ocean Oxygenation in the Wake of the Marinoan Glaciation. Nature, 489(7417): 546–549.  https://doi.org/10.1038/nature11445 | 
		
				
				| Scott, C., Lyons, T. W., Bekker, A., et al., 2008. Tracing the Stepwise Oxygenation of the Proterozoic Ocean. Nature, 452(7186): 456–459.  https://doi.org/10.1038/nature06811 | 
		
				
				| Tribovillard, N., Algeo, T. J., Baudin, F., et al., 2012. Analysis of Marine Environmental Conditions Based Onmolybdenum-Uranium Covariation—Applications to Mesozoic Paleoceanography. Chemical Geology, 324–325: 46–58.  https://doi.org/10.1016/j.chemgeo.2011.09.009 | 
		
				
				| Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1/2): 12–32.  https://doi.org/10.1016/j.chemgeo.2006.02.012 | 
		
				
				| Vernhet, E., Reijmer, J. J. G., 2010. Sedimentary Evolution of the Ediacaran Yangtze Platform Shelf (Hubei and Hunan Provinces, Central China). Sedimentary Geology, 225(3/4): 99–115.  https://doi.org/10.1016/j.sedgeo.2010.01.005 | 
		
				
				| Wignall, P. B., Twitchett, R. J., 1996. Oceanic Anoxia and the End Permian Mass Extinction. Science, 272(5265): 1155–1158.  https://doi.org/10.1126/science.272.5265.1155 | 
		
				
				| Xiao, S. H., Muscente, A. D., Chen, L., et al., 2014. The Weng'an Biota and the Ediacaran Radiation of Multicellular Eukaryotes. National Science Review, 1(4): 498–520.  https://doi.org/10.1093/nsr/nwu061 | 
		
				
				| Xiao, S. H., Yuan, X. L., Steiner, M., et al., 2002. Macroscopic Carbonaceous Compressions in a Terminal Proterozoic Shale: A Systematic Reassessment of the Miaohe Biota, South China. Journal of Paleontology, 76(2): 347–376. https://doi.org/10.1666/0022-3360(2002)076<0347:mcciat>2.0.co;2 doi:  10.1666/0022-3360(2002)076<0347:mcciat>2.0.co;2 | 
		
				
				| Xiao, S. H., Knoll, A. H., 2007. Fossil Preservation in the Neoproterozoic Doushantuo Phosphorite Lagerst tte, South China. Lethaia, 32(3): 219–238.  https://doi.org/10.1111/j.1502-3931.1999.tb00541.x | 
		
				
				| Yin, L. M., Zhu, M. Y., Knoll, A. H., et al., 2007. Doushantuo Embryos Preserved Inside Diapause Egg Cysts. Nature, 446(7136): 661–663.  https://doi.org/10.1038/nature05682 | 
		
				
				| Zhai, L. N., Wu, C. D., Ye, Y., et al., 2016. Marine Redox Variations during the Ediacaran–Cambrian Transition on the Yangtze Platform, South China. Geological Journal.  https://doi.org/10.1002/gj.2878 | 
		
				
				| Zheng, Y., Anderson, R. F., van Geen, A., et al., 2000. Authigenic Molybdenum Formation in Marine Sediments: A Link to Pore Water Sulfide in the Santa Barbara Basin. Geochimica et Cosmochimica Acta, 64(24): 4165–4178.  https://doi.org/10.1016/s0016-7037(00)00495-6 | 
		
				
				| Zhou, C. M., Jiang, S. Y., 2009. Palaeoceanographic Redox Environments for the Lower Cambrian Hetang Formation in South China: Evidence from Pyrite Framboids, Redox Sensitive Trace Elements, and Sponge Biota Occurrence. Palaeogeography, Palaeoclimatology, Palaeoecology, 271(3/4): 279–286.  https://doi.org/10.1016/j.paleo.2008.10.024 | 
		
				
				| Zhou, C. M., Xie, G. W., McFadden, K., et al., 2007. The Diversification and Extinction of Doushantuo-Pertatataka Acritarchs in South China: Causes and Biostratigraphic Significance. Geological Journal, 42(3/4): 229–262.  https://doi.org/10.1002/gj.1062 | 
		
				
				| Zhu, B., Becker, H., Jiang, S. Y., et al., 2013. Re-Os Geochronology of Black Shales from the Neoproterozoic Doushantuo Formation, Yangtze Platform, South China. Precambrian Research, 225(2013): 67–76.  https://doi.org/10.1016/j.precamres.2012.02.002 | 
		
				
				| Zhu, M. Y., Zhang, J. M., Steiner, M., et al., 2003. Sinian-Cambrian Stratigraphic Framework for Shallow-to Deep-Water Environments of the Yangtze Platform: An Integrated Approach. Progress in Natural Science, 13(12): 951–960.  https://doi.org/10.1080/10020070312331344710 | 
		
				
				| Zhu, M. Y., Lu, M., Zhang, J. M., et al., 2013. Carbon Isotope Chemostratigraphy and Sedimentary Facies Evolution of the Ediacaran Doushantuo Formation in Western Hubei, South China. Precambrian Research, 225(1): 7–28.  https://doi.org/10.1016/j.precamres.2011.07.019 | 
		
				
				| Zhu, M. Y., Zhang, J. M., Yang, A. H., 2007. Integrated Ediacaran (Sinian) Chronostratigraphy of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1/2): 7–61.  https://doi.org/10.1016/j.paleo.2007.03.025 |