Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 4
Aug 2019
Turn off MathJax
Article Contents
Xing Zhang, Shuiyuan Yang, He Zhao, Shaoyong Jiang, Ruoxi Zhang, Jing Xie. Effect of Beam Current and Diameter on Electron Probe Microanalysis of Carbonate Minerals. Journal of Earth Science, 2019, 30(4): 834-842. doi: 10.1007/s12583-017-0939-x
Citation: Xing Zhang, Shuiyuan Yang, He Zhao, Shaoyong Jiang, Ruoxi Zhang, Jing Xie. Effect of Beam Current and Diameter on Electron Probe Microanalysis of Carbonate Minerals. Journal of Earth Science, 2019, 30(4): 834-842. doi: 10.1007/s12583-017-0939-x

Effect of Beam Current and Diameter on Electron Probe Microanalysis of Carbonate Minerals

doi: 10.1007/s12583-017-0939-x
Funds:

the Fundamental Research Funds for the Central Universities, China University of Geo-sciences (Wuhan) CUGL150401

the Natural Science Founda-tion of China 41403022

More Information
  • Corresponding author: Shuiyuan Yang
  • Received Date: 26 Mar 2017
  • Accepted Date: 02 Dec 2017
  • Publish Date: 01 Aug 2019
  • The effect of operating conditions on the time-dependent X-ray intensity variation is of great importance for the optimal EPMA conditions for accurate determinations of various elements in carbonate minerals. Beam diameters of 0, 1, 2, 5, 10, 15, and 20 μm, and beam currents of 3, 5, 10, 20, and 50 nA were tested. Ca, Mg, Zn, and Sr were found to be more sensitive to electron beam irradiation as compared to other elements, and small currents and large beam diameters minimized the timedependent X-ray intensity variations. We determined the optimal EPMA operating conditions for elements in carbonate:10 μm and 5 nA for calcite; 10 μm and 10 nA for dolomite; 5 μm and 10 nA or 10 μm and 20 nA for strontianite; and 20 nA and 5 μm for other carbonate. Elements sensitive to electron beam irradiation should be determined first. In addition, silicate minerals are preferred as standards rather than carbonate minerals.

     

  • loading
  • Carpenter, P., 2008. EPMA Standards:The Good, the Bad, and the Ugly. Microscopy and Microanalysis, 14(S2):530-531. https://doi.org/10.1017/s1431927608088740
    Essene, E. J., 1983. Solid Solutions and Solvi among Metamorphic Car-bonates with Applications to Geologic Thermobarometry. Reviews in Mineralogy, 11(1):77-96
    Goldoff, B., Webster, J. D., Harlov, D. E., 2012. Characterization of Flu-or-Chlorapatites by Electron Probe Microanalysis with a Focus on Time-Dependent Intensity Variation of Halogens. American Mineralogist, 97(7):1103-1115. https://doi.org/10.2138/am.2012.3812
    Henderson, C., 2011. Beam Sensitivity in EPMA:The Analysis of Apatite, Ca5(PO4)3(F, Cl, OH). Microscopy and Microanalysis, 17(S2):588-589. https://doi.org/10.1017/s1431927611003813
    Humphreys, M. C. S., Kearns, S. L., Blundy, J. D., 2006. SIMS Investigation of Electron-Beam Damage to Hydrous, Rhyolitic Glasses:Implications for Melt Inclusion Analysis. American Mineralogist, 91(4):667-679. https://doi.org/10.2138/am.2006.1936
    Jurek, K., Gedeon, O., 2003. Analysis of Alkali-Silicate Glasses by Electron Probe Analysis. Spectrochimica Acta Part B:Atomic Spectroscopy, 58(4):741-744. https://doi.org/10.1016/s0584-8547(02)00288-4
    Kearns, S. L., Ben, B. S., 2016. Low Voltage FEG-EPMA in Earth Sciences——Problems and Solutions for Analysis of Unstable Materials. Microscopy and Microanalysis, 22(S3):416-417. https://doi.org/10.1017/s1431927616002932
    Kearns, S., Ben, B. S., Wade, J., 2014. Mitigating Thermal Beam Damage with Metallic Coats in Low Voltage FEG-EPMA of Geological Materials. Microscopy and Microanalysis, 20(S3):740-741. https://doi.org/10.1017/s143192761400542x
    Kerrick, D. M., Eminhizer, L. B., Villaume, J. F., 1973. The Role of Carbon Film Thickness in Electron Microprobe Analysis. American Mineralo-gist, 58(9/10):920-925
    Lane, S. J., Dalton, J. A., 1994. Electron Microprobe Analysis of Geological Carbonates. American Mineralogist, 79(7/8):745-749
    Marks, M. A. W., Wenzel, T., Whitehouse, M. J., et al., 2012. The Volatile Inventory (F, Cl, Br, S, C) of Magmatic Apatite:An Integrated Analyt-ical Approach. Chemical Geology, 291:241-255. https://doi.org/10.1016/j.chemgeo.2011.10.026
    McGee, J. J., Keil, K., 2001. Application of Electron Probe Microanalysis to the Study of Geological and Planetary Materials. Microscopy and Mi-croanalysis, 7(2):200-210 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=58cb7eb4af129f0b690278d217ec102b
    Meier, D. C., Davis, J. M., Vicenzi, E. P., 2011. An Examination of Kernite (Na2B4O6(OH)2·3H2O) Using X-Ray and Electron Spectroscopies:Quantitative Microanalysis of a Hydrated Low-Z Mineral. Microscopy and Microanalysis, 17(5):718-727. https://doi.org/10.1017/s1431927611000602
    Morgan, G. B., London, D., 1996. Optimizing the Electron Microprobe Analysis of Hydrous Alkali Aluminosilicate Glasses. American Miner-alogist, 81(9/10):1176-1185. https://doi.org/10.2138/am-1996-9-1016
    Morgan, G. B. IV, London, D., 2005. The Effect of Current Density on the Electron Microprobe Analysis of Alkali Aluminosilicate Glasses. American Mineralogist, 90(7):1131-1138. https://doi.org/10.2138/am.2005.1769
    Smith, M. P., 1986. Silver Coating Inhibits Electron Microprobe Beam Damage of Carbonates. Journal of Sedimentary Research, 56(4):560-561. https://doi.org/10.1306/212f89c7-2b24-11d7-8648000102c1865d
    Spray, J. G., Rae, D. A., 1995. Quantitative Electron-Microprobe Analysis of Alkali Silicate Glasses:A Review and User Guide. The Canadian Mineralogist, 33(2):323-332
    Stock, M. J., Humphreys, M. C. S., Smith, V. C., et al., 2015. New Constraints on Electron-Beam Induced Halogen Migration in Apatite. American Mineralogist, 100(1):281-293. https://doi.org/10.2138/am-2015-4949
    Stormer, J. C., Pierson, M. L., Tacker, R. C., 1993. Variation of F and Cl X-Ray Intensity due to Anisotropic Diffusion in Apatite during Electron Microprobe Analysis. American Mineralogist, 78(5-6):641-648
    Sweatman, T. R., Long, J. V. P., 1969. Quantitative Electron-Probe Microanalysis of Rock-Forming Minerals. Journal of Petrology, 10(2):332-379. https://doi.org/10.1093/petrology/10.2.332
    Yang, S. Y., Jiang, S. Y., 2012. Chemical and Boron Isotopic Composition of Tourmaline in the Xiangshan Volcanic-Intrusive Complex, Southeast China:Evidence for Boron Mobilization and Infiltration during Magmatic-Hydrothermal Processes. Chemical Geology, 312/313:177-189. https://doi.org/10.1016/j.chemgeo.2012.04.026
    Yang, S. Y., Jiang, S. Y., 2013. Occurrence and Significance of a Quartz-Amphibole Schist Xenolith within a Mafic Microgranular Enclave in the Xiangshan Volcanic-Intrusive Complex, SE China. International Geology Review, 55(7):894-903. https://doi.org/10.1080/00206814.2012.752662
    Yang, S. Y., Jiang, S. Y., Palmer, M. R., 2015a. Chemical and Boron Isotopic Compositions of Tourmaline from the Nyalam Leucogranites, South Tibetan Himalaya:Implication for Their Formation from B-Rich Melt to Hydrothermal Fluids. Chemical Geology, 419:102-113. https://doi.org/10.1016/j.chemgeo.2015.10.026
    Yang, S. Y., Jiang, S. Y., Zhao, K. D., et al., 2015b. Tourmaline as a Recorder of Magmatic-Hydrothermal Evolution:An in-situ Major and Trace Element Analysis of Tourmaline from the Qitianling Batholith, South China. Contributions to Mineralogy and Petrology, 170(5/6):1-21. https://doi.org/10.1007/s00410-015-1195-7
    Ye, M., Zhao, H., Zhao, M., et al., 2017. Mineral Chemistry of Biotite and Its Petrogenesis Implication in Lingshan Granite Pluton, Gan-Hang Belt, SE China. Acta Petrologica Sinica, 33(3):896-906(in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201703017
    Zhang, R. X., Yang, S. Y., 2016. A Mathematical Model for Determining Carbon Coating Thickness and Its Application in Electron Probe Mi-croanalysis. Microscopy and Microanalysis, 22(6):1374-1380. https://doi.org/10.1017/s143192761601182x
    Zhang, H. C., Zhu, Y. F., Feng, W. Y., et al., 2017. Paleozoic Intrusive Rocks in the Nalati Mountain Range (NMR), Southwest Tianshan:Geodynamic Evolution Based on Petrology and Geochemical Studies. Journal of Earth Science, 28(2):196-217. https://doi.org/10.1007/s12583-016-0922-1
    Zhao, D. G., Zhang, Y. X., Essene, E. J., 2015. Electron Probe Microanalysis and Microscopy:Principles and Applications in Characterization of Mineral Inclusions in Chromite from Diamond Deposit. Ore Geology Reviews, 65:733-748. https://doi.org/10.1016/j.oregeorev.2014.09.020
    Zhao, L. M., Takasu, A., Liu, Y. J., et al., 2017. Blueschist from the Tou-daoqiao Area, Inner Mongolia, NE China:Evidence for the Suture be-tween the Ergun and the Xing'an Blocks. Journal of Earth Science, 28(2):241-248. https://doi.org/10.1007/s12583-017-0721-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views(401) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return