Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 29 Issue 2
Mar 2018
Turn off MathJax
Article Contents
Xiaocheng Zhao, Wenxiao Zhou, Dong Fu, Bo Huang, Mengchun Ge. Isotope Chronology and Geochemistry of the Lower Carboniferous Granite in Xilinhot, Inner Mongolia, China. Journal of Earth Science, 2018, 29(2): 280-294. doi: 10.1007/s12583-017-0942-2
Citation: Xiaocheng Zhao, Wenxiao Zhou, Dong Fu, Bo Huang, Mengchun Ge. Isotope Chronology and Geochemistry of the Lower Carboniferous Granite in Xilinhot, Inner Mongolia, China. Journal of Earth Science, 2018, 29(2): 280-294. doi: 10.1007/s12583-017-0942-2

Isotope Chronology and Geochemistry of the Lower Carboniferous Granite in Xilinhot, Inner Mongolia, China

doi: 10.1007/s12583-017-0942-2
More Information
  • Corresponding author: Wenxiao Zhou, zhouwenxiao@cug.edu.cn
  • Received Date: 25 Jan 2016
  • Accepted Date: 15 Sep 2016
  • Publish Date: 01 Apr 2018
  • Geochronological and geochemical analyses were performed on K-feldspar granites and monzonitic granites from the Xilinhot area, Inner Mongolia, China. Zircon U/Pb ages indicate that the two types granites were emplaced during the Lower Carboniferous. The K-feldspar granites (332 Ma) have the typical A-type granite characteristics of a post-collision setting. The monzonitic granites have an emplacement age of 323 Ma. Zircon εHf values of the former range from +12.8 to +14.2, with an average TDM2 of 453 Ma. The latter have lower zircon εHf values, ranging from +5.4 to +10.7, with an average TDM2 of 798 Ma. The strong, positive εHf values of the zircon indicate that both sets of samples are from a juvenile crust formed in an oceanic crust subduction stage, although the monzonitic granite may have undergone a hybridization of crustal materials. These results indicate a younger post orogenic event. The Paleo-Asian Ocean had closed before the Early Carboniferous and the Xilinhot area started its post-orogenic evolution with an extensional tectonic environment during the Early Carboniferous.

     

  • loading
  • Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1/2): 59-79. https://doi.org/10.1016/s0009-2541(02)00195-x
    Badarch, G., Cunningham, W. D., Windley, B. F., 2002. A New Terrane Subdivision for Mongolia: Implications for the Phanerozoic Crustal Growth of Central Asia. Journal of Asian Earth Sciences, 21(1): 87-110. https://doi.org/10.1016/s1367-9120(02)00017-2
    Batchelor, R. A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1/2/3/4): 43-55. https://doi.org/10.1016/0009-2541(85)90034-8
    Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1/2): 243-258. https://doi.org/10.1016/s0012-821x(97)00040-x
    Buslov, M. M., Fujiwara, Y., Iwata, K., et al., 2004. Late Paleozoic-Early Mesozoic Geodynamics of Central Asia. Gondwana Research, 7(3): 791-808. https://doi.org/10.1016/s1342-937x(05)71064-9
    Chen, B., Xu, B., 1996. The Main Characteristics and Tectonic Implications of Two Kinds of Paleozoic Granitoids in Sunidzuqi, Central Inner Mongolia. Acta Petrologica Sinica, 10(4): 49-64 (in Chinese with English Abstract) http://www.oalib.com/paper/1471634
    Demoux, A., Kröner, A., Badarch, G., et al., 2009. Zircon Ages from the Baydrag Block and the Bayankhongor Ophiolite Zone: Time Constraints on Late Neoproterozoic to Cambrian Subduction-and Accretion-Related Magmatism in Central Mongolia. The Journal of Geology, 117(4): 377-397. https://doi.org/10.1086/598947
    Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. https://doi.org/10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2
    Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
    Glorie, S., De Grave, J., Buslov, M. M., et al., 2011. Formation and Palaeozoic Evolution of the Gorny-Altai-Altai-Mongolia Suture Zone (South Siberia): Zircon U/Pb Constraints on the Igneous Record. Gondwana Research, 20(2/3): 465-484. https://doi.org/10.1016/j.gr.2011.03.003
    Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/s0016-7037(99)00343-9
    Han, B. F., He, G. Q., Wang, X. C., et al., 2011. Late Carboniferous Collision between the Tarim and Kazakhstan-Yili Terranes in the Western Segment of the South Tian Shan Orogen, Central Asia, and Implications for the Northern Xinjiang, Western China. Earth-Science Reviews, 109(3/4): 74-93. https://doi.org/10.1016/j.earscirev.2011.09.001
    Han, B. F., Wang, S. G., Jahn, B. M., et al., 1997. Depleted-Mantle Source for the Ulungur River A-Type Granites from North Xinjiang, China: Geochemistry and Nd-Sr Isotopic Evidence, and Implications for Phanerozoic Crustal Growth. Chemical Geology, 138(3/4): 135-159. https://doi.org/10.1016/s0009-2541(97)00003-x
    Hong, D. W., Huang, H. Z., Xiao, Y. J., 1994. The Permian Alkaline Granites in Central Inner Mongolia and Their Geodynamic Significance. Acta Geologica Sinica, 10(3): 219-230 (in Chinese with English Abstract) https://www.sciencedirect.com/science/article/pii/0743954794900175
    Hong, D. W., Wang, S. G., Han, B. F., et al., 1995. Tectonic Environment Classification and Identifying Symbol of Alkali Granite. Science in China (Series B), 25(4): 418-426 (in Chinese)
    Hong, D. W., Zhang, J. S., Wang, T., et al., 2004. Continental Crustal Growth and the Supercontinental Cycle: Evidence from the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 23(5): 799-813. https://doi.org/10.1016/s1367-9120(03)00134-2
    Hsu, K. J., Wang, Q. C., Li, L., et al., 1991. Geologic Evolution of the Neimonides: A Working Hypothesis. Eclogae Geologicae Helvetiae, 84(1): 1-31 https://www.researchgate.net/publication/280015672_Geologic_evolution_of_the_Neimonides_a_working_hypothesis
    Hu, Z. C., Liu, Y. S., Gao, S., et al., 2008a. A Local Aerosol Extraction Strategy for the Determination of the Aerosol Composition in Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 23(9): 1192-1203. https://doi.org/10.1039/b803934h
    Hu, Z. C., Gao, S., Liu, Y. S., et al., 2008b. Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas. Journal of Analytical Atomic Spectrometry, 23(8): 1093-1101. https://doi.org/10.1039/b804760j
    Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved in situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399. https://doi.org/10.1039/c2ja30078h
    Jahn, B. M., Litvinovsky, B. A., Zanvilevich, A. N., et al., 2009. Peralkaline Granitoid Magmatism in the Mongolian-Transbaikalian Belt: Evolution, Petrogenesis and Tectonic Significance. Lithos, 113(3/4): 521-539. https://doi.org/10.1016/j.lithos.2009.06.015
    Jahn, B. M., Wu, F. Y., Chen, B., 2000a. Granitoids of the Central Asian Orogenic Belt and Continental Growth in the Phanerozoic. Transactions of the Royal Society of Edinburgh: Earth Sciences, 91(1/2): 181-193. https://doi.org/10.1017/s0263593300007367
    Jahn, B. M., Wu, F. Y., Chen, B., 2000b. Massive Granitoid Generation in Central Asia: Nd Isotope Evidence and Implication for Continental Growth in the Phanerozoic. Episodes, 23(2): 82-92 http://www.oalib.com/references/19187916
    Jian, P., Kröner, A., Windley, B. F., et al., 2012. Carboniferous and Cretaceous Mafic-Ultramafic Massifs in Inner Mongolia (China): A SHRIMP Zircon and Geochemical Study of the Previously Presumed Integral "Hegenshan Ophiolite". Lithos, 142/143: 48-66. https://doi.org/10.1016/j.lithos.2012.03.007
    Jian, P., Liu, D. Y., Kröner, A., et al., 2008. Time Scale of an Early to Mid-Paleozoic Orogenic Cycle of the Long-Lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for Continental Growth. Lithos, 101(3/4): 233-259. https://doi.org/10.1016/j.lithos.2007.07.005
    Khain, E. V., Bibikova, E. V., Kröner, A., et al., 2002. The Most Ancient Ophiolite of the Central Asian Fold Belt: U-Pb and Pb-Pb Zircon Ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and Geodynamic Implications. Earth and Planetary Science Letters, 199(3/4): 311-325. https://doi.org/10.1016/s0012-821x(02)00587-3
    Khain, E., Bibikova, E. V., Salnikova, E. B., et al., 2003. The Palaeo-Asian Ocean in the Neoproterozoic and Early Palaeozoic: New Geochronologic Data and Palaeotectonic Reconstructions. Precambrian Research, 122(1/2/3/4): 329-358. https://doi.org/10.1016/s0301-9268(02)00218-8
    Kinny, P. D., Maas, R., 2003. Lu-Hf and Sm-Nd Isotope Systems in Zircon. Reviews in Mineralogy and Geochemistry, 53(1): 327-341. https://doi.org/10.2113/0530327
    Kröner, A., Demoux, A., Zack, T., et al., 2011. Zircon Ages for a Felsic Volcanic Rock and Arc-Related Early Palaeozoic Sediments on the Margin of the Baydrag Microcontinent, Central Asian Orogenic Belt, Mongolia. Journal of Asian Earth Sciences, 42(5): 1008-1017. https://doi.org/10.1016/j.jseaes.2010.09.002
    Kröner, A., Lehmann, J., Schulmann, K., et al., 2010. Lithostratigraphic and Geochronological Constraints on the Evolution of the Central Asian Orogenic Belt in SW Mongolia: Early Paleozoic Rifting Followed by Late Paleozoic Accretion. American Journal of Science, 310(7): 523-574. https://doi.org/10.2475/07.2010.01
    Kröner, A., Windley, B. F., Badarch, G., et al., 2007. Accretionary Growth and Crust Formation in the Central Asian Orogenic Belt and Comparison with the Arabian-Nubian Shield. Geological Society of America Memoirs, 200(5): 181-209 https://www.researchgate.net/profile/Brian_Windley/publication/235769214_Accretionary_growth_and_crust-formation_in_the_Central_Asian_Orogenic_Belt_and_comparison_with_the_Arbian-Nubian_shield/links/0912f51361e8c4194a000000.pdf
    Li, J. Y., 2006. Permian Geodynamic Setting of Northeast China and Adjacent Regions: Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences, 26(3/4): 207-224. https://doi.org/10.1016/j.jseaes.2005.09.001
    Li, J. Y., Gao, L. M., Sun, G. H., et al., 2007. Shuangjingzi Middle Triassic Syn-Collisional Crust-Derived Grainite in the East Inner Monglia and Its Constraint on the Timing of Collision between Siberian and Sino-Korean Paleo-Plates. Acta Petrologica Sinica, 23(3): 565-582 (in Chinese with English Abstract) doi: 10.1080/00206814.2013.771949?scroll=top&needAccess=true
    Liu, Y. S., Gao, S., Hu, Z. C., et al., 2009. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082
    Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
    Ludwig, K. R., 2003. ISOPLOT 3. 00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley http://www.researchgate.net/publication/306157481_Isoplot_v_30_a_geochronological_toolkit_for_Microsoft_Excel
    Ma, S. W., Liu, C. F., Xu, Z. Q., et al., 2017. Geochronology, Geochemistry and Tectonic Significance of the Early Carboniferous Gabbro and Diorite Plutons in West Ujimqin, Inner Mongolia. Journal of Earth Science, 28(2): 249-264. https://doi.org/10.1007/s12583-016-0912-2
    Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2
    Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
    Möller, A., O'Brien, P. J., Kennedy, A., et al., 2003. Linking Growth Episodes of Zircon and Metamorphic Textures to Zircon Chemistry: An Example from the Ultrahigh-Temperature Granulites of Rogaland (SW Norway). Geological Society, London, Special Publications, 220(1): 65-81. https://doi.org/10.1144/gsl.sp.2003.220.01.04
    Mossakovsky, A. A., Ruzhentsev, S. V., Samygin, S. G., et al., 1994. Central Asian Fold Belt: Geodynamic Evolution and Formation History. Geotectonics, 27(6): 445-474
    Pearce, N. J. G., Perkins, W. T., Westgate, J. A., et al., 1997. A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials. Geostandards and Geoanalytical Research, 21(1): 115-144. https://doi.org/10.1111/j.1751-908x.1997.tb00538.x
    Rubatto, D., Gebauer, D., 2000. Use of Cathodoluminescence for U-Pb Zircon Dating by Ion Microprobe: Some Examples from the Western Alps. In: Pagel, M., Barbin, V., Blanc, P., et al., eds., Cathodoluminescence in Geosciences. Springer-Verlag Berlin Heidelberg, [S. l. ]. 373-400 doi: 10.1007/978-3-662-04086-7_15
    Şengör, A. M. C., Natal'in, B. A., 1996. Paleotectonics of Asia: Fragments of a Synthesis. In: Yin, A., Harrison, M., eds., The Tectonic Evolution of Asia. Cambridge University Press, Cambridge. 486-640 http://ci.nii.ac.jp/naid/10026605589
    Şengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299-307. https://doi.org/10.1038/364299a0
    Shao, J. A., He, G. Q., Tang, K. D., 2015. The Evolution of Permian Continental Crust in Northern Part of North China. Acta Petrologica Sinica, 31(1): 47-55 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201501003.htm
    Shao, J. A., Tang, K. D., He, G. Q., 2014. Early Permian Tectono-Palaeogeographic Reconstruction of Inner Mongolia, China. Acta Petrologica Sinica, 30(7): 1858-1866 (in Chinese with English Abstract) https://www.researchgate.net/publication/293238364_Early_Permian_tectono-palaeogeographic_reconstruction_of_Inner_Mongolia_China
    Söderlund, U., Patchett, P. J., Vervoort, J. D., et al., 2004. The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 219(3/4): 311-324. https://doi.org/10.1016/s0012-821x(04)00012-3
    Song, B., Zhang, Y. H., Wang, Y. S., et al., 2002. Mount Making and Procedure of the SHRIMP Dating. Geological Review, 48(Suppl.): 26-30 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP2002S1006.htm
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Tang, K. D., 1990. Tectonic Development of Paleozoic Foldbelts at the North Margin of the Sino-Korean Craton. Tectonics, 9(2): 249-260. https://doi.org/10.1029/tc009i002p00249
    Tang, K. D., 1992. Tectonic Evolution and Metallogenic Regularity of the Fold Belt in the North of the North China Plate. Peking University Press, Beijing (in Chinese)
    Wang, Y. M., Han, B. F., Griffin, W. L., et al., 2012. Post-Entrainment Mineral-Magma Interaction in Mantle Xenoliths from Inner Mongolia, Western North China Craton. Journal of Earth Science, 23(1): 54-76. https://doi.org/10.1007/s12583-012-0233-x
    Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202
    Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards and Geoanalytical Research, 19(1): 1-23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x
    Wu, F. Y., Li, X. H., Yang, J. H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English Abstract) http://www.researchgate.net/publication/279707410_Discussion_on_the_petrogenesis_of_granites
    Wu, Y. B., Zheng, Y. F., 2004. Genetic of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese) doi: 10.1007/BF03184122
    Xiao, W. J., Windley, B. F., Hao, J., et al., 2003. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 22(6): 1069. https://doi.org/10.1029/2002tc001484
    Xiao, W. J., Windley, B. F., Huang, B. C., et al., 2009. End-Permian to Mid-Triassic Termination of the Accretionary Processes of the Southern Altaids: Implications for the Geodynamic Evolution, Phanerozoic Continental Growth, and Metallogeny of Central Asia. International Journal of Earth Sciences, 98(6): 1189-1217. https://doi.org/10.1007/s00531-008-0407-z
    Xu, B., Charvet, J., Chen, Y., et al., 2013. Middle Paleozoic Convergent Orogenic Belts in Western Inner Mongolia (China): Framework, Kinematics, Geochronology and Implications for Tectonic Evolution of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1342-1364. https://doi.org/10.13039/501100001809
    Xu, B., Chen, B., 1997. Framework and Evolution of the Middle Paleozoic Orogenic Belt between Siberian and North China Plates in Northern Inner Mongolia. Science in China Series D: Earth Sciences, 40(5): 463-469. https://doi.org/10.1007/bf02877610
    Xu, B., Zhao, P., Bao, Q. Z., et al., 2014. Preliminary Study on the Pre-Mesozoic Tectonic Unit Division of the Xing-Meng Orogenic Belt (XMOB). Acta Petrologica Sinica, 30(7):1841-1857 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201407001.htm
    Zhang, X. H., Zhai, M. G., 2010. Magmatism and Its Metallogenetic Effects during the Paleozoic Continental Crustal Construction in Northern North China: An Overview. Acta Petrologica Sinica, 26(5):1329-1341 (in Chinese with English Abstract) http://www.oalib.com/paper/1474608
    Zhang, X. H., Zhang, H. F., Tang, Y. J., et al., 2006. Early Triassic A-Type Felsic Volcanism in the Xilinhaote-Xiwuqi, Central Inner Mongolia: Age, Geochemistry and Tectonic Implications. Acta Petrologica Sinica, 22(11): 2769-2780 (in Chinese with English Abstract) https://www.researchgate.net/publication/285763417_Early_Triassic_A-type_felsic_volcanism_in_the_Xilinhaote-Xiwuqi_central_Inner_Mongolia_Age_geochemistry_and_tectonic_implications
    Zhao, P., Chen, Y., Xu, B., et al., 2013. Did the Paleo-Asian Ocean between North China Block and Mongolia Block Exist during the Late Paleozoic? First Paleomagnetic Evidence from Central-Eastern Inner Mongolia, China. Journal of Geophysical Research: Solid Earth, 118(5): 1873-1894. https://doi.org/10.13039/501100001809
    Zhao, P., Xu, B., Tong, Q. L., et al., 2016. Sedimentological and Geochronological Constraints on the Carboniferous Evolution of Central Inner Mongolia, Southeastern Central Asian Orogenic Belt: Inland Sea Deposition in a Post-Orogenic Setting. Gondwana Research, 31: 253-270. https://doi.org/10.13039/501100001809
    Zhou, W. X., Li, S. C., Ge, M. C., et al., 2016. Geochemistry and Zircon Geochronology of a Gabbro-Granodiorite Complex in Tongxunlian, Inner Mongolia: Partial Melting of Enriched Lithosphere Mantle. Geological Journal, 51(1): 21-41. https://doi.org/10.1002/gj.2603
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(4)

    Article Metrics

    Article views(769) PDF downloads(122) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return